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1. Introduction 

There are growing physiological and practical evidences that show usefulness of component 
(e.g., local feature) based approaches in generic object recognition (Matsugu & Cardon, 2004; 
Wolf et al., 2006; Mutch & Lowe, 2006; Serre et al., 2007) which is robust to variability in 
appearance due to occlusion and to changes in pose, size and illumination. 
It is no doubt clear that low level features such as edges are important and utilized in most 
of visual recognition tasks. However, there are only a few studies that address economical 
and efficient use of intermediate visual features for higher level cognitive function (Torralba 
et al., 2004; Opelt et al., 2006). In this chapter, inspired by cortical processing, we will 
address the problem of efficient selection and economical use of visual features for face 
recognition (FR) as well as facial expression recognition (FER). 
We demonstrate that by training our previously proposed (Matsugu et al., 2002) hierarchical 
neural network architecture (modified convolutional neural networks: MCoNN) for face 
detection (FD), higher order visual function such as FR and FER can be organized for shared 
use of such local features. The MCoNN is different from those previously proposed 
networks in that training is done layer by layer for intermediate as well as global features 
with resulting receptive field size of neurons being larger for higher layers. Higher level 
(e.g., more complex) features are defined in terms of spatial arrangement of lower level local 
features in a preceding layer. In the chapter, we will define a common framework for higher 
level cognitive function using the same network architecture (i.e., MCoNN) as substrate as 
follows. 

• In Section 2, we will demonstrate two examples of learning local features suitable for FD
in our MCoNN (Matsugu & Cardon, 2004). One approach is heuristic, supervised 
training by showing exemplar local features or patches of images, and the other is 
unsupervised training using SOM (self-organizing map) combined with supervised 
training in MCoNN.  

• In the proposed framework, both FR and FER utilize common local features (e.g., corner 
like end-stop structures) learnt from exemplary image fragments (e.g., mouth corners, 
eye-corners) for FD. Specifically, in Section 3, spatial arrangement information of such 
local features is extracted implicitly for FR as feature vectors used in SVM classifiers 
(Matsugu et al., 2004). In the case of FER described in Section 4, spatial arrangement of 

Source: Face Recognition, Book edited by: Kresimir Delac and Mislav Grgic, ISBN 978-3-902613-03-5, pp.558, I-Tech, Vienna, Austria, June 2007
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common local features is used explicitly for rule-based analysis (Matsugu et al., 2003). 
We will show, by simulation, that learnt features for FD turn out to be useful for FR and 
FER as well. 

2. Learning Local Features for Generic Object Detection 

2.1 Modified convolutional neural network (MCoNN) 

Convolutional neural networks (CoNN), with hierarchical feed-forward structure, consist of 
feature detecting (FD) layers, each of which followed with a feature pooling (FP) layer or 
sub-sampling layer. CoNN (LeCun and Bengio, 1995) as well as Neocognitrons (Fukushima, 
1980) have been used for face detection (Matsugu et al., 2002; Osadchy et al., 2004) and 
recognition (Lawrence et al., 1995).  

Figure 1. Modified convolutional neural network (MCoNN) architecture for facedetection 

Proposed architecture in Figure 1 comes with the property of robustness in object 
recognition such as translation and deformation invariance as in well-known neocognitrons,
which also have similar architecture. The MCoNN contains the same three properties as the 
original CoNN as well as Neocognitrons: local receptive fields, shared weights, and 
alternating feature detection/pooling mechanism to detect some intermediate (in the sense 
that local but not too simple) local features. Those properties are can be widely found in 
cortical structures (Serre et al., 2005). Feature pooling (FP) neurons perform either maximum 
value detection as in Riesenhuber & Poggio (1999) and Serre et al. (2007) or local averaging 
in their receptive fields of appropriate size. 
Our model (MCoNN) for face detection as shown in Figure 1 is different from traditional 
ones in many aspects. First, it has only FD modules in the bottom and top layers. The 
intermediate features detected in FD2 constitute a set of figural alphabets (Matsugu et al., 
2002; Matsugu & Cardon, 2004). Local features in FD1 are used as bases of figural alphabets, 
which are used for eye or mouth detection. Face detecting module in the top layer is fed 
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with a set of outputs from facial component (e.g., such as eye, mouth) detectors as spatially 
ordered set of local features of intermediate complexity.  
Second, we do not train FP (or sub-sampling) layers (FP neurons perform either maximum 
value detection or local averaging in their receptive fields). Third, we use a detection result 
of skin color area as input to the face detection module in FD4. The skin area is obtained 
simply by thresholding of hue data of input image in the range of [-0.078,0.255] for the full 
range of [-0.5,0.5], which is quite broad indicating that skin color feature plays merely 
auxiliary part in the proposed system. 
Third, in our MCoNN model, in contrast to the original CoNN, local features to be detected 
in respective layers are pre-defined, and trained module by module (i.e., for each local 
feature class) for specifi category of local features; edge-like features in the first layer, and 
then in the second layer, corner-like structures (i.e., ‘<’ and ‘>’ end-stop), elongated blobs 
(i.e., upper part bright blob, and lower part bright blob) are detected.  The second and third 
layers are composed of feature detecting layer and feature pooling layer as in original 
CoNN and Neocognitrons. Local features detected in the second layer constitute some 
alphabetical local features in our framework, and details will be explained in the next 
section. Eye and mouth features are detected in the third layer. Finally, a face is detected in 
the forth layer using outputs from the third layer and skin area data defined by some 
restricted range of hue and saturation values. 
The training proceeds as follows. As in (Matsugu et al., 2002, Mitarai et al., 2003), training of 
the MCoNN is performed module by module using fragment images as positive data 
extracted from publicly available database (e.g., Softpia Japan) of more than 100 persons. 
Other irrelevant fragment images extracted from background images are used as negative 
samples. In the first step, two FD layers from the bottom, namely FD1 with 8 modules and 
FD2 with 4 modules, are trained using standard back-propagation with intermediate local 
features (e.g., eye corners) as positive training data sets. Negative examples that do not 
constitute the corresponding feature category are also used as false data. Specifically, we 
trained the FD2 layer, the second from the bottom FD layer to form detectors of 
intermediate features, such as end-stop structures or blobs (i.e., end-stop structures for left 
and right side and two types of horizontally elongated blobs (e.g., upper part bright, lower 
part bright) with varying sizes, rotation (up to 30 deg. with rotation in-plane axis as well as 
head axis). These features for training are fragments extracted from face images. More 
complex local feature detectors (e.g., eye, mouth detectors, but not restricted to these) are 
trained in the third or fourth FD layer using the patterns extracted from transforms as in the 
FD2 layer. As a result of these training sequences, the top FD layer, FD4, learns to locate 
faces in complex scenes. The size of partial images for the training is set so that only one 
class of specific local feature is contained. The number of training data set is 14847 including 
face images and background image for FD4 module, 5290 for FD3, and 2900 for FD2. 

2.2 Supervised learning of local features as figural alphabets in MCoNN 

Selecting optimal local features for multi-class object detection (Papageorgiou et al, 1998) is a 
crucial step toward generic object recognition. Face detection, face recognition, and facial 
expression recognition are no exceptions. In Burl et al. (1995) and Weber et al. (2000), an 
interest point operator and a k-means clustering algorithm are used to extract and regroup 
high-level features for estimating the parameters of the underlying probabilistic model.  
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In Ikeda et al. (2001), image entropy was adopted to select interesting areas in an image and 
also Self-Organizing Map (SOM) (Kohonen, 1985) was used to organize great amount of 
extracted high-level features, then a clustering algorithm was used to regroup similar units 
in the SOM to a certain number of macro-classes. In this section (Matsugu & Cardon, 2004), 
we explain sequential supervised training scheme to form a set of intermediate level feature 
detectors (Matsugu et al., 2002) and sub-optimal feature selection. For training the modified 
convolutional neural network (MCoNN), we extracted local image patches (Figure 2) 
around key points detected by Harris interest point operators. 

Figure 2. Local image fragments for training the second and third layers of MCoNN 

Here a variant of back-propagation algorithm is used to train each layer separately 
(sequential BP: SBP) so that the extracted features are controlled, and also some specific 
parts of the face can be detected. The first two layers are trained with intermediate-level 
features (e.g. eye-corners), while the subsequent layers are trained with more complex, high-
level features (e.g. eyes, faces...). This requires selecting a training set of features. By 
selecting a limited set of features for a specific object, we may expect to find a restricted yet 
useful set of receptive fields as in neurophysiological studies (Blackmore and Cooper, 1970; 
Hubel and Wiesel, 1962).  
To find these features we apply classical BP (hereafter referred as GBP: global BP), not the 
proposed SBP, to the entire MCoNN with connections below Layer 2(FD1-FD2-FP2) in 
Figure 3 fixed, and analyze the output of Layer3 (high-level features). The GBP converges to 
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a local minimum, therefore the algorithm will tend to extract sub-optimal features to 
minimize the detection error. 
To examine the validity of our scheme of using MCoNN trained by GBP for generic object 
detection, we applied the MCoNN for face detection to the detection of bright-colored cars 
with significant variance in shape, illumination, size and orientation. The size of the images 
used for learning was 156 x 112, and 90 images were used for training and 10 images for 
validation. We aimed to find characteristic high-level features for the detection of this type 
of objects under particular view. In addition, it was necessary to tailor our model to be able 
to distinguish between cars and other rectangular objects. For this reason, we included a set 
of negative non-car examples, with similar rectangular shape but which were not cars. 

2.3  Unsupervised learning of local features as figural alphabets in MCoNN 

In this section (Matsugu & Cardon, 2004), we present an unsupervised feature extracting 
and clustering procedure, using an interest operator combined with a SOM. In contrast with 
Opelt et al. (2006), we do not use AdaBoost framework for this task. Instead, proposed 
method combines the advantages of both Weber et al. (2000) and Ikeda et al. (2001) by 
selecting a limited number of features and regrouping them using a topographic vector 
quantizer (SOM); acting like a vector quantizer and introducing a topographic relation at the 
same time. The obtained feature classes are self-organized, low-and intermediate-level 
features that are used to train the two first layers of the MCoNN and obtain a minimum set 
of alphabetical receptive fields. 
Those alphabets as in Opelt et al. (2006) considerably reduces the complexity of the network 
by decreasing the number of parameters and can be used for detection of different object 
classes (e.g. faces, cars,...). We also introduce a method to select optimal high-level features 
and illustrate it with the car detection problem. 
The whole network for face detection as well as car detection is described in the lower part 
of Figure 3. Some specific local fragments of image extracted a priori, by using the proposed 
method in this study, are used to train the first two layers of the MCoNN. First, we train the 
MCoNN to recognize only one feature (one output plane in FD2). A sequential back-
propagation algorithm (Matsugu et al., 2002) is used for learning and weights are updated 
after each training pattern (fragments of images) is presented. A fixed number of 100 epochs 
has been used. For each training set, a different number of cell-planes in layer S1 have been 
tested. The network has essentially four distinct sets of layers: FD1, FD2-FP2, FD3-FP3, FD4 
(FDk: the kth feature detecting layer; FPj: the jth feature pooling layer for subsampling). 
Layers FD3-FP3 and above are concerned with object specific feature detection. In order to 
limit the number of features to object-relevant features, an interest point operator is used. 
This operator selects corner-like features in the image.  
Having selected a restricted number of points using keypoint detector (Harris & Stephens, 
1988; Lowe, 1999;Kadir & Brady, 2001; Csurka et al. 2004) we extract features around these 
points. These features are used as learning set for the SOM well suited for classifying and 
visualizing our feature set. It turned out that the illumination has a big influence on the 
classification of our features, so we have rescaled the feature set between -1 and 1 before 
applying the SOM. Each unit of the SOM defines a training set for the MCoNN. 
Once lower-level alphabetical feature detectors are formed, higher level feature detectors 
can be obtained from BP with connections between neurons below intermediate layers fixed. 
Since we are interested in low-level features to train the first two layers of the MCoNN, we 
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have chosen to extract small features as shown in Figure 3 (upper left). After applying SOM 
with those fragment images extracted from a database of 904 (size: 208 x 256) images (300 
faces (frontal view), 304 cars (upper view) and 300 various types of images), we obtained a 
set of 69,753 features. From these features, we manually selected some prototypical features 
that have simple characteristics (e.g., horizontal, vertical, and diagonal contrast). 

Figure 3. Schematic diagram of learning system for generic object recognition (adapted from 
Matsugu & Cardon, 2004) 

We used the SOM Toolbox in Matlab and fixed the number of units to 100 based on the 
assumption that there are not more than 100 different types of local  features (figural 
alphabets) for generic object detection. Fragmented image patches for clustering are 
appropriately cropped so that irrelevant background features are cut out. 
For each cluster we only consider the 300 features, which are the closest to the SOM-unit, in 
terms of Euclidean distance. 200 features are used for training, 50 features for validation and 
the last 50 units for testing. The results have been obtained with a test set of 50 features and 
optimal receptive fields have been selected by cross-validation. We see that for such simple 
features, only one cell-plane in S1 is sufficient to obtain good detection results. We also 
notice that the learnt receptive fields (Figure 4) have a regular pattern. Based upon these 
patterns we use a set of four alphabetical patterns V, H, S, B (hereafter, represents vertical, 
horizontal, slash, backslash, respectively) described in Figure 4. 

FD1
FD2 FP2

FD3 FP3
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We observe that some feature clusters in the SOM have a more complex aspect as shown in 
Figure 3. We claim that these more complex features can be detected using the simple 
receptive fields, described in the previous section. Considering for example the feature 
described in Figure 3, we see that this eye-corner type feature can be decomposed into two 
local alphabetical features (Figure 5).  
The usefulness of our alphabetical set appears when we want to detect, using a small 
number of receptive fields, a bit more higher-level features with more complex geometrical 
or textual structures. Let us consider the features used to detect a complete eye or a mouth  
(Matsugu et al., 2002). They can be decomposed to two horizontal, two slash and two back-
slash components (Figure 6). 

Figure 4.  Alphabetical patterns obtained from SOM which are used for training McoNN. 
Resuling receptive fields of McoNN correspond to each feature detector 

With a limited set of three fixed receptive fields H, S and B it turned out that we reach a 
detection rate of eye-corner comparable to that of using six learnt receptive fields. Our 
alphabetical set, being close to the optimal set of weights, therefore outperforms the learnt 
weights. We can extend these results for different types of complex features and construct a 
vocabulary set that can be recognized with H, V, S, and B. For illustration purposes, we have 
tested our alphabet with images from which features have been extracted. It turned out that 
we could detect, in the S2 layer, eye- and mouth-corners as well as the side mirrors of a car, 
using only three receptive fields (H, S and B). 

Figure 5. Example (corner-like structure) of local feature extracted from local image patches 
of eye as a figural alphabet and its decomposition into three elementary features 



Face Recognition 312

An interesting question to be answered is which vocabulary we should use, in other words, 
what features are important to detect a specific object. To find these features we apply 
classical BP (hereafter referred as GBP: global BP), not the proposed SBP, to the entire 
MCoNN with connections below S3 layer (FD1--FD2-FP2) fixed, and analyze the output of 
Layer3 (high-level features). The GBP converges to a local minimum, therefore the algorithm 
will tend to extract sub-optimal features to minimize the detection error. 

Figure 6. Example of visual vocabulary that constitues eye as a constellation of figural 
alphabet in the proposed system 

Having discovered the important features for our object detection problem, we obtain object 
specific vocabulary to select to construct these high-level features. We can use SBP as in  
(Matsugu et al., 2002) to train the higher level layers in the MCoNN: to train layer by layer 
with the selected vocabulary features.  
In spite of the simplicity of this alphabet it gives remarkable results, comparable and 
sometimes better than the learnt receptive fields with average detection rate over 95% for 
different types of features. After obtaining alphabetical feature detectors in the S1 and S2 
layer of MCoNN, we applied GBP to the S3 and S4 layers of MCoNN, with lower level 
weights fixed, to obtain higher level feature detectors (e.g., cars and faces), thereby 
obtaining sub-optimal vocabulary set. The optimality was examined in terms of cross-
validation.  

3. Component-based Face Recognition 

3.1 Literature overview 

Face recognition algorithms have been extensively explored (Belhumeur et al., 1997; Brunelli 
& Poggio, 1993; Turk & Pentland, 1997; Guodong et al., 2000; Heisele et al.,  2001; Heisele & 
Koshizen, 2004; Li et al., 2000; Moghaddam et al., 1998; Pontil & Verri, 1998; Wiskott et al., 
1997) and most of which address the problem separately from object detection, which is 
associated with image segmentation, and many assume the existence of objects to be 
recognized without background. Some approaches, in the domain of high-level object 
recognition, address economical use of visual features extracted in the early stage for object 
detection. However, only a few object recognition algorithms proposed so far explored 
efficiency in the combined use of object detection and recognition  (Li et al., 2000).  
For example, in the dynamic link matching (DLM) (Wiskott et al., 1997), Gabor wavelet 
coefficient features are used in face recognition and detection as well. However, we cannot 
extract shape as well as spatial arrangement information on facial components directly from 
those features since, for a set of nodes of the elastic graph, they do not contain such 
information. This necessitated to device the graph matching technique, a computationally 
expensive procedure, which requires quite different processing from feature detection stage. 
Convolutional neural networks (CoNN) (Le Cun & Bengio, 1995) have been exploited in face 
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recognition and hand-written character recognition. In (Matsugu et al., 2001, 2002), we 
proposed a MCoNN model for robust face detection. SVM has also been used for face 
recognition  (Guodong et al., 2000; Heisele et al., 2001; Heisele & Koshizen, 2004; Li et al., 
2000; Pontil & Verri, 1998). In particular, in (Heisele et al., 2001; Heisele & Koshizen, 2004), 
SVM classification was used for face recognition in the component-based approach. 
This section, in the domain of face recognition as a case study for general object recognition 
with object detection, explores the direct use of intermediate as well as low level features 
obtained in the process of face detection. Specifically, we explore the combined use of our 
MCoNN and support vector machines (SVM), the former used for feature vector generation, 
the latter for classification. Proposed algorithm is one of component-based approaches 
(Heisele et al., 2001; Heisele & Koshizen, 2004) with appearance models represented by a set 
of local, area-based features. The direct use of intermediate feature distributions obtained in 
face detection, for face recognition, brings unified and economical process that involves 
simple weighted summation of signals, implemented both in face detection and recognition. 

3.2 Proposed component based face recognition

Proposed face recognition system (Matsugu et al., 2004) utilizes intermediate features 
extracted from face detection system using MCoNN, which are fed to SVM for classification. 
This combination of MCoNN with SVM is similar in spirit to recent works by Serre et al. 
(2007) and Mutch & Lowe (2006). Figure 7 shows detailed structure of the MCoNN for face 
detection as well as face recognition. Here, we describe feature vectors and the procedure 
for their generation in face recognition. A feature vector, F, used in SVM for face recognition 
is an N dimensional vector, synthesized from a set of local output distributions, F1 (as shown 
in Figure 2(1)), in a module detecting edge-like feature in FD1 layer in addition to output 
distributions, F2, (as shown in Figure 2(2)) of two intermediate-level modules detecting eye 
and mouth in FD2 layer. Thus, F = (F1, F2) where F1 = (F11, …, F1m) and F2 = (F21, …, F2n) are 
synthesized vectors formed by component vectors, F1k (k=1, ..., m) and F2k (k=1, ..., n), 
respectively.
Each component vector represents possibility or presence of specific class of local feature in 
an assigned local area. Dimension of a component vector is the area of a rectangular region 
as in Figure 9. Thus dimension of feature vector, N, is the total summation of respective 
dimensions of component vectors. In particular, F1 =(F11, F12, …, F1,15), and local areas, total 
number of assigned areas being 15 as in Figure 9 (1),  for component vectors are set around 
eye, nose, and mouth, using the detected eye location from the MCoNN. F1 reflects shape 
information of eye, mouth, and nose. F2 = (F21, F22, F23), and each component vector reflects 
spatial arrangement of eye or eye and nose, etc., depending on how local areas in FD2 (e.g., 
positions and size) are set. 
The procedure for feature vector generation is summarized as follows. First, we define a set 
of local areas for FD1 as well as FD3 modules based on the CNN output in FD3 modules for 
eye and mouth detection. Positions of local areas in FD1 module are set around specific 
facial components (i.e., eyes, mouth) as illustrated in Figure 9 (1). The size of respective local 
areas in the output plane of FD1 module is set relatively small (e.g., 11 x 11) so that local 
shape information of figural alphabets can be retained in the output distribution, while the 
local area in the FD2 plane is relatively larger (e.g., 125 x 65) so that information concerning 
spatial arrangement of facial components (e.g., eye) is reflected in the distribution of FD2 
outputs.
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FD1
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Figure 7. MCoNN for face recognition and facial expression recognition. Outputs from 
encircled modules in FD1 and FD2 layers are used for face recognition 

Figure 8. Intermediate output from MCoNN (1):input image, (2) output example from FD1, 
(3) intermediate outputs from encircled modules of FD2 in Figure 7 
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For face recognition, we use an array of linear SVMs for one-against-one multi-class 
recognition of faces. The SVM library used in the simulation is libsvm2.5, available in the 
public domain. In the SVM training, we used a dataset of FVs extracted for each person in 
the way described in Section3. 

Figure 9. Local areas for face recognition. (1): small local area for local shape description, (2): 
mid-level local area for mid-level description of intermediate local feature configuration. 
(a,b,c): outputs from ‘< end-stop’, ‘> end-stop’, ‘upper part bright horizontal blob’ detectors, 
respectively

The size of input image is of VGA, and the size of local areas for FVs is 15 x15, 125 x 65, or 45 
x 65 depending on the class of local features. As indicated in Figure 9 (1), the number of 
local areas for FD1 feature and FD2 feature is fourteen and two, respectively. The number of 
FVs for one person is 30, which are obtained under varying image capturing conditions so 
that size, pose, facial expression, and lightning conditions of respective faces are slightly 
different.

Figure 10. ROC curve of  face recognition for 20 people. Triangle-red curve: ROC from 
intermediate outputs from MCoNN, diamond-blue curve: ROC obtained from raw input 
data fed to SVM 
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Face image database used ofr training and testing is in-house DB (10 subjects, 1500 images) 
and PIE database (we used part of the DB: 15 subjects 60 images) by CMU. We compared 
results obtained from McoNN’s intermediate outputs with those obtained from raw data 
using the same local area as in Figure 9. ROC curves in Figure 10 obtained for in-house face 
database show that using intermediate outputs rather than raw data provide better 
performance. Using the same dataset, we compared our model with commercially available 
software which is based on DLM (Wiskott et al., 1997). The recognition rate turned out to be 
almost the same for the relative size of 0.8 to 1.2, while F.A.R. is slightly inferior to our 
model (i.e., F.A.R. is not perfectly zero), suggesting that our model involving much simpler 
operations equals to the performance of one of the best models (Matsugu et al., 2004). 

4. Component-based Facial Expression Recognition 

4.1 Literature overview 

Facial expressions as manifestations of emotional states, in general, tend to be different 
among individuals. For example, smiling face as it appears may have different emotional 
implications for different persons in that ‘smiling face’, perceived by others, for some person 
does not necessarily represent truly smiling state for that person. Only a few algorithms 
(e.g., Ebine & Nakamura, 1999) have addressed robustness to such individuality in facial 
expression recognition. Furthermore, in order for facial expression recognition (FER) to be 
used for human-computer-interaction, for example, that algorithm must have good ability in 
dealing with variability of facial appearance (e.g., pose, size, and translation invariance). 
Most algorithms, so far, have addressed only a part of these problems (Wallis & Rolls, 1997). 
In this study, we propose a system for facial expression recognition that is robust to 
variability that originates from individuality and viewing conditions. Recognizing facial 
expression under rigid head movements was addressed by (Black & Yacoob, 1995). Neural 
network model that learns to recognize facial expressions from an optical flow field was 
reported in (Rosenblum et al., 1996). Rule-based system was reported in (Yacoob & Davis, 
1996) and (Black & Yacoob, 1997), in which primary facial features were tracked throughout 
the image sequence. Recently, Fasel (2002) has proposed a model with two independent 
convolutional neural networks, one for facial expression and the other for face identity 
recognition, which are combined by an MLP.  

4.2 Facial expression recognition using local features extracted by MCoNN 

We show, in this section, proposed rule-based processing scheme to enhance subject 
independence in facial expression recognition. We found that some of lower level features 
extracted by the first FD layer of MCoNN for face detection as well as face recognition are 
also useful for facial expression recognition. Primary features used in our model are 
horizontal line segments made up of edge-like structures similar to step and roof edges 
(extracted by two modules in FD1 layer, circled in Figure 7 representing parts of eyes, 
mouth, and eyebrows. For example, changes in distance between end-stops (e.g., left-corner 
of left eye and left side end-stop of mouth) within facial components and changes in width 
of line segments in lower part of eyes or cheeks are detected to obtain saliency scores of a 
specific facial expression. Primary cues related to facial actions adopted in our facial analysis 
for the detection of smiling/laughing faces are as follows. 
1. Distance between endpoints of eye and mouth gets shorter (lip being raised) 
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2. Length of horizontal line segment in mouth gets longer (lip being stretched)  
3. Length of line segments in eye gets longer (wrinkle around the tail of eye gets longer)  
4. Gradient of line segment connecting the mid point and endpoint of mouth gets steeper 

(lip being raised) 
5. Step-edge or brightness inside mouth area gets increased (teeth being appeared) 
6. Strength of edges in cheeks increased (wrinkle around cheeks being grown)  
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Figure 11. Normalized saliency score subtracted by constant value for smiling face detection 

We use these multiple cues as supporting evidence of specific facial expression (i.e., smile). 
Each cue was scored based on the degree of positive changes (i.e., designated changes as 
given above) to the emotional state (e.g., happiness). Saliency score of specific emotional 
state is calculated with weighted summation of respective scores, which is then thresholded 
for judging whether the subject is smiling/laughing or not. Greater weighting factors are 
given to cues of less individuality (i.e., more common cues across individuals): (i), (ii), and 
(v). Figure 11 shows a sequence of normalized saliency scores indicating successful 
detection of smiling faces with an appropriate threshold level. The network demonstrated 
the ability to discriminate smiling from talking based on the duration of saliency score 
above threshold (longer duration implies greater possibility of smiling; Matsugu et al., 2004). 
We obtained results demonstrating reliable detection of smiles with recognition rate of 
97.6% for 5600 still images of more than 10 subjects. 
In contrast to a number of approaches (Donato et al., 1999), invariance properties in terms of 
translation, scale, and pose, inherent in our non-spiking version of MCoNN (Matsugu et al., 
2002), brings robustness to dynamical changes both in head movements and in facial 
expressions without requiring explicit estimation of motion parameters. Because of the 
topographic property of our network which preserves the position information of facial 
features from bottom to top layers, the translation invariance in facial expression recognition 
is thus inherently built into our convolutional architecture with feedback mechanism for 
locating facial features.  
Specifically, intermediate facial features such as eyes and mouth are detected and utilized 
for tracking useful primitive local features extracted by the bottom layer FD1 of MCoNN. 
Implicit location information of eyes and mouth detected in the MCoNN are used, through 
the feedback loop from the intermediate layer FP3, to confine the processing area of rule-
based facial feature analysis, which analyzes differences in terms of at least six cues. 
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It turned out that the system is quite insensitive to individuality of facial expressions with 
the help of the proposed rule-based processing using single but individual normal face. 
Because of the voting of scores for various cues in terms of differences of facial features in 
neutral and emotional states, individuality is averaged out to obtain subject independence.  

5. Conclusion 

In this chapter, we reviewed our previously proposed leaning methods (unsupervised and 
supervised) for appropriate and shared (economical) local feature selection and extraction 
for generic face related recognition. In particular, we demonstrated feasibility of our 
hierarchical, component based visual pattern recognition model, MCoNN, as an implicit 
constellation model in terms of convolutional operation of local feature, providing a 
substrate for generic object detection/recognition. Detailed simulation study showed that 
we can realize face recognition as well as facial expression recognition efficiently and 
economically with satisfactory performances by using the same set of local features 
extracted from the MCoNN for face detection. 
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