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1. Introduction 

The propagation of epigenetic states during DNA replication is critical for maintaining gene 
expression patterns across cell generations. Phenotypically diverse, but genetically identical, 
cells within a multicellular organism originate from a single cell, the zygote. During 
development, the cells derived from this zygote will divide and differentiate along multiple 
developmental pathways until reaching their final cell fates, with each cell-type expressing a 
different subset of their common genetic information. Differential gene expression in 
alternate cell-types in both unicellular and multi-cellular organisms is dependent, in part, 
upon post-translational modifications to DNA and histones. When the DNA itself is 
replicated, these post-translational modification patterns must also be replicated in order for 
epigenetic states to be inherited. The replication of epigenetic states involves many proteins 
acting in a concerted manner. Failure of one protein to act may have devastating effects on 
the cell and organism including loss of cell identity, inviability or disease. In this review, we 
will explore how multiple chromatin and gene expression states are transmitted 
epigenetically from mother cell to daughter cell during DNA replication and the 
contribution of replication factors to this process, taking examples from S. cerevisiae, 
Drosophila and mammals.  

2. Nucleosomes as a minimal unit for carrying epigenetic information 

The minimal repeating unit of chromatin in eukaryotes is the nucleosome, which is 
composed of approximately 147 bp of DNA wrapped 1.7 times around an octamer of 
histones containing two each of H2A, H2B, H3, and H4 (Luger et al., 1997). In chromatin, 
nucleosomes are separated from each other by differing lengths of linker DNA that can be 
bound by linker histones, such as H1 and H5 in mammals (Kornberg, 1977). This minimal, 
or “beads on a string”, order of chromatin conformation can then be folded into several 
higher order structures containing numerous other chromatin-associated proteins and 
RNAs. Some of the most dramatic of these structures include centromeres, highly 
condensed metaphase chromosomes and Barr bodies in mammals. Information integral to 
epigenetic processes and written onto these nucleosomes is found in the form of post-
translational modifications to histones and chemical modifications to DNA. These 
modification patterns are critical for regulating diverse cellular processes ranging from gene 
expression and DNA repair to chromatin compaction. When DNA is replicated to pass on 
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genetic information to daughter cells, these nucleosomal modifications must also be 
duplicated to ensure regulatory and structural information related to the accessibility of that 
genetic information is also inherited. 
Distinct histone modification patterns are found on newly synthesized histones relative to 
parental histones, which display altered modifications reflecting their locus-specific 
functions. H4 found within newly synthesized histone H3.1-H4 dimers are diacetylated at 
K5 and K12 (Sobel et al., 1995, Loyola et al., 2006). This H4 modification pattern is 
initiated in the cytoplasm, is highly conserved across evolution and is mediated by the 
acetyltransferase HAT1 (Sobel et al., 1995, Parthun, 2007). However, once H4 is 
incorporated into chromatin, these marks are removed within ~20 min and other patterns 
are then created (Taddei et al., 1999). In budding yeast, acetylation of H4 K91 also occurs 
prior to incorporation into chromatin (Ye et al., 2005). H4 K91 lies at the site of interaction 
between H3/H4 dimers and H2A/H2B dimers (English et al., 2006). The role of this 
modification in regulating nucleosome formation is not yet understood. However, 
nucleosomes containing H4 K91A mutants are more easily digested by micrococcal 
nuclease (Ye et al., 2005), raising the possibility that this modification regulates 
nucleosome stability.  
In contrast to H4, the modifications present on newly synthesized H3 vary somewhat across 
organisms. In Drosophila, H3 is primarily acetylated on H3 K9 and/or K23 (Sobel et al., 
1995). In contrast, in mammals, newly synthesized H3 is monomethylated on K9 (Loyola et 
al., 2006) and may also be acetylated at K56 prior to assembly (Das et al., 2009, Xie et al., 
2009). In S. cerevisiae, newly synthesized H3 is acetylated at numerous sites including K9, 
K27 and K56 (Masumoto et al., 2005, Kuo et al., 1996, Adkins et al., 2007, Burgess et al., 
2010). These modifications may aid in distinguishing parental from newly synthesized 
histones and facilitate nucleosome assembly by the chromatin assembly machinery (See  
Sec. 3). Revision of the modification patterns on newly synthesized histones to match pre-
existing locus-specific patterns must occur during or shortly after DNA replication. Such 
changes mediated by enzymes targeted to the replication fork or those loci ensure successful 
propagation of epigenetic states from mother to daughter cell. 

3. Chromatin disassembly and assembly during DNA replication 

3.1 Nucleosome organization and dynamics at the replication fork 
During DNA replication, 4 ± 1 nucleosomes are transiently destabilized at the replication 
fork by the DNA replication machinery. These nucleosomes must be disassembled in front 
of the fork for DNA polymerase to gain access to its template and then, after replication, be 
reassembled behind the fork to repackage the newly synthesized DNA into chromatin. 
During SV40 replication in vitro, this process destabilizes a region of ~650-1100 bp of DNA 
involving approximately two nucleosomes in front of the replication fork and a short region 
behind the fork on the daughter strands (Gasser et al., 1996). In SV40 minichromosomes, 0 - 
~380 bp of unpackaged DNA lies ahead of the branchpoint signifying the replication fork 
and ~260 - ~440 bp of unpackaged DNA is present in the daughter strands behind the fork. 
The region comprising the nucleosomes adjacent to either side of the fork likely lacks linker 
histones. The nucleosome immediately upstream of the fork is partially disassembled, and 
may exist as a H3/H4 tetramer. After replication, nucleosome assembly occurs on the 
daughter strands once the length of DNA needed to wrap around the histone octamer has 
passed through the replication machinery (Sogo et al., 1986, Gasser et al., 1996).  
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This chromatin disassembly and reassembly process during DNA replication requires the 
removal of nucleosomes containing parental histones and the assembly of both parental and 
newly synthesized histones into nucleosomes. Parental (pre-replicative) H3/H4 have been 
shown to be removed from in front of the replication fork as H3/H4 dimers and then 
reassembled together with other parental H3/H4 dimers to reform parental (H3/H4)2 
tetramers on both daughter strands through the use of density labeling of parental H3/H4 
and sedimentation analysis (Jackson, 1990, Yamasu & Senshu, 1990, Gruss et al., 1993) or 
stable isotope labeling of “old” H3.1 variants and mass spectrometry (Xu et al., 2010). In 
contrast, H2A/H2B dimers appear to be removed from in front of the fork prior to H3/H4, 
and then, along with newly synthesized H2A/H2B dimers, to be randomly incorporated 
onto nucleosomes containing either parental or newly synthesized (H3/H4)2 tetramers 
behind the fork. The assembly of the basic structure of chromatin is then completed by the 
loading of a linker histone, e.g. H1 (Jackson, 1990). This pattern of nucleosome disassembly 
and assembly during DNA replication implicates parental H3/H4, and the modifications on 
these histones, as being the direct and critical instructions for the reformation of preexisting 
epigenetic states after passage of a replication fork through a chromosomal locus. These 
patterns on the parental nucleosomes may act as a guide for generating similar patterns on 
adjacent nucleosomes that contain newly synthesized histones, but direct demonstration of 
how this occurs has yet to be accomplished. Other key instructions will be found on the 
parental DNA strands themselves in the form of methylated and hydroxymethylated 
cytosines (See Sec. 4.2). 

3.2 Chromatin disassembly at the replication fork 
Several proteins have been implicated in nucleosome disassembly in front of the replication 

fork, including FACT and Asf1p (Fig. 1). FACT, or Facilitator of Chromatin Transcription, 

consists of Spt16p and Pob3p in yeast and SPT6 and SSRP1 in mammals. FACT is best 

understood for its role in transcription elongation where FACT replaces H2A/H2B dimers 

upon passage of the transcription machinery. FACT can also bind H3/H4 through Spt16p to 

promote nucleosome disassembly and reassembly during both transcription elongation and 

DNA replication (Stuwe et al., 2008, Belotserkovskaya et al., 2003). FACT localizes to 

replication foci in mammals (Hertel et al., 1999) and is required for DNA replication in 

Xenopus egg extracts (Okuhara et al., 1999). FACT is thought to remove H2A/H2B from in 

front of the replication fork, thereby facilitating DNA replication. Consistent with this 

function, Spt16p of FACT interacts with the Mcm4p subunit of the replicative MCM helicase 

(Tan et al., 2006). FACT also co-purifies with DNA polα (Wittmeyer & Formosa, 1997) and 

promotes replication fork progression (Gambus et al., 2006). Also, Pob3p interacts with 

Rfa1p, a subunit of RPA that binds ssDNA during DNA replication (VanDemark et al., 

2006). These interactions implicate FACT in promoting nucleosome disassembly and 

deposition, respectively, on either side of the replication fork.  
Anti-Silencing Factor 1, Asf1p (mammalian Asf1a & Asf1b), is an evolutionarily conserved 
chromatin assembly factor that was discovered in a screen for genes, which when 
overexpressed, led to silencing defects in S. cerevisiae (Le et al., 1997). Asf1 binds H3/H4 
dimers through a surface on H3/H4 that associates with a second H3/H4 dimer in the 
context of a nucleosome. This Asf1-H3/H4 interaction may prevent premature (H3/H4)2 
tetramer formation prior to nucleosome assembly (English et al., 2006, Tagami et al., 2004). 
Asf1p participates in chromatin assembly during both transcription and replication (Green  
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Fig. 1. Replication-coupled chromatin assembly in S. cerevisiae. Parental histones (beige) are 

removed from in front of the fork by assembly factors FACT (orange) and Asf1p (blue), 

which both interact directly or indirectly with the MCM helicase (blue-grey). FACT also 

binds to single stranded DNA binding protein Rpa1p of the RPA complex (coral). Whether 

FACT binds H2A/H2B dimers or tetramers is unclear. Newly synthesized H3/H4 dimers 

(yellow) are acetylated at H4 K5 and 12 by Hat1p in complex with Hat2p (dull green) and 

assembly factor Hif1p (peach). Rtt109p (light purple) binds to Asf1p bound to newly 

synthesized H3/H4 dimers (yellow) and acetylates H3 K56. If, where, and how newly 

synthesized H3/H4 are transferred from Hat1p/Hat2p/Hif1p to Asf1p or other assembly 

factors is unknown. CAF-1 (magenta) binds H3/H4 containing H3 K56ac, and possibly H3 

K9ac and H4 K16ac, and interacts with Asf1p through the Cac2p subunit (dotted line). 

Assembly factor, Rtt106p (light red), binds newly synthesized H3/H4 containing H3 K56ac, 

and possibly H3 K9ac and H4 K16ac, and also interacts with CAF-1 through the Cac1p 

subunit. SAS-I (grey) associates with CAF-1 or Asf1p bound to H3/H4. Sas2p of SAS-I 

acetylates H4 K16. PCNA (bright green) tethers Polh (light pink) and Poli (light pink) to the 

replication fork. PCNA is loaded onto DNA by RFC (dark pink). CAF-1 and Asf1p associate 

with the replication fork through interactions between Cac1p and PCNA and Asf1p and the 

Rfc2-4p subunits of RFC. Gcn5p (turquoise) and Rtt109p acetylate residues including H3 K9 

and K27 and influence chromatin assembly during replication. Assembly of new and 

parental histones behind the fork is facilitated by FACT, and likely Nap1p (brown), which 

bind H2A/H2B, as well as CAF-1, Rtt106p, Asf1p, and possibly Hif1p, which bind H3/H4. 

Current models predict that Asf1p transfers H3/H4 dimers to CAF-1 for assembly. 

However, Asf1p may also directly assemble H3/H4 dimers. Question marks indicate where 

mechanisms are unclear. 
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et al., 2005, Sanematsu et al., 2006). Asf1p also functions in chromatin disassembly; Asf1p 
increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters during 
transcription (Korber et al., 2006) and globally removes H3/H4 from chromatin (Adkins & 
Tyler, 2004). In Drosophila, Asf1 localizes to replication foci during S phase and depletion of 
Asf1 from Drosophila or mammalian cells results in delayed progression through S phase 
and inefficient DNA replication (Tyler et al., 1999, Groth et al., 2005, Sanematsu et al., 2006, 
Schulz & Tyler, 2006). These defects are related, in part, to a proposed role of Asf1p in 
facilitating nucleosome disassembly in front of the replication fork in conjunction with the 
FACT complex. Consistent with this model, Asf1 associates with the MCM helicase via 
H3/H4, and depletion of Asf1p slows DNA duplex unwinding by MCMs (Groth et al., 
2007a, Groth et al., 2007b). Moreover, when fork progression is inhibited by treating cells 
with hydroxyurea, MCMs continue to unwind DNA and complexes of Asf1-H3/H4-MCMs 
accumulate. Consistent with disassembly, H3/H4 in these complexes carry marks associated 
with parental histones, H4 K16ac and H3 K9me3, rather than newly synthesized H3/H4 
(Groth et al., 2007a). Other factors must also participate in disassembly of H3/H4 during 
replication as ASF1 is not essential in S. cerevisiae. 

3.3 Chromatin assembly at the replication fork 
Several chromatin assembly factors have been linked to replication-coupled assembly 
behind the fork including Asf1p, CAF-1, Rtt106p and FACT (Fig. 1). In Drosophila and other 
organisms, the histone variant H3.1 is assembled into nucleosomes during replication–
coupled chromatin assembly in S phase whereas the variant H3.3 is incorporated into 
chromatin throughout the cell cycle (Ahmad & Henikoff, 2002). The human Asf1 homologs, 
Asf1a and Asf1b, associate with both H3.1 and H3.3 (Tagami et al., 2004), consistent with 
their dual roles in transcription and replication-coupled chromatin assembly. In contrast, 
Chromatin Assembly Factor 1, CAF-1, comprised of p150, p60, and p48 in mammals and 
Cac1p, Cac2p, and Cac3p in S. cerevisiae, associates with newly synthesized H3/H4 
(Kaufman et al., 1995) and mediates their incorporation into chromatin during DNA 
replication (Smith & Stillman, 1989, Verreault et al., 1996). In mammals, CAF-1 associates 
with H3.1, but not H3.3 (Tagami et al., 2004), and is required for progression through S 
phase (Hoek & Stillman, 2003, Ye et al., 2003), consistent with CAF-1 playing a critical role in 
assembly during DNA replication and repair (Smith & Stillman, 1989, Moggs et al., 2000, 
Kamakaka et al., 1996, Gaillard et al., 1996). CAF-1 is recruited to replication forks through 
binding of the Cac1p subunit of CAF-1 to PCNA (Zhang et al., 2000, Shibahara & Stillman, 
1999). Cac1p contains a PCNA-binding motif and mutations in this region disrupt CAF-1-
PCNA interactions in pull down experiments as well as result in silencing defects in 
budding yeast (Krawitz et al., 2002). 
In S. cerevisiae, Drosphila, and human cells, Asf1p functions with CAF-1 to promote rapid 
nucleosome assembly during DNA replication and repair (Sharp et al., 2001, Tyler et al., 
1999, Mello et al., 2002). However, CAF-1 does not enhance replication-independent histone 
deposition, implying CAF-1 may be exclusively involved in replication-coupled chromatin 
assembly (Sharp et al., 2001). Asf1p is proposed to transport H3/H4 dimers to CAF-1 for 
deposition onto DNA. Consistent with this model, CAF-1-dependent nucleosome assembly 
is stimulated by Asf1p. In the absence of Asf1p, H3/H4 are not readily transferred to CAF-1 
(Tyler et al., 1999, Sharp et al., 2001, Mello et al., 2002, Groth et al., 2005). Asf1 interacts with CAF-ͳ via the Cacʹp subunit ȋKrawitz et al., ʹͲͲʹ, Mello et al., ʹͲͲʹ, Tyler et al., ʹͲͲͳȌ, and H3 
mutants that do not bind to human Asf1 can associate with CAF-1 (Galvani et al., 2008). In 
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addition, Asf1p binds to Replication Factor-C, RFC, which loads PCNA onto DNA and this 
interaction may localize Asf1p behind the fork. RFC loaded onto nicked templates is 
sufficient to target Asf1p to DNA, and the Rfc2-5p subunits of RFC co-precipitate with 
Asf1p (Franco et al., 2005). In vivo, asf1Δ rfc1-1 mutants exhibit synthetic growth defects and 
accumulate between S phase and the metaphase-to-anaphase transition. Similar slow 
growth phenotypes are not observed in cac1Δ rfc1-1 mutants (Kaufman et al., 1998, Kaufman 
et al., 1997, Franco et al., 2005).  
In S. cerevisiae, CAF-1 also interacts with the assembly factor Rtt106p through Cac1p (Huang 
et al., 2005), and Rtt106p and Asf1p co-purify from in vivo extracts (Lambert et al., 2010). 
Rtt106p binds H3/H4 dimers through PH domains, similar to Pob3p, and exhibits 
chromatin assembly activity in vitro (Huang et al., 2005, Li et al., 2008). Chromatin assembly 
by CAF-1 and Rtt106p is stimulated by H3 K56ac (Li et al., 2008), a modification catalyzed 
by the acetyltransferase Rtt109p while H3/H4 dimers are bound by Asf1p (Tsubota et al., 
2007, Driscoll et al., 2007). Cells lacking CAF-1, Asf1p or Rtt106p exhibit defects in Sir-
mediated silencing in S. cerevisiae (Huang et al., 2005, Huang et al., 2007, Kaufman et al., 
1997, Tyler et al., 1999). Silencing defects are more severe in cac1 rtt106, and asf1 cac1 
mutants relative to single mutants, indicating that multiple assembly pathways impact 
epigenetically silenced chromatin (Huang et al., 2005, Tyler et al., 1999).  
Several additional factors participate in nucleosome assembly during DNA replication, 
including FACT (and potentially Nap1p), the INO80 complex, and ACF1-SNF2H. As 
outlined above, FACT-RPA interactions via binding of Pob3p to Rfa1p may promote 
H2A/H2B deposition behind the replication fork (VanDemark et al., 2006), but the 
understanding of H2A/H2B disassembly and assembly during DNA replication lags behind 
that of H3/H4. Also, the ATP-dependent chromatin remodeler Ino80p localizes to origins of 
replication and replication forks during entry into S phase, is required continuously for fork 
progression under replication stress (Papamichos-Chronakis & Peterson, 2008) and 
functions in DNA repair (Morrison et al., 2004, van Attikum et al., 2004). How these proteins 
interact with other chromatin assembly factors during DNA replication remains to be 
explored. Currently, it is unclear whether certain factors are targeted to replication forks as 
they pass through some regions of the genome but not others, or the extent to which 
specialized factors to promote certain epigenetic processes. In support of some factors being 
critical for replication through epigenetically silenced loci, ACF1-SNF2H facilitates 
replication through heterochromatin in mammals (Collins et al., 2002). And, CAF-1 and 
Rtt106p contribute to the recruitment and spreading of Sirs in silent chromatin in budding 
yeast (Huang et al., 2007). 

4. Propagation of chromatin modifications and epigenetic states  

4.1 Histone modifications and replication factors in heterochromatin formation 
The integrity of silent chromatin is influenced by the composition of nucleosomes at silenced 
loci as well as elsewhere throughout the genome. In budding yeast, transcriptionally active 
loci are enriched in acetylated histones and certain methylated forms of histones (e.g. 
methylated H3 K4 and H3 K36), whereas histones in silenced loci (rDNA locus, telomeres 
and silent mating-type loci HML and HMR) are hypoacetylated and hypomethylated 
(Bernstein et al., 2002, Braunstein et al., 1996, Katan-Khaykovich & Struhl, 2005, Rusche et 
al., 2002, Suka et al., 2001). Overexpression or loss of histone modifying enzymes often 
results in silencing defects. During silent chromatin formation, the Sirs, Sir1-4p, are 

www.intechopen.com



 
Propagating Epigenetic States During DNA Replication 251 

recruited to silencers flanking the HM loci. Sir2-4p then spread across HMR as the 
deacetylase Sir2p removes acetyl groups from H3 and H4 to facilitate nucleosomal binding 
by the Sirs. Once formed, silent chromatin is inherited efficiently as the genome is 
duplicated each S phase (Rusche et al., 2002, Hoppe et al., 2002) (see also Luo et al., 2002). 
Inappropriately modified histones can prevent Sirs from interacting stably with silent loci. 
This can occur either through disrupting Sir binding to nucleosomes or, upon global loss of 
histone modifications, through redistribution of Sirs to other genomic regions containing 
hypoacetylated and/or hypomethylated nucleosomes. Re-localization can deplete the pool 
of Sirs available for forming silent chromatin at appropriate loci as well as result in silent 
chromatin formation at inappropriate sites in the genome (Singer et al., 1998, van Leeuwen 
et al., 2002). Once formed, this “off target” silent chromatin can be propagated epigenetically 
during DNA replication. 
Defects several factors involved in DNA replication and replication-coupled nucleosome 
assembly affect silencing, including Pol30p (PCNA), Rfc1p, Dna2p, Orc1p, Orc2p, Orc5p, 

Cdc7p, Cdc45p, Polε, Hif1p, CAF-1, Asf1p and Rtt106p (Axelrod & Rine, 1991, Foss et al., 
1993, Kaufman et al., 1997, Loo et al., 1995, Smith et al., 1999, Zhang et al., 2000, Singer et 
al., 1998, Ehrenhofer-Murray et al., 1999, Huang et al., 2005, Poveda et al., 2004, Triolo & 
Sternglanz, 1996). These factors impact silent chromatin in multiple ways. For example, 
Orc1p binds Sir1p and facilitates Sir recruitment to silencers containing ARS elements 
adjacent to the HM loci (Gardner et al., 1999, Zhang et al., 2002, Rusche et al., 2002). Other 
ORC subunits also affect silencer function, but the role of ORC in silencing and replication 
initiation can be genetically separated (Dillin & Rine, 1997). The mechanisms by which 

some factors, including Cdc7p, Cdc45p and Polε, contribute to silencing have yet to be 
elucidated. 
Silencing defects associated with CAF-1, Asf1p, PCNA, Rfc1p, Hif1p and Rtt106p, are 
linked to replication-coupled chromatin assembly and the misregulation of replication-
coupled histone modifications (Fig. 1). Yeast pol30 mutants with silencing defects have 
defects in CAF-1 and ASF1-dependent pathways (Zhang et al., 2000, Sharp et al., 2001). 
The silencing defects in pol30, cac1, asf1 and rfc1-1 mutants reflect, in part, misregulation  
of histone acetylation by SAS-I, Rtt109p and/or Gcn5p leading to hypoacetylation of at 
least H3 K9, H3 K56 and H4 K16 throughout the genome (Miller et al., 2010, Miller et  
al., 2008).  
CAF-1 and Asf1p both bind to the H4 K16 acetyltransferase complex SAS-I (Meijsing & 
Ehrenhofer-Murray, 2001, Osada et al., 2001) and loss of the catalytic subunit of SAS-I, 
Sas2p, alters the chromosomal distribution of Sirs and results in silencing defects (Kimura et 
al., 2002, Meijsing and Ehrenhofer-Murray, 2001, Osada et al., 2001, Reifsnyder et al., 1996, 
Suka et al., 2002). Asf1p also binds the H3 K56 acetyltransferase Rtt109p, stimulates H3 
K56ac in vitro and is required, along with RTT109, for H3 K56ac in S phase in vivo (Driscoll 
et al., 2007, Recht et al., 2006, Schneider et al., 2006, Tsubota et al., 2007, Han et al., 2007). 
Misregulation of H3 K56ac leads to silencing defects (Hyland et al., 2005, Miller et al., 2008, 
Xu et al., 2007, Sharp et al., 2001) and SAS-I and rtt109 mutants have silencing phenotypes 
similar to those of cac1, asf1 and pol30 mutants (Ehrenhofer-Murray et al., 1999, Meijsing & 
Ehrenhofer-Murray, 2001, Miller et al., 2010, Miller et al., 2008, Osada et al., 2001). PCNA 
interacts with Rtt109p and SAS-I in vivo, but this interaction is lost in pol30 mutants with 
defects in CAF-1- and Asf1p-dependent pathways (Miller et al., 2010), implying that 
acetylation of H3 K56 and H4 K16 are coupled to DNA replication. In addition, Asf1p binds 
the histone chaperone complex Hif1p/Hat1p/Hat2p in a Hat2p-dependent manner 
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(Fillingham et al., 2008). Cells lacking the chromatin assembly factor Hif1p or the 
acetyltransferase Hat1p have telomeric silencing defects, implicating this complex and 
Hat1p-dependent modifications in regulating silencing (Kelly et al., 2000, Poveda et al., 
2004). Whether SAS-I, Rtt109p and/or Hat1p associate with Asf1p independently, 
simultaneously or sequentially, and how these complexes interact with Rtt106p and CAF-1 
remains to be clarified.  
The acetyltransferase Gcn5p has been proposed to facilitate replication-coupled chromatin 
assembly through modifying the N-terminal tail of H3. Consistent with this model, co-
precipitation of H3 with the Cac2p subunit of CAF-1 is dramatically reduced in gcn5 or H3 
K5R mutants (Burgess et al., 2010). And, in gcn5 or H3 K5R mutants, reduced levels of H3 
containing modifications of newly synthesized histones, K9ac, K27ac and K56ac, are 
incorporated into chromatin adjacent to an early firing replication origin in cells arrested in 
early S phase (Burgess et al., 2010). RTT109 and GCN5-dependent H3 K9ac (Fillingham et al., 
2008, Adkins et al., 2007, Berndsen et al., 2008, Kuo et al., 1996) is also defective in po30 
mutants (Miller et al., 2010). This loss of H3 K9ac is consistent with loss of interactions 
between pol30p mutants and Rtt109p (Miller et al., 2010), but could also indicate the activity 
of Gcn5p during chromatin assembly was compromised in pol30 mutants. 
PCNA localizes numerous factors to the replication fork to propagate epigenetic states in 
mammals as well (Fig. 2). PCNA binds the maintenance DNA methyltransferase Dnmt1 
(Chuang et al., 1997, Iida et al., 2002) (See Sec. 4.2). PCNA also recruits CAF-1 to DNA and 
promotes CAF-dependent chromatin assembly in vitro (Moggs et al., 2000, Shibahara & 
Stillman, 1999). MBD1, a methyl CpG binding protein and SETDB1, a H3 K9 
methyltransferase, are, in turn, targeted to replication foci by CAF-1 and together with 5-
mC DNA, MBD1 and SETDB1 promote stable heterochromatin formation (Sarraf & 
Stancheva, 2004, Moldovan et al., 2007). In addition, a mammalian H4 K20 
methyltransferase, SET8, binds PCNA and co-localizes with PCNA at replication foci in 
vivo (Huen et al., 2008). Monomethylation of H4 K20 by SET8 is important for progression 
through S phase (Huen et al., 2008) and methylated H4 K20 is enriched in heterochromatic 
regions in multiple species (e.g. Schotta et al., 2004). In Drosophila, mutants of mus209, a 
PCNA ortholog, also suppress position-effect variegation (Henderson et al., 1994), but 
why this occurs is unclear. 
Another illustrative example of silent chromatin formation can be found during 
development in Drosophila. Polycomb group (PcG) proteins maintain transcriptional 
repression patterns of the homeotic (Hox) genes, which control segmental identities and 
body patterning. PcG proteins are recruited to cis-acting PcG response elements, PRE, at 
target loci. There, Polycomb Repressive Complexes 1 and 2, PRC1 and PRC2, establish silent 
chromatin, which is then propagated over multiple cell generations to maintain Hox genes in 
a silenced state during development. Variants of PRC2 complexes contain a H3 K27 
methyltransferase Ezh2, ESC, Suz12 and the histone binding protein Nurf55 (p55 of dCAF-
1). The Polycomb, Pc, subunit of PRC1 can bind H3 K27me3, implying the catalytic function 
of PRC2 reinforces the association of PRC1 with chromatin (Min et al., 2003, Fischle et al., 
2003b, Francis, 2009). Consistent with chromatin structure containing PcG proteins being 
inherited during DNA replication as opposed to re-established de novo after replication, 
recent studies using an in vitro SV40 replication system have demonstrated PRC1 remains 
associated with both naked DNA and chromatin templates upon DNA replication (Francis 
et al., 2009), implying PRC1 was passed from in front of to behind the fork along with 
parental H3/H4.  
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Fig. 2. Propagation of DNA methylation. Hemimethylated cytosines on newly synthesized 
DNA are recognized by UHRF1 (pink). The unmethylated daughter strand is methylated by 
the maintenance methyltransferase, Dnmt1, (yellow) which is localized to the replication fork 
through interactions with PCNA (bright green) and UHRF1. Dnmt3a/3b (brown) are are de 
novo methyltransferases that localize to nucleosome-bound DNA and also interact with 
UHRF1 (not shown). Factors interacting with Dnmt3a/3b, include heterochromatin protein 
HP1, chromatin remodeler Brg1, histone deacetylase HDAC1, H3 K9 methyltransferases 
SUV39H1 and G9a, H3 K27 methyltransferase EZH2 and methyl DNA binding protein MBD3. 
The H3 K9 methyltransferase SETDB1 (grey) also interacts with Dnmt3a/3b and is localized to 
the replication fork through the chromatin assembly factor CAF-1 (magenta). CAF-1, which 
binds PCNA, also recruits the methyl DNA binding protein MBD1 (teal) that directly interacts 
with SETDB1. The mechanism for interaction between SETDB1 and CAF-1 is unclear and 
denoted by the question mark. The H4 K20 methyltransferase SET8 (dark green) is also 
targeted to the replication fork through interactions with PCNA. 

4.2 Insights into mechanisms of epigenetic inheritance: DNA methylation 
DNA methylation plays an important role in epigenetic processes during development by 
impacting a range of biological functions including gene expression, genome integrity, 
imprinting, and aging, as well as by contributing to diseases ranging from neuronal defects 
to cancer when misregulated. 5-methylcytosine, 5-mC, constitutes ~2-8% of the cytosines in 
human genomic DNA and occurs primarily within CpG dinucleotides, although non-CpG 
methylation can also occur (Gowher and Jeltsch, 2001, Ramsahoye et al., 2000). Maintaining 
the average methylation state of a locus during DNA replication, rather than the individual 
sites of DNA methylation is generally more important for maintaining the proper function, 
or expression state, of that locus. Consistent with this model, different regions of the 
genome tend to be either hypo- or hypermethylated. And, in methylated regions, slight 
variations in methylation patterns are commonly found at individual loci in both cell lines 
and tissues (Meissner et al., 2008, Zhang et al., 2009). Methylation events contributing to 
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these varied patterns have been quantified for the CpG island at the FRM1 locus. At FRM1, 
the fidelity of maintenance methylation is ~0.96 and the probability of de novo methylation 
events having occurred per site per round of replication is ~0.17 (Laird et al., 2004). Thus, 
DNA methylation occurs stochastically (Riggs & Xiong, 2004) and can vary slightly from cell 
to cell without altering an epigenetic state. 
DNA methylation is mediated by a family of DNA methyltransferases, Dnmts, which are 
classified as de novo (Dnmt3a/3b) or maintenance (Dnmt1) methyltransferases, according 
their primary role in establishing new methylation patterns or copying existing patterns 
onto newly synthesized DNA upon DNA replication. While methylating cytosines, Dnmts 
flip the target base out of the DNA helix and into a hydrophobic pocket to catalyze the 
transfer of the methyl group from S-adenosyl-L-methionine to the C5 position of cytosine to 
create 5-mC plus S-adenosyl-L-homocysteine, but their specificity for unmethylated versus 
hemimethylated DNA varies. The de novo methyltransferases Dnmt3a/3b readily methylate 
both unmethylated and hemimethylated DNA (Okano et al., 1998, Gowher & Jeltsch, 2001) 
and are critical for establishing proper DNA methylation patterns in early development in 
mammals (Okano et al., 1999). Dnmt3a/3b also help maintain DNA methylation within 
heterochromatin (Chen et al., 2003, Jeong et al., 2009, Liang et al., 2002). Dnmt3a/3b can 
interact with an additional Dnmt family member, Dnmt3L, which stimulates their catalytic 
activity in vitro and in vivo, despite Dnmt3L itself being catalytically inactive (Chedin et al., 
2002, Chen et al., 2005, Gowher et al., 2005). In this role, Dnmt3L acts as a regulatory factor 
and is critical for proper methylation of imprinted genes and male germ cell development 
(Bourc'his et al., 2001, Hata et al., 2002, Webster et al., 2005). 
Dnmt3a/3b also interact with several proteins to promote silenced epigenetic states (Fig. 2). 
Dnmt3a/3b binding partners include the histone deacetylase HDAC1 (Fuks et al., 2001), the 
histone methyltransferases SUV39H1 (Fuks et al., 2003), SETDB1 (Li et al., 2006), G9a 
(Epsztejn-Litman et al., 2008, Feldman et al., 2006) and EZH2 (Vire et al., 2006), the 
heterochromatin protein HP1 (Fuks et al., 2003, Smallwood et al., 2007), the 5-mC binding 
protein MBD3 and the chromatin remodeling factor Brg1 (Datta et al., 2005). These interactions 
all contribute to silent chromatin formation. For example, the H3 K9 methyltransferase G9a 
facilitates de novo DNA methylation and gene inactivation through recruiting Dnmt3a/3b and 
HP1 to multiple early embryonic genes to drive heterochromatin formation (Epsztejn-Litman 
et al., 2008, Feldman et al., 2006). Similarly, the H3 K27 methyltransferase Ezh2 recruits 
Dnmt3a/3b to chromosomal loci to promote DNA methylation and heterochromatin 
formation (Vire et al., 2006). Once formed, this heterochromatin and the associated 
modification patterns will be propagated epigenetically during DNA replication. 
In addition to interacting with chromatin-modifying enzymes and structural components of 
heterochromatin, Dnmt3a/3b binds histones to promote DNA methylation. Dnmt3a/3b 
bind to the N-terminal tail of H3 lacking methylated K4 (Otani et al., 2009, Zhang et al., 
2010, Ooi et al., 2007) and DNA methylation tends to be low at active promoters, which are 
enriched for H3 K4me3 (Hodges et al., 2009, Zhang et al., 2009). Dnmt3a/3b also 
preferentially bind H3 K36me3 and enhances DNA methylation of a nucleosomal substrate 
by Dnmt3a (Zhang et al., 2010). Like H3 K36me3, DNA methylation is enriched in bodies of 
active genes, especially in exons (Weber et al., 2007, Hodges et al., 2009, Kolasinska-Zwierz 
et al., 2009). Thus, Dnmt3a/3b-H3 interactions contribute to genome-wide chromatin 
modification patterns in transcriptionally active regions as well. 
DNA methylation patterns established during development must be faithfully propagated 
throughout the lifespan of an organism via maintenance methylation during DNA 
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replication. The maintenance methyltransferase Dnmt1 localizes to replication foci in S 
phase (Leonhardt et al., 1992) and associates with the replication fork (Easwaran et al., 2004). 
Dnmt is loaded onto DNA through transient interactions with PCNA and binding to PCNA 
promotes the activity of Dnmt1 (Chuang et al., 1997, Iida et al., 2002, Schermelleh et al., 
2007). By preferentially methylating hemimethylated DNA over unmethylated DNA 
(Fatemi et al., 2001, Goyal et al., 2006), Dnmt1 copies parental DNA methylation patterns 
onto newly synthesized daughter strands (Fig. 2). In vitro, Dnmt1 and PCNA form a 
complex with HDAC1, and Dnmt1/PCNA/HDAC1 co-localize in vivo (Chuang et al., 1997, 
Fuks et al., 2000, Milutinovic et al., 2002). 
Dnmt1 also associates with newly synthesized DNA through binding UHRF1. UHRF1 is a 
multifunctional protein that reads hemimethylated DNA and histone modifications to 
facilitate inheritance of epigenetic states. UHRF1 targets Dnmt1 to newly synthesized 
DNA by specifically binding hemimethylated DNA (Arita et al., 2008, Avvakumov et al., 
2008, Bostick et al., 2007, Hashimoto et al., 2008). UHRF1 co-localizes with PCNA and 
Dnmt1 at replicating heterochromatin and is required for maintaining DNA methylation 
in mammals (Bostick et al., 2007, Sharif et al., 2007). Disruption of Dnmt1/PCNA/UHRF1 
interactions leads to global DNA hypomethylation and promotes tumor formation 
(Hervouet et al., 2010).  
UHRF1 also binds H3 K9me2 and H3 K9me3, through a PHD domain. A second domain in 
UHRF1, SRA, also contributes to binding affinity (Karagianni et al., 2008). In addition, this 
SRA domain facilitates binding 5-mC DNA (Arita et al., 2008, Avvakumov et al., 2008, 
Hashimoto et al., 2008) and both domains are required to localize UHRF1 to pericentric 
heterochromatin. Consistent with H3 K9 methylation reinforcing DNA methylation during 
replication, localization of UHRF1 is reduced in cells overexpressing the H3 K9 demethylase 
JMJD2A (Karagianni et al., 2008). UHRF1 plays a second role in epigenetic processes by 
influencing histone modification states. UHRF1 contains a C3HC4 RING finger motif and 
acts as an E3 ubiquitin ligase targeting H3 in vitro and in vivo. This ubiquitination activity is 
important for maintaining higher order chromatin structure in vivo (Citterio et al., 2004, 
Karagianni et al., 2008). UHRF1/Dnmt1 also form a complex with the deacetylase HDAC1 
and the H2A K5 acetyltransferase Tip60. Depletion of UHRF1 results in hypoacetylation of 
H2A K5 (Achour et al., 2009). Analyses how Dnmt1/PCNA/UHRF1 and UHRF1-
hemimethylated DNA interactions regulate these histone modifications should clarify the 
extent to which deacetylation by HDAC1, ubiquitination by UHRF1 and acetylation of H2A 
K5 by TIP60 are coupled to DNA replication.  
Although Dnmt1 and Dnmt3a/3b display preferences for different substrates, maintenance 
methyltransferases also participate in de novo methylation and de novo methyltransferases 
function in maintaining methylation patterns. Dnmt1 plays a secondary role in de novo DNA 
methylation at unmethylated loci through the conversion of hemimethylated DNA created 
by Dnmt3a/3b to fully methylated DNA (Fatemi et al., 2002, Feltus et al., 2003). Likewise, 
Dnmt3a/3b facilitate maintaining DNA methylation states upon DNA replication, 
particularly in chromosomal regions that are highly methylated or repetitive (Jones & Liang, 
2009). Consistent with this, proliferating mouse embryonic stem cells lacking Dnmt3a/3b 
lose DNA methylation over time, despite the continued presence of Dnmt1 (Chen et al., 
2003, Liang et al., 2002). Thus, although necessary, Dnmt1 alone is insufficient to maintain 
normal methylation levels on newly replicated DNA. Dnmt3a/3b likely aid in maintenance 
methylation through interacting directly with UHFR1 (Meilinger et al., 2009) as well as 
through catalyzing de novo methylation events within highly methylated regions, especially 
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in heterochromatic regions (Jeong et al., 2009). Thus, crosstalk between replication factors 
and chromatin modifying machinery reinforces propagation of DNA methylation, histone 
modifications and structural components of silent chromatin to maintain epigenetic states. 

5. Switching of epigenetic states 

5.1 Establishment, maintenance and inheritance of epigenetic states 
Extensive reprogramming of epigenetic states occurs during primordial germ cell 
development, in mammalian early embryonic development and upon cell-type 
differentiation throughout an individual’s lifespan (Sasaki & Matsui, 2008). Concepts for 
understanding the formation and stability of silent chromatin have been developed from the 
analysis of repression in the bacteriophage lambda (Ptashne, 1992). Studies in lambda 
showed a protein could facilitate the initial inactivation of a target gene, but once repressed, 
the maintenance of that the gene in its inactive state no longer required that protein. During 
silent chromatin formation, such proteins are said to be important for establishing, but not 
maintaining, the silenced state. In contrast, proteins that are required constantly to keep a 
repressed gene inactive are considered to be necessary for maintaining the silenced state. 
Proteins that are involved in the inheritance of silenced states facilitate the propagation of 
that state to subsequent cell generations.  
An example of a protein important for establishing, but not maintaining, epigenetic states is 
Sir1p from budding yeast. Sir1p facilitates establishment by increasing the probability of Sir 
proteins being recruited to the HM loci (Rusche et al., 2002). Cells lacking SIR1 can exist in 
two populations; transcriptionally active or silenced. Each population is stable over multiple 
generations, indicating that Sir1p is not required for maintaining or inheriting the different 
expression states (Pillus & Rine, 1989, Xu et al., 2006). These silenced and transcriptionally 
active cells will occasionally switch states, and often these switching events demonstrate a 
“grandmother effect”. In these instances, all progeny (“granddaughters”) derived from a 
single derepressed “grandmother” cell from two generations earlier will switch to a silenced 
state simultaneously, raising the possibility that an event linked to DNA replication in the 
grandmother was propagated to subsequent generations (Pillus & Rine, 1989). When mother 
and daughter cells switch epigenetic states simultaneously upon cell division, the daughter 
cell usually silences more rapidly than the mother. In instances where the switching event 
does not occur in both cells of a mother/daughter pair, the daughter cell is more likely to 
switch to a silenced state than the mother (Osborne et al., 2011). The mechanism behind this 
difference is unknown but could be linked to asymmetric inheritance of soluble proteins 
(e.g. Sirs) or the sister chromatids during cell division. Alternatively, asymmetric expression 
of proteins that inhibit (in the mother cell) or promote (in the daughter cell) silent chromatin 
formation could also contribute to this process (Osborne et al., 2011).  

5.2 Switching histone modification patterns 
Switching of histone modification patterns to promote different epigenetic states can occur 
several ways. Histone modifications can be actively removed by enzymes such as 
deacetylases or demethylases, exchange of histones via chromatin remodeling (Lu et al., 
2009), or proteolytic cleavage of histone tails (Jenuwein & Allis, 2001, Bannister et al., 2002). 
Histone modifications at chromosomal loci can also be passively removed by dilution upon 
DNA replication. Alternatively, certain histone modifications can remain present at loci in 
cells with different epigenetic states, but the function of those modifications may be altered 
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through adding or removing modifications at neighboring residues (Bannister et al., 2002, 
Fischle et al., 2003a). Together, these changes can affect chromatin structure by altering 
interactions between histones and DNA or chromatin-associated proteins that bind 
nucleosomes, ultimately leading to switching of epigenetic states. 
Several examples of histone modifications influencing the probability of establishing 
silencing have been observed in studies of yeast mating-type silencing. In the absence of the 
H4 K16 acetyltransferase Sas2p, the probability of establishing silencing in a given cell cycle 
decreases, whereas loss of the H3 K4 and H3 K79 methyltransferases encoded by SET1 and 
DOT1 increases the probability of establishment (Osborne et al., 2009). In the case of DOT1, 
H3 K79 methylation status has been demonstrated to influence this switching event 
(Osborne et al., 2011). The rate and mechanism of removal of different histone modifications 
can also vary during establishment. At HMR and telomeres, acetyl groups from lysine 
residues on the N terminal tail of H3 are rapidly removed by Sir2p, a structural component 
of silent chromatin. The rapid rate of loss of H3 K4me2 during silent chromatin formation 
also implicates an active process mediating removal of this mark. In contrast, H3 K79me2 
appears to be removed passively via dilution during DNA replication over 3 to 5 cell 
generations (Katan-Khaykovich & Struhl, 2005). 

5.3 Switching DNA methylation patterns 
In mammals, high 5-mC levels are commonly found in transcriptionally silent loci and 
promote the formation and maintenance of heterochromatin. In contrast, loss of 5-mC can 
disrupt binding sites for methyl binding proteins, destabilize heterochromatin, and lead 
to gene reactivation. Like histone modifications, DNA methylation can be removed by 
both passive and active processes. Passive demethylation of the maternal genome during 
pre-implantation development is thought to reflect loss of 5-mC via dilution upon DNA 
replication (Howell et al., 2001, Rougier et al., 1998). 5-mC can also be actively removed 
by DNA glycosylases in plants and base excision repair and nucleotide excision repair 
have been implicated in DNA demethylation in multiple organisms (Chen & Riggs, 2011, 
Zhu, 2009). 
Passive and active removal of DNA methylation and gene reactivation may also involve 5-
hydroxymethylcytosine, 5-hmC, a modification recently identified in mammalian DNA 
(Tahiliani et al., 2009, Kriaucionis & Heintz, 2009, Munzel et al., 2010). 5-hmC is created 
through the conversion of 5-mC to 5-hmC by the oxygenase TET1 (Tahiliani et al., 2009). 
TET1 is a homolog of the trypanosome proteins JBP1 and JBP2 that oxidize 5-methyl 
thymine (Tahiliani et al., 2009). Two other mammalian TET family members, TET2 and 
TET3, are also predicted to convert 5-mC to 5-hmC. Passive demethylation via dilution 
during DNA replication may occur upon conversion of 5-mC to 5-hmC if Dnmt1 cannot use 
5-hmC-containing DNA as a substrate, although evidence for this remains to be established. 
Alternatively, 5-hmC may function in replication-independent, or “active”, demethylation 
through spontaneous conversion to cytosine or processing via base-excision repair, 
analogous to that catalyzed by DEMETER in plants during the removal of 5-mC (Gehring & 
Henikoff, 2007). Rapid demethylation of the paternal genome following fertilization 
involves conversion of 5-mC to 5-hmC, but how 5-hmC is later processed is unclear (Iqbal et 
al., 2011, Santos et al., 2002).  
Currently, the genomic locations of 5-hmC are largely unknown, although 5-hmC is likely 
less prevalent than 5-mC in most cell types. 5-hmC is indistinguishable from 5-mC in 
bisulfite sequencing studies used to map genomic methylated CpGs sites as bisulfite 
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treatment converts 5-hmC into cytosine 5-methylenesulfonate, which is resistant to 
deamination and conversion to uracil (Huang et al., 2010). Thus, many chromosomal sites 
previously thought to contain 5-mC may actually contain 5-hmC. Identification of genomic 
regions enriched for 5-hmC will require alternative approaches such as chromatin 
immunoprecipitation coupled to next generation sequencing.  
The impact of 5-hmC on gene expression and chromatin structure is also poorly understood. 
However, TET1 has been mapped to CpG rich sequences within hypomethylated promoters 
(Wu et al., 2011). TET1 association at these loci correlates with histone modification patterns 
signifying either repressed (e.g. H3 K27me3) or active (e.g. H3 K4me3 and H3 K36me3) 
chromatin, implying a role for TET1 in regulating multiple epigenetic states (Wu et al., 
2011). Conversion of 5-mC to 5-hmC by TET oxygenases disrupts interactions between 
methyl binding domain (MBD) proteins and DNA, and thus, likely epigenetic states. MBD1, 
MBD2b, MBD2b/MBD3L and MBD4 bind to 5-mC DNA but not 5-hmC DNA in vitro (Jin et 
al., 2010). The Rett’s syndrome protein MeCP2 is also predicted not to bind to 5-hmC DNA 
(Valinluck et al., 2004). Together, these observations imply TET oxygenases may function in 
maintaining hypomethylated chromosomal regions, but whether TET proteins can be 
directly coupled to DNA replication is not yet known.  

6. Summary 

Propagating epigenetic states of gene expression involves the concerted effort of a complex 
network of histone and DNA-modifying enzymes, histone chaperones and replication 
proteins to ensure efficient duplication and inheritance of chromatin modification patterns 
and chromatin associated proteins. In recent years, numerous chromatin modifications and 
corresponding enzymes have been identified and their links to epigenetic processes have 
been demonstrated. However, understanding their roles in regulating epigenetic processes 
upon DNA replication remains to be developed. Many questions still must be addressed to 
clarify how chromatin assembly is regulated by chromatin modifying enzymes, how 
histones and structural components of heterochromatin are removed from in front of the 
replication fork, and then rebuilt behind the fork during replication. Future progress will 
reveal how histone and DNA modification patterns contribute to locus-specific epigenetic 
states across the genome.  
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