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1. Introduction  

The quality of electric power became an important issue for the electric utility companies 

and their customers. It is often synonymous with voltage quality since electrical equipments 

are designed to operate within a certain range of supply specifications. For instance, current 

microelectronic devices are very sensitive to subtle changes in power quality, which can be 

represented as a disturbance-induced variation of voltage amplitude, frequency and phase 

(Dugan et al., 2003). 

Poor power quality (PQ) is usually caused by power line disturbances such as transients, 

notches, voltage sags and swells, flicker, interruptions, and harmonic distortions (IEEE Std. 

1159, 2009). In order to improve electric power quality, the sources and causes of such 

disturbances must be known. Therefore, the monitoring equipment needs to firstly and 

accurately detect and identify the disturbance types (Santoso et al., 1996). Thus, the use of 

new and powerful tools of signal analysis have enabled the development of additional 

methods to accurately characterize and identify several kinds of power quality disturbances 

(Karimi et al., 2000; Mokhtary et al., 2002). 
Santoso et al. proposed a recognition scheme that is carried out in the wavelet domain using 
a set of multiple neural networks. The network outcomes are then integrated by using 
decision-making schemes such as a simple voting scheme or the Dempster-Shafer theory. 
The proposed classifier is capable of providing a degree of belief for the identified 
disturbance waveform (Santoso et al., 2000a, 2000b). A novel classification method using a 
rule-based method and wavelet packet-based hidden Markov models (HMM) was proposed 
bay Chung et al. The rule-based method is used to classify the time-characterized-feature 
disturbance and the wavelet packet-based on HMM is used for frequency-characterized-
feature power disturbances (Chung et al., 2002). Gaing presented a prototype of wavelet-
based network classifier for recognizing power quality disturbances. The multiresolution-
analysis technique of discrete wavelet transforms (DWT) and Parseval’s theorem are used to 
extract the energy distribution features of distorted signals at different resolution levels. 
Then, the probabilistic neural network classifies these extracted features of disturbance type 
identification according to the transient duration and energy features (Gaing, 2004). Zhu et 
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al. proposed an extended wavelet-based fuzzy reasoning approach for power quality 
disturbance recognition and classification. The energy distribution of the wavelet part in 
each decomposition level is calculated. Based on this idea, basic rules are generated for the 
extended fuzzy reasoning. Then, the disturbance waveforms are classified (Zhu et al., 2004). 
Further on, Chen and Zhu presented a review of the wavelet transform approach used in 
power quality processing. Moreover, a new approach to combine the wavelet transform and 
a rank correlation is introduced as an alternative method to identify capacitor-switching 
transients (Chen & Zhu, 2007). 
Taking into account these ideas, this chapter proposes the application of a different method 
of power quality disturbance classification by combining discrete wavelet transform (DWT), 
principal component analysis (PCA) and an artificial neural network in order to classify 
power quality disturbances. The method proposes to analyze seven classes of signals, 
namely Sinusoidal Waveform, Capacitor Switching Transient, Flicker, Harmonics, 
Interruption, Notching and Sag, which is composed by four main stages: (1) signal analysis 
using the DWT; (2) feature extraction; (3) data reduction using PCA; (4) classification using a 
radial basis function network (RBF). The MRA technique of DWT is employed to extract the 
discriminating features of distorted signals at different resolution levels. Subsequently, the 
PCA is used to condense information of a correlated set of variables into a few variables, 
and a RBF network is employed to classify the disturbance types. 

2. Proposed classification scheme  

 Signal

     Wavelet 
   Transform

Feature vector

PCA

RBF

        Type of
    Disturbance

9cµ
jdσ

1 2 9d ,d , ,d⋅ ⋅ ⋅


9c

1 10⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

 

Fig. 1. Diagram of the proposed classification scheme 

This section presents the mainframe of the scheme proposed in this paper using the wavelet 
transform, principal components and neural networks to classify PQ disturbances. The 
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proposed scheme diagram is shown in Fig. 1. Initially, the input signals are analyzed using 
the discrete wavelet transform tool, which employs two sets of functions called scaling 
functions and wavelet functions associated with low pass and high pass filters, respectively. 
Then, the signal is decomposed into different resolution levels aiming to discriminate the 
signal disturbances. The output of the DWT stage is used as the input to the feature extraction 
stage, on which the featuring signal vectors are built. In order to reduce the amount of data, 
the PCA technique is applied to the feature vector in order to concentrate the information from 
the disturbance signal and to reduce the amount of the training data used, consequently 
minimizing the number of input RBF neurons while maintaining the recognition accuracy. 
Finally, an RBF network is employed to perform the disturbance type classification. 
As aforementioned, in the introduction, this work proposes to analyze seven classes of 
different types of PQ disturbances as follows: Pure sine (C1); Capacitor switching (C2); 
Flicker (C3); Harmonics (C4); Interruption (C5); Notching (C6); Sag (C7). The databases used 
for training and evaluation of the proposed system and classification algorithms were 
performed in Matlab®. The tools used in this approach are presented in sequence. 

2.1 The wavelet transform and multiresolution analysis 

The DWT is a versatile signal processing tool that has many engineering and scientific 
applications (Barmada et al., 2003). One area in which the DWT has been particularly 
successful is transient analysis in power systems (Santoso et al., 2000a, 2000b; Yilmaz et al., 
2007), used to capture the transient features and to accurately localize them in both time and 
frequency contexts. The wavelet transform is particularly effective in representing various 
aspects of non-stationary signals such as trends, discontinuities and repeated patterns, in 
which other signal processing approaches fail or are not as effective. Through wavelet 
decomposition, transient features are accurately captured and localized in both time and 
frequency contexts. 
A wavelet is an effective time–frequency analysis tool to detect transient signals. Its features 
of extraction and representation properties can be used to identify various transient events 
in power signals. The discrete wavelet transform analyzes the signal at different frequency 
bands with different resolutions by decomposing the signal into a coarse approximation and 
detail information (Chen & Zhu, 2007). This capability to expand function or signal with 
different resolutions is termed as Multiresolution Analysis (MRA) (Mallat, 1989). The DWT 

employs two sets of functions called scaling functions, j ,n[t]φ , and wavelet functions, j ,n[t]ψ , 

which are associated with low-pass and high-pass filters, respectively. The decomposition of 
the signal into the different frequency bands is simply obtained by successive high-pass and 
low-pass filtering of the time domain signal. The discrete forms of scale and wavelet 
functions are, respectively, defined as follows. 

 
j

j2
j ,n j ,n

n

[t] 2 c [2 t n]φ = φ −  (1) 

 
j

j2
j ,n j ,n

n

[t] 2 d [2 t n]ψ = ψ −  (2) 

Where jc  and jd are the scaling and wavelet coefficients indexed by j, and both functions 

must be orthonormal. 
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The wavelet and scaling functions are used to perform simultaneously a multiresolution 
analysis decomposition and reconstruction of the signal. The former can decompose the 
original signal in several other signals at different resolution levels. From these decomposed 
signals, the original signal can be recovered without losing any information. Therefore, in 
power quality disturbance signals, the MRA technique discriminates the disturbances from 
original signals, and then they can be analyzed separately (Debnath, 2002). The recursive 
mathematical representation of MRA is as follows: 

 j j 1 j 1 j 1 j 2 j n nV W V W W W V+ + + + += ⊕ = ⊕ ⊕ ⋅⋅ ⋅ ⊕ ⊕  (3) 

Where: j 1V +  is the approximate version of a given signal at scale j+1; j 1W +  is the detailed 

version displaying all transient phenomena of the given signal at scale j+1; symbol ⊕  

denotes an orthogonal summation; and n  represents the decomposition level. 

Since j ,n jWψ ∈  it follows immediately that j ,nψ  is orthonormal to j ,nφ  because all j ,nφ ∈ jV  

are j jV W⊥ . Also, because all jV  are mutually orthogonal, it follows that the wavelets are 

orthonormal across scaling. A detailed approach about this theory can be found in (Mallat, 

1989; Strang & Nguyen, 1997; Debnath, 2002). 
From the engineering point of view, DWT is a digital filtering process in the time domain, 
by discrete convolution, using the analyses Finite-Impulse-Response (FIR) filters h and g, 
followed by a down sampling of two. The filter g(k) can generate a detailed version of the 
signal, while h(k) produces an approximate version of the signal. In the DWT, the resulting 
coefficients from the low-pass filtering process can be processed again as entrance data for a 
subsequent bank of filters, generating another group of approximation and detail 
coefficients. 

The schematic diagram in Fig. 2 shows two decomposed levels of DWT. The input signal f(t) 

is split into the approximation j ,kc  and the detail j ,kd  by a low-pass and a high-pass filters 

named h(k) and g(k), respectively. Both, output approximation and detail are decimated by 

2. In a practical approach, a DWT depends on: 

• the original signal, f(t);  

• the low-pass filter, h(k), used; 

• the high-pass filter, g(k), used. 
 

 

f(t)

h(k)

g(k)

2

2

2

2

1,kc

h(k)

g(k)

2,kc

1,kd

2,kd

f(t )freq
0

4
→

f(t ) f(t )freq freq
4 2

→

f(t ) f(t )freq freq
8 4

→

f(t )freq
0

8
→

 

Fig. 2. Decomposition of f(t)  into 2 scales 
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There are several families of wavelet functions which contain filters of several supports 

(filter size). However, in this application, as in (Zhu et al., 2004; Chen & Zhu, 2007), the 

Daubechie “db4” wavelet was adopted to perform the DWT. As can be seen in (Daubechies, 

1992), the “db4” is a wavelet of support four, i.e., each filter has four coefficients, 

0 1 2 3h h h h h=    . The analysis filter h is always the QMF (quadrature mirror filter) 

pair of g. Therefore, from the high-pass filter g the low-pass filter h is obtained, inverting 

the order and putting the negative sign alternately as follows, 3 2 1 0g h h h h= − −   . 

The coefficients of the “db4” wavelet filters, h and g are presented as follows (Daubechies, 

1992). 

 
1 3 3 3 3 3 1 3

h
4 2 4 2 4 2 4 2

 + + − −
=  
  

 (4) 

 
1 3 3 3 3 3 1 3

g
4 2 4 2 4 2 4 2

 − − + + − −
=  
  

 (5) 

In practice, the previous filters are the only elements required to calculate the DWT of any 

signal. As previously mentioned, it is a digital filtering process in the time domain by 

discrete convolution. In (6) and (7) the relations from the level cj to the next level, cj+1 and 

dj+1 are given. This relation involves the filters h and g. For specific filter, these equations 

allow to find the wavelet coefficients using samples of the signal f(t), once the samples are 

the initial coefficients cj (Mix & Olejniczak, 2003). 
 

 j 1 j

n

c (k) h(n 2k)c (n)+ = −  (6) 

 j 1 j

n

d (k) g(n 2k)c (n)+ = −  (7) 

Approximation and detail coefficients are down-sampled by 2 in each decomposition level. 

According to the Nyquist theorem cited in (Mallat, 1989), the maximum frequency of an 

original signal f(t) sampled at freqf(t) Hz is (freqf(t)/2) Hz. Therefore, the maximum 

frequencies freqLevel of signals cj and dj at each resolution level, are given by (8), where freqs 

is the sampling frequency. 

 
s

Level Level

freq
freq

2
=  (8) 

The sampling frequency and amplitude for all types of disturbances considered in this 

approach are 15.36 kHz (256 samples per period – fundamental frequency of 60 Hz) and 1 

p.u., respectively. The wavelet transform is applied to perform a 9-level decomposition of 

each discrete disturbance signal to obtain the detailed version coefficients (d1 – d9), and the 

approximated version coefficient (c9). In this experiment, the adopted frequency bandwidths 

at each decomposition level are shown in Table 1. 

Following, it is presented an example of a simple algorithm in MatLab® to demonstrate how 

the DWT is applied in practice (Mix & Olejniczak, 2003). 
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% with f as the original signal; N the length of f; and g and h the wavelet filters: 
% for one decomposition level, the following is done: 
f0=conv(g,f);   % convolution of g with f. 
f1=conv(h,f);   % convolution of h with f. 
f0=f0(1,2:N+1);  % eliminate first value. 
f1=f1(1,2:N+1); 
f0=reshape(f0,2,N/2);  % down sampling.  
f1=reshape(f1,2,N/2); 
c1=f0(1,:);   % the output c of length N/2. 
d1=f1(1,:);   % the output d of length N/2. 

 

This example code produces decomposed signals (c1 and d1) at level 1, which are the 
approximated and detailed version of the original signal f, respectively. In this example the 
signal f contains N samples, but the two derived signals c1 and  d1 contain N/2 samples due 
to down-sampling. 
 

Level Parameter Frequency band (Hz) Harmonics included 

9 c9,k 0 – 15 - 
9 d9,k 15 – 30 - 
8 d8,k 30 – 60 1st 
7 d7,k 60 – 120 1st – 2nd 
6 d6,k 120 – 240 2nd – 4th 
5 d5,k 240 – 480 4th – 8th 
4 d4,k 480 – 960 8th – 16th 
3 d3,k 960 – 1920 16th – 32th 
2 d2,k 1920 – 3840 32th – 64th 
1 d1,k 3840 – 7680 64th – 128th 

Table 1. Scale to Frequency Range Conversion Based on 60 Hz Power Frequency 
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Fig. 3. The voltage interruption signal and detail coefficients: first decomposed level (d1), 
third decomposed level (d3), and fifth decomposed level (d5) 
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Figures 3, 4 and 5 show the decomposition plots of the signals using the “db4” wavelet. An 
example of interruption disturbance and the detail coefficients d1, d3 and d5 are shown in 
Fig. 3. Fig. 4 shows an oscillatory transient disturbance due to a capacitor switching 
transient, and detail coefficients d1, d2 and d3, respectively. Fig. 5 depicts a sag disturbance 
and detail coefficients d1, d3 and d5, respectively. 
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Fig. 4. The capacitor switching signal and detail coefficients: first decomposed level (d1), 
second decomposed level (d2), and third decomposed level (d3) 
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Fig. 5. The voltage sag and detail coefficients: first decomposed level (d1), third decomposed 
level (d3), and fifth decomposed level (d5) 

2.2 Feature extraction 

Using the DWT technique to analyze a signal through the level of MRA will generate severe 
variation in coefficients dj. Therefore, applying the standard deviation at different resolution 
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levels one can quantify the variation magnitude of the signals (Oleskovicz et al., 2006; 
Kanitpanyacharoean & Premrudeepreechacharn, 2004). The standard deviation is defined as 
in (9). 

 

n
2

i

i 1
X

(X X)

n 1
=

−

σ =
−


 (9) 

where iX  represents the detail coefficient data; X  is the data average; and n is the amount 

of data. 
Figure 6 shows a comparison of the two standard deviation curves along the 9 
decomposition levels. One of these curves is from the analysis of a signal containing a sag 
disturbance, and the other curve is from a sinusoidal waveform analysis. By observing Fig. 6 
one can notice there was a decrease in the coefficients of the 8th decomposition level, which 
concentrates most of the fundamental frequency components. While Fig. 7 shows the 
standard deviation curve of the detail coefficients from MRA analysis of an oscillatory 
transient signal caused by capacitor switching compared with a pure sinusoidal analysis. 
Differently from Fig. 6, which presents variations at the 8 level, Fig. 7 displays variations at 
the 3 and 4 levels, which concentrate high frequencies. 
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Fig. 6. Standard deviation curves – sag disturbance analysis compared with a sinusoidal 
waveform analysis 

Several simulation tests were performed in order to determine the number of levels, hence 
reaching better results with 9 decomposition levels. With a lower number of levels some 
important features can be suppressed at lower frequencies. On the other hand, a higher 
number of levels can generate non-representative features since there is not sufficient 
information at the last levels due to the number of signal data considered in this paper. 
Additionally, in order to take into account these features that originated from the low 
frequency components (smaller than 60 Hz), this paper includes the approximated version, 
c9, of the original disturbance signal f(t). Experimentally, better results were obtained when 
using the mean of c9 rather then the standard deviation. The average of data is defined by (10). 
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n

X i

i 1

1
X

n =

µ =   (10) 

where iX  represents the approximate coefficients and n is the total of data. 

The features extracted from the standard deviation and the average value will compound 

the feature vector, 1 2 L L

T

d d d c= σ σ σ µ  x  , of each signal, where L is the number of 

MRA levels. 
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Fig. 7. Standard deviation curves – oscillatory transient disturbance analysis compared with 
a sinusoidal waveform analysis 

2.3 Principal component analysis 

The principal component analysis is a statistical technique whose purpose is to condense 
information from a large set of correlated variables into fewer variables (“principal 
components”), while preserving the variability that is in the data set (Jolliffe, 2002). Each 
component contains new information about the data set, and it is ordered in such a way that 
the first few components account for most of the variability. 

The PCA transforms a random vector m∈x   into another vector n∈y   (for n m)≤ , 

projecting x  into n orthogonal directions with more variance. Generally, most of the data 

variance is explained by a reduced number of components, so it is possible to reject other 

components without losing relevant information. 

Let 1 2 M
N M×

=   X x x x  be a matrix formed by M feature vectors x , previously 

defined, where 1x , 2x , M,x  are the M observation disturbance signals, and N=10 is the 

dimension of each feature vector. As in (Jolliffe, 2002; Castells et al., 2007), derivation of the 

principal components is based on the assumption that x  is a random process characterized 

by the correlation matrix x E[ ]= TR xx . Then, the principal components of x  are obtained 

from the application of an orthonormal linear transformation [ ]1 2 Ν= ϕ ϕ ϕΦ   to x , 

 Tw =Φ x , (11) 
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so that, the elements of the principal component vector 
T

1 2 Nw w w=   w   become 

mutually uncorrelated. The first principal component is obtained as a scalar product 
T

1 1w = ϕ x , where vector 1ϕ  is chosen so that the variance of 1w , is 

 2 T T
1 1 1 1 1E[w ] E[ ]= ϕ ϕ = ϕ ϕT

xxx R , (12) 

maximally subject to the constraint T
1 1 1ϕ ϕ = . The maximal variance is obtained when 1ϕ  is 

the normalized eigenvector corresponding to the largest eigenvalue of xR , denoted by 1λ . 

The resulting variance is: 

 2 T T
1 1 1 1 1 1 1E[w ] = ϕ ϕ = λ ϕ ϕ = λxR , (13) 

The second principal component 2w  is obtained by choosing 2ϕ  as the eigenvector 

corresponding to the second largest eigenvalue of xR , and so on until the variance of x  is 

completely represented by w. Hence, to obtain the whole set of N different principal 

components, the eigenvector equation for xR  needs to be solved, according to (14). 

 =xR Φ ΦΛ , (14) 

where Λ  denotes a diagonal matrix with the eigenvalues 1 N, ,λ λ . Since xR  is rarely 

known in practice, the N N×  sample correlation matrix, is defined by 

 
1ˆ
M

= T
xR XX , (15) 

replacing xR  when the eigenvectors are calculated in (13). 

As previously mentioned, to obtain the principal components, it is necessary to calculate the 

eigenvalues and eigenvectors of ˆ
xR , which is the covariance matrix of the N M×  data 

matrix X . Therefore, once matrix Φ  is known it is possible to calculate the principal 

components. In this experiment, the 4 first principal components were adopted, which are 

1 2 3w ,w ,w  and 4w , since their contributions correspond to more than 90% of the data 

variability, i.e., P 90%β > , defined according to (16) as 

 

P

k

k 1
P N

k

k 1

100%=

=

λ

β =

λ




, (16) 

where kλ  are the eigenvalues of ˆ
xR , N 10=  and P 4= . 

Note that the PCA result is a set of independent elements that could be used as an 

orthonormal basis to approximate the original feature set extracted from the analyzed 

signals. It is possible, through a linear combination of such components, to generate those 

features used to characterize the analyzed signals. In this paper, the contributions of the first 

4 principal components, resulting from the PCA technique, is 97.72% as the canonical 

weights to feature vectors in the training data set. Fig. 8 shows the principal components 

and their respective percentage of variances. 
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Fig. 8. Variance explained by principal components 

The W  matrix containing the principal components is applied to perform a new data set to 

represent each disturbance signal. These new set is calculated as in (17). 

 T
N P N M× ×=Y W X , (17) 

where N M×X  is the original data matrix, and N P×W  is a matrix containing the P  first 

components. Hence, Y  is a P N×  matrix representing a new uncorrelated data set. 

2.4 The radial basis function network 

The PQ disturbances classification is the last stage of the algorithm. In order to execute such 
classifications this paper proposes a radial-basis function (RBF) network. The classifications 
are performed by the RBF into two ways: one by not applying PCA algorithm and the other 
applying PCA algorithm so as to validate this proposed method. 
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Fig. 9. A typical radial basis function network 
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Construction of a RBF network, in its most basic form, involves three layers with entirely 

different roles. The input layer is made up of source nodes connecting the network to its 

environment. The second layer, the only hidden layer in the network, applies a nonlinear 

transformation from the input layer space to the hidden layer space; in most applications the 

hidden space is of high dimensionality. The output layer is linear, supplying the network 

response to the activation pattern (signal) applied to the input layer (Fyfe, 1996). In other 

words, the hidden neuronal function forms a basis for the input vectors and output neurons 

merely by calculating a linear combination of the hidden neuron’s output. A typical RBF 

network is shown in Fig. 9. 

In pattern classification problems, the separation of classes in the RBF is accomplished with 

radial-basis functions. The maximum distance criteria are specified so as to obtain the 

classification. An often-used set of basis functions is the Gaussian functions whose mean 

and variance may be determined to a certain degree by the input data (Haykin, 1998). 

2.4.1 The RBF training process 

The RBF training consists of two stages, i.e., the hidden layer training process followed by 

the output layer training process. The RBF configuration for both classification procedures is 

as follows. 

• Neurons at the input layer: feature vector lengths (4 or 10). 

• Neurons at the hidden layer: 45. 

• Neurons at the output layer: 7. 

• Output learning rate: 10-4. 

• Output accuracy: 10-8. 
For the hidden layer training a non-supervised method was used, i.e., a typical grouping 

algorithm. The objective is to adjust the center of each Gaussian function in areas of input 

vectors tending to form groups. This procedure can be done by means of vector 

quantization using the “K-means” algorithm (Tou & Gonzalez, 1974; Haykin, 1998). 

Training the output layer was only executed after of the function base parameters executed 

in the previous stage were determined. The training group of the output layer is formed by 

input/output pairs { }(k),  d(k)µ , whose vectors are specified after training the first layer. 

The output layer was trained using the “generalized delta rule” algorithm, which adjusts the 

network weights minimizing the quadratic error between (k)µ  and d(k)  (Haykin, 1998). 

The Gaussian function usually used as an activation function for neurons of the hidden 

layer has the following form: 

 
( ) ( )

T
( j) ( j)

1 1

j 2
j

x(k) w x(k) w
exp

2

 − − µ = − σ 
 

, (18) 

where  1j 1 N=   are the inputs, ( j)
1w  are the synaptic weights connecting the input layer to 

the hidden layer, and 2
jσ  are the variances between x(k)  and ( j)

1w  calculated during the 

training of the hidden layer. Then, the maximum answer of each neuron should happen 

when x(k)  is very close to ( j)
1w . The answer decreases as x(k)  moves away from ( j)

1w , 

making the Gaussian cone narrower, as the variance 2
jσ  becomes smaller. Additionally, 

these cones have an identical output for inputs that are at a fixed distance of the Gaussian 
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function center. Finally, the outputs jy  of the exit layer neurons were obtained in the 

following way: 

 
1 1N N

j 2 ji i 2 ji i

i 0 i 0

y g w w
= =

 
= µ = µ 

 
  , (19) 

where 1j 1 N=  , jy is the output of the jth neuron of the output layer, 2 jiw  is the synaptic 

weights matrix of the second layer, g( )⋅  is the linear function activation, and iµ  is the 

output value of the ith neuron of the first neural layer (added by the threshold), being 

0 1µ = − . 

3. Computational results 

The classification results are presented in this section and the proposed method using the 
PCA algorithm is evaluated by considering two situations. Firstly, the RBF training and the 
PQ disturbance classification was performed without using the PCA algorithm. Then, in the 
second situation, the PCA algorithm was applied to perform the RBF training and 
classification. The processing time was obtained, as well as the number of training epochs, the 
mean squared error (MSE) and the classification accuracies in both situations so as to 
compare the proposed classification performance. Table 2 shows an overview of the RBF’s 
computational performance obtained in the training and classification procedures. Table 3 
shows the classification results of the first situation when the classification process was 
performed without using the PCA. The classification results with the PCA are shown in Table 
4. In this situation the feature vector dimension was reduced, preserving those features with 
more variability, as presented in section II. In both tables each row represents a disturbance 
to be classified and each column shows which category that disturbance was classified in. 
 

 PCA Without PCA 

Neurons at the input layer 4 10 
Training epochs 48385 49065 
Mean squared error 0.1223 0.1276 
Training time 243.3 s 203.5 s 
Classification time 44.9 ms 45.0 ms 

Table 2. RBF classification performances 

 

 C1 C2 C3 C4 C5 C6 C7 (%) 

Sinusoidal 25 0 0 0 0 0 0 100 
Transient 0 25 0 0 0 0 0 100 
Flicker 5 0 18 0 0 1 1 72 
Harmonics 0 0 0 25 0 0 0 100 
Interruption 0 0 0 0 23 0 2 92 
Notching 2 0 0 0 0 23 0 92 
Sag 1 0 0 0 1 0 23 92 

Overall accuracy: 92.57 % 

Table 3. Classification results using PCA algorithm 
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 C1 C2 C3 C4 C5 C6 C7 (%) 

Sinusoidal 25 0 0 0 0 0 0 100 

Transient 2 23 0 0 0 0 0 92 

Flicker 6 1 16 0 0 1 1 64 

Harmonics 0 0 0 25 0 0 0 100 

Interruption 0 0 0 0 23 0 2 92 

Notching 2 0 0 0 0 23 0 92 

Sag 1 0 0 0 1 0 23 92 

Overall accuracy: 90.29 % 

Table 4. Classification results without using PCA algorithm 

4. Final comments 

The main goal of this approach is to accomplish classifications of PQ disturbances, which 
are responsible for degrading the quality of electric power systems, by applying a RBF 
network. To best adapt the PQ disturbance signals, several stages of preprocessing were 
necessary. For instance, by applying the wavelet transform it was possible to analyze signals 
at different ranges of frequencies and to maintain the time resolution. This makes wavelet 
transformation a highly applicable tool in PQ analysis as broached in this paper. This is so 
because several disturbances happen with different characteristics in time and frequency, 
which are difficult to analyze with simple Fourier transform. 
Among the several forms of analysis for the DWT coefficients, this paper proposes the 
calculation of the standard deviation curve of details and the average of approximation 
coefficients as a complement to this analysis. By observing Figs. 6 and 7, variations of the 
decomposition levels are clearly observable according to the disturbance contained in the 
signals.  
The PCA tool has shown to be an effective and very interesting tool when it is applied to 
the pre-processing classification. By applying the PCA it was possible to reduce the 
amounts of data inserted into the RBF network, and it was also possible to choose which 
data were more significant and best representative of the disturbances. Although with a 
reduction of 60% in the feature vectors, the principal components could represent 97.72% 
of the information that characterized the disturbances. In addition, the method using PCA 
to perform a disturbance classification did not increase the processing time of the RBF 
network, as shown in Table 2. 
Finally, taking into account the amount of disturbance classes considered in this paper, 
the classification results applying the proposed PCA method were better than those 
obtained when PCA was not applied. Using the same RBF configuration, the classification 
using PCA obtained 92.57% of success, while the classification not using PCA obtained 
only 90.29%. 
As shown in Table 3, three disturbance classes were classified with 100% of success. The 
sinusoidal signals (without any type of disturbance), were inserted in the classification to 
discriminate those signals containing disturbances from those without any disturbances. 
Therefore, the signals containing some disturbance type were classified as not containing 
disturbance. This can be due to a very low disturbance intensity, which might have 
characterized the signals as pure sinusoidal signals. 
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5. Conclusion 

In this work, wavelet and neural network methodology was employed to extract features 
and classify disturbance signals, respectively. Different from other works, which adopted 
similar approaches; this paper is concerned in eliminating redundant information from the 
feature space, therefore, reducing the number of input data and maintaining the processing 
time. The PCA technique was used to reduce feature space dimension, allowing the 
implementation of a neural network with a lower number of neurons, hence performing a 
better classification process. 
By comparing the classification results and processing time from two systems discussed in 
this work, it was possible to demonstrate the validity of the PCA technique, which was able 
to classify the disturbances with an average accuracy of 92.57%. 
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