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1. Introduction  

The genetic information of living organisms is carried and stored in a gene, which is a huge 
complex molecule involving DNA and proteins. In eukaryote cell, gene is usually higher 
hierarchical ordered packaged in a large complex structure called “chromosome”. The 
genetic information must be strictly conserved throughout life cycle, otherwise lost or false 
DNA information may cause malfunction of cell, cell death, impaired development or 
cancer prone. The genetic information must also be principally correctly transmitted to the 
next generations for stabilize the species. Three major cellular functions ensure maintain the 
complete gene information and transmit to daughter cells or next generations: (1) DNA 
replication; duplicates complete DNA sequence information to transmit for next cell 
generation, (2) DNA repair; recover structural damages of DNA and corrects false 
information anything else introduced in DNA molecule by intra- or extra-cellular factors 
and (3) Chromosome condensation; compaction of DNA molecule to architect a higher-
organized packaged and compacted architecture known as “chromosomes” to assure 
protect and stabilize the integrity of labile DNA molecules and segregate the identical 
chromosome sets to daughter cells during mitosis. In addition, DNA recombination/ 
rearrangement mechanism also plays very crucial role for various cellular function. For 
example, exchange genetic information between paternal and maternal homologous 
chromosome gene during recombination process in fertilization will promote evolution of 
species and prevent the gene homogeneity. Recombination of Immuno-globulin gene during 
lymphocyte maturation process promises the antibody diversity against vast numbers of 
foreign antigens. Recently accumulated evidences have strongly suggested that these 
mechanisms are mutually tight-coupled functions rather than they independently work. 
Molecular genetic studies have also provided supporting evidence for the idea that 
mutation in genes (HIRA/Tuple1, XCDT1, cdt1, Orc2, Orc3, Orc5, MCM2, MCM4, MCM10, 
RECQL4)(Maiorano et al. 2000; Nishitani et al. 2000; Pflumm and Botchan 2001; Christensen 
and Tye 2003; D'Antoni et al. 2004; Prasanth et al. 2004; Tatsumi et al. 2006) required for 
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DNA replication or DNA repair (SCC2, SMC1, SMC3, ESCO2) (Gillespie and Hirano 2004; 
Bekker-Jensen et al. 2006; Gandhi et al. 2006; Yoshizawa-Sugata and Masai 2009) showed 
abnormal phenotype in chromosome structure, inherited diseases, genomic instability or 
prone to cancer, or aberrant replication timing causes abnormal chromosome condensation. 
Cytogenetical observation of chromosome is certainly a most direct approach for elucidates 
how dynamics of chromosome structure formation and chromosome recombination are 
coupled with DNA replication. Numbers of supporting evidences have reported the 
relationship of DNA replication, chromosome conformation/recombination and DNA 
repair mechanisms. However, the results shown in these reports were mainly yielded from 
the observation in interphase nuclei, thus the resolution and the resulting information were 
still limited because chromosomes are only visible in the mitotic stage of the cell-cycle and 
are invisible as de-condensed in interphase.  Premature chromosome condensation (PCC) 
technique is a unique and useful technique that allows the interphase nuclei to be visualized 
like as condensed form of mitotic chromosome. Conventional PCC has been carried out by 
cell fusion using either fusogenic viruses or polyethylene glycol (cell fusion-mediated PCC, 
(Johnson and Rao 1970; Pantelias and Maillie 1983). But cell fusion mediated PCC protocols 
are usually technically demanding and keenly depend on activity of the virus or PEG. More 
recently, a much easier and more rapid PCC technique using calyculin A or okadaic acid, 
specific inhibitors of protein phosphatases (drug-induced PCC, Gotoh et al. 1995; Gotoh and 
Asakawa 1996). Drug-induced PCC is now becoming much more popular and has been 
used in a wide range of cytogenetic studies (Durante et al. 1998; Gotoh et al. 1999; Ito et al. 
2002; El Achkar et al. 2005; Gotoh and Tanno 2005; Srebniak et al. 2005; Deckbar et al. 2007; 
Gotoh 2007).  
In this chapter, we first show the visualizing of the dynamics of chromosome structure 
formation and chromosome repair/recombination coupled with DNA replication in 
interphase nuclei, in particular by use of drug-induced PCC. We next show the spatial and 
temporal rearrangement of chromosome fragment after γ-ray irradiation, and this movement 
is tightly coupled with DNA replication. Possible hypothetical model for chromosome 
condensation/compaction involving the role of DNA replication and model for chromosome 
recombination coupled with DNA-replication will be suggested and discussed. 

2. Visualizing of the dynamics of chromosome structure formation coupled 
with DNA replication 

2.1 Background 
Chromosomes condense during mitosis under a higher ordered stringent mechanism in 
mitotic phase, which is further divided into several   sub-phases; (preprophase), prophase, 
prometaphase, metaphase, anaphase, telophase (these phases are called as mitosis) and 
followed by cytokinesis (Alberts et al. 1989). In the course of mitotic phase, number of 
drastic sequential transactions proceed; (1) chromatins condense to visible structure under a 
microscope “chromosomes” and mitotic spindle begins form (2) nuclear envelope 
breakdown into membrane vesicles, centriole and mitotic spindle formation followed by 
spindle attaches to centromere (3) kinetocore microtubules align the chromosomes at 
metaphase plate (4) chromosome separas and segregates to spindle poles (5) separated 
daughter chromatids reached at the poles, nuclear envelope re-forms (6) formation of 
contractile ring and cleavage furrows which constrict the cell center,  cytokinesis and cell 
divides two daughter cells and chromosome de-condensation in divided cells and re-enter 
the cells in G1 phase (Alberts et al. 1989).  The detailed whole mechanism is still almost 
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unclear, however number of molecules which involved in the mitotic events have been 
identified such as SMC proteins include condensin (chromosome condensation) and cohesin 
(chromosome cohesion of replicated chromosomes) (Swedlow and Hirano 2003), NuMA 
protein for spindle pole formation (Chang et al. 2009; Haren et al. 2009; Silk et al. 2009; 
Torres et al. 2010), nuclear lamins (Moir et al. 2000), aurora kinases in centromere function 
(Tanno et al. 2006; Meyer et al. 2010; Tanno et al. 2010), shugoshin and protein phosphatase 2A 
in  chromosome cohesion (Kitajima et al. 2006; Tanno et al. 2010), cdk1 in chromosome 
condensation, chromosome bi-orientation (Tsukahara et al. 2010), cyclin B, cdc2, cdc25 in 
chromosome condensation (Masui 1974; Draetta and Beach 1988; Dunphy et al. 1988; Kumagai 
and Dunphy 1992), Polo and Rho in cytokinesis (Burkard et al. 2009; Wolfe et al. 2009; Li et al. 
2010), and many other molecules. Dynamics in mitotic phase involves such as various 
elements, and numerous studies for visualize these dynamics have been reported, because 
these events are relatively easy observable in mitosis under microscopes. However, visualizing 
approaches in chromosome dynamics coupled with DNA replication is still limited, because it 
should be required to observe chromosomes in S-phase but chromosomes are usually invisible 
in S-phase as they de-condense (Gotoh et al. 1995; Gotoh and Durante 2006).  
In this section, we just focus on visualize the chromosome dynamics coupled with DNA 
replication during S-phase progression use with drug-induced premature chromosome 
condensation method and we show how replicating DNA is folded to higher order 
chromosomes. 

2.2 Materials and methods 
2.2.1 Cell, chemicals and antibodies 
Human normal karyotype fibroblast cell line GM05389 was from Coriell Cell Repositories (NJ, 
USA). Calyculin A was from Wako Chemicals (Osaka, Japan), dissolved in 100% DMSO, 100 
µM of stock solution was stored at –20oC. Cy3-dUTP was from Amersham (Upsala, Sweden). 
Sizes of 425-600 µm diameter acid-washed glass beads were from SIGMA (MO, USA).  

2.2.2 Cy3-dUTP labeling by bead-loading method 
Cy3-dUTP was loaded in the cells using beads loading procedure as described previously 
(McNeil and Warder 1987; Manders et al. 1999; Ito et al. 2002; Gotoh 2007). The procedure 
facilitate the Cy3-dUTP to be incorporated in the cell nucleus in very short time whereby 
transiently permeabilizes the cell membranes (McNeil and Warder 1987; Manders et al. 
1999). GM05389 cells, seeded on a 35 mm glass-base culture dish (Iwaki, Japan) which is 
designed for observation under inverted microscopes, were grown exponentially and 
asynchronous in MEM supplemented with 15% foetal calf serum at 37oC in 5% CO2 
atmosphere with 95% humidification. For replication DNA labeling, culture medium was 

replaced with 37oC prewarmed 50 µl of 10 µM Cy3-dUTP dissolved in MEM medium, 425-

600 µm diameter glass beads were sprinkled onto the cells, tapping and rocking the dish 
several times, then the beads were rinsed off with PBS. It usually took a couple of minutes 
for complete the loading procedure. Pre-warmed (37oC) MEM was added to the culture and 
incubated until 10 minutes after starting of Cy3-dUTP loading. Then cells were subjected to 
be condensed prematurely using calyculin A, or to be immunostained. 

2.2.3 Premature chromosome condensation 
Immediately after Cy3-dUTP loading procedure, chromosomes were condensed 
prematurely using 50 nM of calyculin A. Premature chromosome condensation (PCC) using 
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calyculin A was done as described elsewhere (Gotoh et al. 1995; Asakawa and Gotoh 1997; 
Johnson et al. 1999; Ito et al. 2002; Gotoh 2007; Gotoh 2009) except that the incubation time 
was shortened as possible to 10 minutes to obtain a high spatial and temporal resolution, 
otherwise replication foci can be merged together rustling in a less spatial/temporal 
resolution. After incubation with calyculin A, cells were harvested, swollen in 0.075M KCl 
for 10 minutes at 37oC, fixed 3 times with carnoy’s fixative (methanol: acetic acid = 3 vol.: 1 
vol.), dropped on a glass slide and air-dried. Finally, DNA was counterstained with 200 
ng/ml of DAPI, mounted with PBS and covered with a cover slip. 

2.2.4 Laser scanning microscopy  
Blue, green, or red confocal images were collected using a Confocal Laser Scanning 

microscopy system Zeiss LSM510 (Jena, Germany) equipped on an inverted epifluorescence 

microscope Zeiss Axiovert100M (Jena, Germany). A water immersion objective lens Zeiss C-

Apochromat 63x/1.2 w corr. (Jena, Germany) was used. UV-, Ar- or He-Ne-laser was tuned 

at 366, 488, 568 nm to excite DAPI, FITC, Cy-3, respectively.  The fluorescence signals from 

each fluorochrome were recorded separately in multiple scan to minimize optical cross talk. 

Digital images were manipulated using Zeiss LSM510 software (Jena, Germany). 

2.3 Dynamics of chromosome structure formation coupled with DNA replication 
Much study has achieved to visualize the dynamics of chromosome condensation during in 

interphase nuclei, particularly in S-phase . However, the visualizing study on the relationship 

between chromosome condensation and DNA replication has still limited. Several studies 

tried and defined fairly well the replication foci distribution in interphase nuclei (Nakamura et 

al. 1986), however little is still known about how replicating DNA is folded to higher order 

chromosomes, because chromosomes are invisible in interphase as they de-condense. 
To visualize the chromosome compaction dynamics coupled with DNA replication more 
precisely in S-phase nucleus, we took the advantage of the drug-induced PCC method (Gotoh 
et al. 1995; Asakawa and Gotoh 1997; Johnson et al. 1999; Ito et al. 2002). Individual substage of 
S-phase can be easily identified by typical diagnostic appearances seen in different phases of S-
PCCs (Mullinger and Johnson 1983; Gollin et al. 1984; Hameister and Sperling 1984; Savage et 
al. 1984; Gotoh et al. 1995; Gotoh and Durante 2006). A drastic conformational change of 
chromosome structure formation along with the proceed of DNA replication, as shown in 
Figure 1 (reproduced from Chromosoma. 2007; 116(5): 453-462, Gotoh 2007), clearly revealed 
in PCCs following Cy3-dUTP labeling (Gotoh 2007; Gotoh 2011). Cy3-dUTP loading procedure 
was finished within 10 minutes followed by 10 minutes of PCC induction and fixation (for the 
detail of the experiment procedures, see the Materials and Methods section in Chromosoma. 
2007; 116(5): 453-462, Gotoh 2007). Accordingly, only DNA replicated in this short lapse 
fluoresces. Thus, the observed S-PCCs in the present study reflected the replication stages at 
most 20 minutes (see Materials and Methods described in Gotoh 2007) before the cell fixation. 
(i) In early S-phase, PCCs showed a cloudy spreading mass of thin fibers like a  “nebula”. 
Numerous fine granular foci distributed homogeneously on overall the fibers (Figure 1i), 
which shows “beads on a string” appearance that are similar to the same named structures 
observed under an electron microscope (Olins and Olins 1974; Thoma et al. 1979). (ii) In 
middle S-phase, typical “pulverized” PCCs structure was recognized, and the size of foci 
increased with the number of foci decreased and distributed unevenly on chromosomes.  The 
foci became much brighter (Figure 1j). (iii) In late S-phase, chromosomes showed mostly 
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Fig. 1. (1) DNA replication regions on prematurely condensed chromosomes (PCCs) of 
different substages of S-phase. Ten minutes after Cy3-dUTP loading, cells were condensed 
prematurely using 50 nM of calyculin A (Gotoh et al. 1995). From left to right column, (a,b,c) 
early S-phase PCCs, (d,e,f) middle S-PCCs, (g,h,i) late S-PCCs and (j,k,l) very late S-PCCs. 
(a,d,g,j) DAPI counterstained DNA, (b,e,h,k) Cy3-dUTP labelled DNA replication region 
and (c,f,i,l) Merged image of DAPI and Cy3.  Centromeric region (arrow) or telomeric region 
(arrowhead) replicates in very-late S-phase are indicated. (i,l) Late S- and very late S-PCCs 
already condensed like as mitotic chromosomes, but these PCCs were actually S-phase 
chromosomes because they incorporated Cy3-dUTP. G2/M chromosomes are easily 
distinguished from late or very late S chromosomes as G2/M chromosomes do not 
incorporate Cy3-dUTP (data not shown). Inset in (c) is higher magnification of the boxed 

portion. Scale bar, 10 µm. (2) DNA replication regions seen on prominent fibre of PCCs. (m) 
early-S-phase (918 foci scored) and (n) middle S-phase (707 foci scored). Replication foci are 
clearly seen as ‘beads on a string’ structure, some of these are indicated by arrowhead. Scale 

bar, 10 µm. (reproduced from Chromosoma. 2007; 116(5): 453-462, Gotoh 2007) 
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condensed like mitotic chromosomes. Cy3-dUTP incorporated regions were recognized as 
band arrays inserted in the condensed chromosome (Figure 1k, indicated by arrows). The 
similar appearance of replication foci aligned longitudinally on chromosomes were previously 
reported on metaphase of kangaroo-rat kidney PtK1 cells (Ma et al. 1998). The size of foci 
increased and the number decreased. (iv) In very late S-phase, the number of foci further 
reduced and predominantly localized at centromeric or telomeric regions (Figure 1l, indicated 
by arrows).  These regions are actually known as satellite heterochromatic DNA regions where 
DNA replicates at very late S (O'Keefe et al. 1992). 

2.4 The number, size and spacing of replication foci in different subphase of S 
Figure 2 shows the typical “beads on a string” structure of replication foci seen in Cy3-dUTP 
fluoresced early S-phase PCC. The “beads on a string” structure is more evidently seen on 
the prominent fiber as shown in Figure 1m,n. The distance between foci was easily 
measured than those seen in interphase nuclei. Table 1 (reproduced from Chromosoma. 
2007; 116(5): 453-462, Gotoh 2007) summarizes the number, size and the spacing of the foci 
of different S-phase stages. The number of foci scored maximum ~1400 in early S-phase that 
was much precisely than ever reported (Manders et al. 1996; Jackson and Pombo 1998; Ma et 
al. 1999), then decreased to ~100 in very late S-phase (Gotoh 2007). The size changing of foci 
during S-phase was also shown clearly (Gotoh 2007). The spacing between replication foci 

clusters was ranged from 85.3 kbp (0.64 µm) to 536 kbp (4.02 µm) (average, 208 kbp, 1.56 µm, 

Gotoh 2007) based on the assumption that 0.75 µm length of 30 nm chromatin fiber is   
 

 

Fig. 2. Cy3 fluoresced DNA replication regions (replication foci) of early S-phase 
prematurely condensed chromosomes (PCCs).  DNA replication regions were directly 
labeled with Cy3-dUTP by a bead-loading method followed by calyculin-A induced 
premature chromosome condensation. DNA was counterstained with DAPI.  Chromosome 
spread shows a “cloudy nebula” appearance and, active replication regions (red) along with 
DNA fiber (faint blue) were seen as ‘‘beads on a string‘’ structure. Condensed chromosome 
regions after finishing of DNA replication were seen as thick blue. 
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equivalent to 100 kbp (linear packing ratio of ~ 40:1) (Berezney et al. 2000). Fiber 
autoradiography of DNA labeled with [3H]thymidine revealed the synchronized 
synthesizing replicon of spacing distance ranging from  50-300kbp (Fakan and Hancock 
1974; Edenberg and Huberman 1975; Hand 1978). Therefore the spacing of replication foci 
seems to vary more than previously reported values. The measure of the spacing of foci 
were also reported on stretched DNA fiber with detergent and calculated the average 
distance of foci as 144 kbp (Jackson and Pombo 1998) that is fairly good agreement with the 
present and the previous studies, although the intact structure of foci was no more retained 
in stretched fiber after lysis treatment. 
 

Subphase of S early middle late very late 

Number of foci (max~min)a 
1046 + 187 
(1396~758) 

678 + 83 (887~601)
450 + 132 
(607~237) 

153 + 42 (245~98) 

Size of foci (max~min) 

(µm radius)b,c 

0.35 + 0.01 
(0.08d~0.62) 

0.52 + 0.06 
(0.1d~0.62) 

0.98 + 0.23 
(0.24~1.44) 

1.1 + 0.44 
(0.32~4.1) 

Spacing between foci 

(max~min) (µm)b,c 

1.56 + 0.68 
(0.64~4.02) 

1.01 + 0.11 
(0.33~1.86) 

N.D.e N.D.e 

a: For each subphase, at least 12 spreads were scored., except for very late S (10 spreads to be scored 
were available) 
b: Measured using the Zeiss LSM510 software 
c: Randomly selected 20 points were measured, and the average and the error were calculated. 
d: These data were beyond the resolution of optical microscope, and measured on digitized images. 
e: Not done the measure because PCCs at these stages mostly condense as mitotic chromosomes thus 
measure the spacing seems less meaningful. 

Table 1. The number, size and spacing of replication foci of different subphase of S 
(reproduced from Chromosoma. 2007; 116(5):453-462, Gotoh 2007) 

2.5 A hypothetical chromosome compaction model coupled with DNA replication 
Numbers of model for eukaryote chromosome architecture have been proposed (Marsden 
and Laemmli 1979; Woodcock et al. 1984; Woodcock and Dimitrov 2001; Swedlow and 
Hirano 2003; Kireeva et al. 2004), but they are controversial and many of things remain 
unclear. In addition, these models do not take account the involvement of DNA 
replication/transcription in chromosome packaging. DNA/RNA polymerase are known to 
be tightly immobilized to the replication/transcription factories (Cook 1999; Frouin et al. 
2003). In the proposed model, DNA polymerase is thought to “reel in template DNA and 
extrude replicated DNA” (Hozak et al. 1996; Cook 1999), rather than the enzyme track along 
DNA template proposed in many conventional model. In Cook’s model, some kinds of 
mechanical tension force should be generated in the template DNA along with DNA 
replication goes on because the factory does not freely suspended in the nucleus but 
attached to nucleoskelton, consequently this force may pull and aggregate the replication 
foci of both side as to release the tension in DNA strand, which may resulting in formation 
of chromosomes as seen in mitosis. Based on the above mechanism and the observed 
findings obtained from chromosome structure dynamics coupled with DNA replication, 
Figure 3 shows a hypothetical model for the relationship of DNA replication and  
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Fig. 3. A hypothetical two-dimensional model for chromosome conformational change 
involving DNA replication based on the models proposed by Cook (Cook 1995) or Pflumm 
(Pflumm 2002). (a) Early S-phase. DNA replication starts at multiple origins and proceeds bi-
directionally. Early S-PCCs are seen as ‘beads on a string’ appearance. (b) Middle S-phase. As 
DNA replication proceeds, replicated DNA pass through replication factory and some tension 
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are generated. The generated tension may pull back the replication factories close together so 
as to release the tension. Replication factories may in turn fuse together and chromosomes 
compact. Middle S-PCCs are seen as well known ‘pulverized chromosomes’ appearance. (c) 
Late S-phase. Most of DNA finished replication and conformation was changed. Late S-PCCs 
are seen as ‘tandem band arrayed structured chromosomes’ like as mitotic chromosomes. (d) 
G2 to prophase. After finishing of DNA replication, chromosome conformation changed like 
as mitotic chromosomes, but still so elastic that packed in nucleus. Before fixation, each 
chromosome occupies individual chromosome territory (CT) in interphase nucleus, thus 
observed as compartment regions (colorized). (e) Mitosis. After prophase, chromosomes 
further shortening in longitudinal axis of chromosomes, consequently a straight rod shaped 
recognizable chromosome formed as usually seen by cytologists.  For simplicity, the model is 
shown as two-dimensional and the scaling is arbitrary. The model intends not to depict actual 
events of chromosome conformation change but to help imagine how DNA replication is 
involved in chromosomal conformation. As the real chromosomes condense as three-
dimensionally, other elements such as coiling and helical winding should be considered 
together to construct a stereoscopic hierarchical structure of eukaryote chromosomes 
(Woodcock and Dimitrov 2001; Swedlow and Hirano 2003). (reproduced from Chromosoma. 
2007; 116(5): 453-462, Gotoh 2007) 

chromosome conformational changes, that shows how interphase chromatin is constructed 
to chromosomes observed in mitosis (Figure reproduced from Chromosoma 2007; 116(5): 
453-462, Gotoh 2007). During S-phase, chromosomal conformation changes as DNA 
replicates, and the chromosome formation would be mostly completed at the finish of DNA 
replication (Figure 3a,b,c). From G2 to prophase, chromosomes are still more elastic, less 
condensed, folded only several times and pre-aligned in interphase nuclei (Manders et al. 
1999). Chromosomes, at these phases, would be observed as chromosome territories 
(Cremer et al. 1993; Berezney et al. 2000) (Fig. 3d). Entering in mitosis, chromosomes would 
condense even more as shortening the longitudinal axis to form solid and rod shape 
appearance of recognizable mitotic chromosomes (Manders et al. 1999) (Fig. 3e). 

3. Visualizing the DNA replication coupled spatial and temporal 

rearrangement of γ-ray cleaved chromosome fragment  

3.1 Background 
Chromosomes are easily damaged by many kinds of clastogenenic agents such as ionizing 
irradiation (IR), ultra violet light (UV), chemicals (i.e. alkylating agents) or biological 
resources (i.e. some kinds of viruses) (Therman 1980). Mostly damaged chromosomes can be 
repaired before the cell division, some damages might be mis-repaired or remain un-
repaired, resulting in chromosome aberrations (Savage 1991). These aberrations may cause 
cell death or cancer prone. Although the numbers of knowledge in molecular level 
approaches have been accumulated, little is still known about how, when and where the 
ends of individual chromosome fragments close and associate to form rearranged 
chromosomes (Savage 2000; Aten et al. 2004). It is clearly required that the cleaved 
fragments must contact physically to form rearranged chromosomes at some stages of the 
repair process (Savage 2000). Two major hypotheses are still controversial: Whether these 
fragments move to contact after damage (the “breakage first” hypothesis), or whether 
association of fragments happen only where close contact already exists at time of 
irradiation (the “contact first” hypothesis) (Savage 2000). As DNA is fragmented in 
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interphase and subsequent repair and rejoining finish until cell division, it should be 
required to elucidate the process occurs in interphase nuclei. Number of studies has 
challenged to analyze the dynamics of repair and recombination in interphase. 
In this section, to elucidate how and when chromosome fragments close and association to 
form rearranged chromosomes in interphase, we visualized the dynamics of spatial and 

temporal occupation of chromosome 4 domains in γ-irradiated human peripheral blood 
lymphocytes in interphase nuclei and in drug-induced PCCs by means of chromosome 
painting method. 

3.2 Materials and methods 

3.2.1 Cell culture, γ-irradiation and chromosome preparation 
Human peripheral blood lymphocytes (PBLs) were separated from 10 ml of whole blood 
from healthy donor using LymphoPrep (Becton and Dickinson, Franklin Lakes, NJ) as per 
supplier’s protocol. PBLs were then suspended in RPMI 1640 medium (GIBCO, Grand 
Island, NY) supplemented with 20% foetal calf serum (Biocell Laboratory, Ramincho-
Domingues, CA). To induce chromosomal breaks, aliquot of PBLs were irradiated with 10 

Gy of γ-rays (137Cs, 0.662 MeV, 0.9 Gy/min) using a GammaCell 40 (Atomic Energy of 
Canada LTD, Canada). Irradiated PBLs were then stimulated immediately with PHA-P 
and rIL-2 as described previously (Gotoh and Asakawa 1996), cultured at 37 °C in 5% CO2 
atmosphere with 95% humidification for different incubation time (from 24 hours to 120 

hours). One hour before the each harvesting time, cellular DNA were labeled with 10 µM 
of BrdU (10 mM of stock solution). The same irradiation experiment of PBLs except for 

without PHA-P stimulation or DNA-synthesis inhibition with 2 µM aphidicholine were 
performed simultaneously. After harvesting, cells were swollen in 0.075M KCl hypotonic 
buffer and incubated for 20 minutes at 37°C. Then the swollen cells were fixed with cold 
Carnoy’s fixative (methanol: acetic acid = 3 parts: 1part), fixed three times with the 
fixative and dropped on microscopic glass slides and air dried. For obtaining chromosome 
spreads, 50 nM calyculin A was added to the duplicated PBLs culture to induce PCC 30 
minutes before harvesting the cells at each incubation time (Gotoh and Tanno 2005; Gotoh 
2009). For control studies, aliquot of non-irradiated PBLs cells were harvested at either 48 
hours or 72 hours after stimulation. After harvesting, cells were swollen in 0.075 M KCl 
for 20 minutes at 37 °C, fixed with methanol: glacial acetic acid (3: 1 vol./vol.), washed 
and fixed three times in the same fixative, dropped on a glass slide. Usually, the slides 
were stored in a desiccated box for one or two weeks for sufficient drying until 
chromosome painting was performed. 

3.2.2 Chromosome painting 
Chromosome painting was done use with human chromosome 4 painting probe (GIBCO, 
Grand Island, NY) per se the supplier's protocol, except for additional washing with 0.lx 
SSC at 60oC for 5 minutes as described previously (Gotoh and Asakawa 1996). Briefly 
chromosomes were denatured in 70% formamide in 2xSSC at 70°C for 3 minutes followed 

by dehydration in ethanol series (70, 90 and 99.5%). A 5 µl aliquot of hybridization mixture 

(50% formamide, 10% dextran sulphate and 100 µg/ml carrier DNA in 2xSSC) containing 
probes (2 ng/ml) was denatured at 70°C for 2 minutes and loaded on a sample, covered 

with a cover slip (φ 15 mm) and sealed with a silicon rubber (Exabite normal type; GC Corp., 
Japan) to prevent dry up the hybridization buffer during hybridization. Hybridization was 
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carried out at 37°C overnight, then non-specific hybridized probes were washed out in 
2xSSC at 37°C 5 minutes three times and in 0.1xSSC at 60°C 5 minutes. Cell nuclei were then 
counterstained with 200 ng/ml of propidium iodide (PI; Sigma, St Louis, MO) for 
SpectrumGreenTM labeled probe or with 200 ng/ml of diamidino-2-phenylindole (DAPI; 
Sigma, St Louis, MO) for SpectrumOrangeTM labeled probe. The slides were mounted with 
50% glycerol in PBS supplemented with 0.1% antifade (1,4-phenylene-diamine, Sigma, St 
Louise, MO) and observed under an epifluorescence microscope (Nikon, Japan), using B-2A 
or G-2 excitation-emission filter (Nikon, Japan) to visualize SpectrumGreenTM or 
SpectrumOrangeTM fluorochrome, respectively.  

3.2.3 BrdU detection for cell cycle analysis 
Detection of incorporated BrdU in replicating DNA was performed as described 
previously (Gotoh et al. 1995; Asakawa and Gotoh 1997). After chromosome painting 
study, slides were immersed in 2N HCl at room temperature for 30 minutes to denature 
DNA and then immersed in 0.1M Na2B4H (pH 8.5) to neutralize the acid for a few minutes 
at room temperature. Slides were briefly washed twice with 0.5% Tween 20/PBS twice. 

Twenty µl of FITC conjugated anti-BrdU monoclonal antibody (Becton Dickinson) was 

diluted with 50 µl of 0.5% Tween 20/PBS and added on a glass slide, covered with a cut 
Parafilm sheet and incubated at room temperature for 30 minutes in a humidified 
chamber. Slides were washed twice with PBS and counterstained with 40 ng/ml of Pl. 
Slides were observed under an epifluorescence microscope using a B-2A filter and images 
were taken using a CCD camera. 

3.3 Spatial and temporal rearrangement of chromosome fragment coupled with DNA 

replication following γ-irradiation 
3.3.1 Determination of irradiation dose for effective detection of the chromosome 
fragments in interphase nuclei 
Human peripheral blood lymphocytes (PBLs) is an excellent system for study the 
irradiation induced chromosome aberrations, because in vivo PBLs arrest in G0 phase 
(quiescent stage) and start cell cycle well synchronized until first cell division after 
stimulation by foreign antigens or non-specific mitogens such as LPS 
(lipopolysaccharides) or PHA (phytomemaggulutinine). It is well known that the 
frequency of chromosome breakage increasing as the increase of irradiation dose (Gotoh 
and Asakawa 1996; Gotoh et al. 2005). Accordingly it is expected that increasing the 
irradiation dose will make easier to observe the fragmented chromosome domain because 
the number of fragmented domains will increase seen in interphase nuclei. It is, however, 
difficult or even impossible to obtain sufficient number of chromosomes from cells 
exposed high dose of ionizing irradiation, because these cells arrest in S or G2 and do not 
enter in mitosis. As drug-induced PCC allows us to obtain chromosomes in cells even 

irradiated 40 Gy dose of γ-rays (Gotoh and Asakawa 1996; Gotoh and Tanno 2005; Gotoh 
et al. 2005; Wang et al. 2009; Balakrishnan et al. 2010; Lindholm et al. 2010), we used to 
calyculin A induced PCC method to visualize the chromosome aberration in G2 cells after 

γ-irradiation, but we irradiated the cells with more milder dose of 10 Gy of γ-rays as not 
give severe damages to the cells. Figure 4 (reproduced from Molecular Biology 
International, Special Issue on “DNA in 3R: Repair, Replication, and Recombination”, 
Gotoh and Asakawa 2011, in press) shows the chromosome painting of human #4 
chromosomes against calyculin A induced prematurely condensed chromosomes (PCCs) 
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of PBLs at 48 hours after 10 Gy of γ-rays irradiation. At this time point, number of mitotic 
chromosomes was quite very low (lower than 0.01% as shown in Table 2), which indicates 
that the observed chromosomes is G2-PCC of cells arrested in G2 rather than mitosis. G2-

chromosomes (G2-PCC) were moderately damaged by 10 Gy of γ-irradiation, and more 
than 10 substantially recognizable fragments of chromosome 4 were inserted in 
rearranged chromosomes (indicated by arrowheads), as previously reported (Gotoh and 
Asakawa 1996; Gotoh and Tanno 2005; Gotoh et al. 2005). This is also suggests that the 

cells retain repair ability of double strand breaks (DSBs) by γ-irradiation. We expected that 
more than 10 fragmented pieces of chromosome 4 domains can be observe in an 
interphase nucleus after 10 Gy of γ-rays irradiation. 

 

 

Fig. 4. Chromosome painting on a calyculin A induced PCCs at 48 hours after irradiation of 

10 Gy of γ-rays. SpectrumGreenTM labeled specific probe for human chromosome 4 was 

used for detection of chromosomal fragments derived from chromosome 4. Chromosomes 

were counterstained with propidium iodide (PI). Moderate damaged chromosomes 

including long and short size of ones are clearly seen. Arrows indicate many fragmented 

pieces of chromosomes 4 which inserted in rearranged chromosomes. Scale bar : 10 µm. 

(reproduced from Molecular Biology International, Special Issue on “DNA in 3R: Repair, 

Replication, and Recombination”, Gotoh and Asakawa 2011, in press) 

3.3.2 Cell cycle analysis of control peripheral blood lymphocytes (PBLs) after mitogen 
stimulation  
As a control study to identify the cell cycle stage of PBLs after PHA-P stimulation, we 
performed chromosome painting and BrdU incorporation analysis on interphase nuclei of 
peripheral blood lymphocytes (PBLs) without irradiation, which are shown in Figure 5 (left 
column, chromosome painting; right column, BrdU incorporation, reproduced from 
Molecular Biology International, Special Issue on “DNA in 3R: Repair, Replication, and 
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Sampling Time (hours) Dose (Gy) Treatment S PCC (% cell) G2/M phase (% cell) 
*
Interphase  (% cell)

0 0 (control) Calyculin A 0.0 0.0 100.0

Colcemid - 
**

0.0 100.0

10 Calyculin A 0.0 0.0 100.0

Colcemid - 
**

0.0 100.0

24 0 (control) Calyculin A 17.6 0.0 82.4

Colcemid - 
**

0.0 100.0

10 Calyculin A 14.8 0.0 85.2

Colcemid - 
**

0.0 100.0

48 0 (control) Calyculin A 16.3 11.5 72.2

Colcemid - 
**

1.4 98.6

10 Calyculin A 12.1 17.4 70.5

Colcemid - 
**

0.01 99.99

72 0 (control) Calyculin A 11.5 9.7 78.8

Colcemid - 
**

2.4 97.6

10 Calyculin A 9.3 16.1 74.6

Colcemid - 
**

0.2 99.8  

Table 2. Percentage population of PCC or metaphase obtained with calyculin A treatment 

(PCC) or colcemid treatment (metaphase) at different sampling time point after 10Gy of γ-

irradiation. N=200 G2/M-PCC or Mitotic cells are observed in calyculin A or colemid 

treatmented cells, respectively. ** In case of colcemid treatment, S-PCC is not observable. 

(reproduced from Molecular Biology International, Special Issue on „DNA in 3R: Repair, 

Replication, and Recombination“, Gotoh and Asakawa 2011, in press) 

Recombination”, Gotoh and Asakawa 2011, in press). Figure 5a and 5c show two chromosome  

4 domains in interphase nuclei and Figure 5b and 5d are incorporation of BrdU in the cells 

of the same fields at 48 hours after PHA-P stimulation. At 48 hours after PHA-P stimulation, 

many PBL cells entered in S-phase, which was clearly shown by much amount of BrdU 

incorporation as shown by the previous study using Cy3-dUTP labeling cell (Gotoh 2007). 

The BrdU positive cells (proliferating cells) increased nuclear size compared with the BrdU 

negative cells (non-proliferating cells), which suggested the increase of DNA amount as 

DNA replication progressed. Two intact chromosome 4 domains were clearly recognized 

either in BrdU positive larger sized nuclei (enter in S-phase) or BrdU negative small nuclei 

(still in G0/G1-phase). At 72 hours after PHA-P stimulation, further enlarged BrdU positive 

nuclei were seen (Figure 5e-5h), which suggested that DNA replication progressed much 

more. Some nuclei enlarged much more and BrdU was less incorporated, which suggests 

that these cells were already in very late S phase as almost completion of DNA replication. 

One pair of chromosomes 4 stained with painting probe is indicated by arrows (Figure 5i). 

BrdU was not incorporated in the mitotic chromosomes (Figure 5j). The incorporation 

patterns of BrdU in replicating DNA at each cell cycle stage was the similar as described 

previously either using BrdU labeling (Nakamura et al. 1986; O'Keefe et al. 1992) or Cy3-

dUTP labeling (Manders et al. 1999; Gotoh 2007). Two chromosomes 4 domains in a nucleus 

were not fully diffused over the nucleus but they occupy separated spaces each other in an 

interphase nucleus throughout cell cycling (Lengauer et al. 1991; Cremer et al. 1993; Savage 

2000; Aten and Kanaar 2006). 
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Fig. 5. Chromosome painting and incorporation of BrdU incorporation in various cell cycle 
stages of human peripheral blood lymphocytes stimulated with PHA-P.  
Left column (a, c, e, g and i): Chromosome painting using SpectrumOrangeTM labeled 
specific probe for human chromosome 4. Arrows indicate two chromosomes 4 (i) or two 
chromosome 4 domains in interphase nuclei (a, c, e and g). Right column (b, d, f, h and j): 
Incorporation of BrdU in cells in the same field. Incorporated BrdU was detected by FITC 
conjugated anti-BrdU antibody. Cell cycle stage of individual cell is indicated in figures. 
Scale bar: 10 µm. (reproduced from Molecular Biology International, Special Issue on “DNA 
in 3R: Repair, Replication, and Recombination”, Gotoh and Asakawa 2011, in press) 
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3.3.3 Visualizing spatial and temporal dynamics of γ-ray cleaved chromosome 
fragments in interphase nuclei 

We next studied the spatial and temporal distribution of chromosomes 4 domains after γ-rays 
irradiation. Immediately after 10 Gy of γ-irradiation, PBLs were stimulated with T-cell specific 
mitogen PHA-P and cells were harvested at different culture time as control study (every 24 
hour up to 72 hours; usually 48 hours incubation time is enough to obtain sufficient number of 
G2-PCCs even in cells γ-irradiated of 10 Gy). Table 2 (reproduced from Molecular Biology 
International, Special Issue on “DNA in 3R: Repair, Replication, and Recombination”, Gotoh 
and Asakawa 2011, in press) shows the percentage population of PCC or mitotic cell observed 
in calyculin A or colcemid treated cell samples. At 48 or 72 hours after γ-ray irradiation, more 
than 10 % of G2/M PCCs were obtained and chromosomes were highly damaged as shown in 
Figure 4, but number of mitotic cells was very low. As shown in Table 2, control un-irradiated 
human PBLs started cell cycle from G0 and at 48 hours after stimulation, 1.4% of cells reached 
in mitosis but others still in G2 or earlier stages even the case of un-irradiated cells. Therefore, 
the observed chromosome aberration seen in G2-PCCs is before first mitosis after irradiation. 
Figure 6 (reproduced from Molecular Biology International, Special Issue on “DNA in 3R: 
Repair, Replication, and Recombination”, Gotoh and Asakawa 2011, in press) shows the 
dynamics of chromosomal domain transition through the cell cycling. At 24 hours after 
irradiation, mostly cells did not enlarge their size and seemed to be still in G1 stage 
(population of stimulated or un-stimulated cell is shown in Table 2). At this stage, the cells 
showed two intact (un-fragmented) chromosome domains (Table 3, Figure 5a), that is quite the 
same as observed in G0/G1 nuclei of control un-irradiated PBLs cells. At 48 hours after 
irradiation, some cells slight enlarged their size, which suggests that these cells entered in S-
phase. As cell enlarged, two chromosomal domains began slightly enlarged (Figure 5b), but 
still kept in intact form as a control S-phase PBLs nuclei as shown in Figure 4. However, in a 
small population (6.3%) of cells, chromosomal domains seemed somehow coarse appearance 
or rather seemed fragmented (Figure 5c), which suggested that chromosome domains 
fragments started separation and dispersion. Such phenomenon was not totally observed in 
control PBLs. At 72 hours after γ-irradiation (Figure 6d-6f), the number of enlarged cell became 
much more as 60.3%. The degree of separation and dispersion of chromosomal fragments was 
much more clearly in 58.5% of cells as the increase of the cell nuclear size. 
 

Sampling Time(hours

fragmentation (-)fragmentation (+) fragmentation (-) fragmentation (+)

0 100 0 0 0

24 95.4 0 4.6 0

48 42.6 0 51.1 6.3

72 39.7 0 1.8 58.5

Non-ploliferating cells ploliferating (blastcytes) cells

(small sized cell) (enlarged sized cell)

 

Table 3. Population of non-proliferating or proliferating (blastcytes) pheripheral blood 
lymphocyte stimulated by PHA-P, with or without fragmentation of chromosome domain at 
different sampling time after irradiation of 10 Gy of γ-rays were scored. N=200. (reproduced 
from Molecular Biology International, Special Issue on “DNA in 3R: Repair, Replication, and 
Recombination” , Gotoh and Asakawa 2011, in press) 
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Fig. 6. Chromosome 4 painting on nuclei of peripheral blood lymphocytes irradiated with 10 

Gy of γ-rays. Chromosome painting with SpectrumOrangeTM labeled probe for chromosome 
4. (a and b) Arrows indicate chromosome 4 domains. (c) Arrows indicate some of the 
fragments of chromosome 4. Note that the cells not enlarge their size (i.e. G0 arrested cells) 

have two un-fragmented chromosome domains (indicated by arrowheads). (Inset in c) 
Magnifying the white line boxed region, arrows indicate gaps between fragmented 

domains. (d-f) Arrowheads indicate some of the chromosome 4 fragments. Arrowheads in 

Figure 3f indicate two un-fragmented chromosome domains in the cells which not enlarge 

their size (i.e. G0 arrested cells). Scale bar: 10 µm. (reproduced from Molecular Biology 
International, Special Issue on “DNA in 3R: Repair, Replication, and Recombination”, Gotoh 

and Asakawa 2011, in press) 

According to the nuclear size, the degree of condensation of chromosome domain (also 
described by Mukherjee et al. 1992) and the degree of dispersion of the fragments, we could 
order the temporal dynamic series of chromosome domain diffusion as from Figure 6d to 6f. 
Figure 6d shows the further progress moving, dispersion and separation of the fragmented 
chromosome. Furthermore, as shown in Figure 6e, individual small fragmented 
chromosome domain completely separated over the nucleus. At 48 hours after irradiation, 
some cells already reached in G2 stage (Gotoh and Tanno 2005). Figure 6f shows an example 
of calyculin induced G2-PCCs, which clearly shows severely damaged chromosomes. Many 
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pieces of fragmented chromosome 4 were inserted (shown by arrowheads) in highly 
aberrant chromosomes.  

3.3.4 Spatial and temporal transition of chromosome fragment is coupled with DNA 
replication 
We noticed that about 40% of cells did not enlarge their size, which suggested that these 
cells were not proliferated and arrested in G0-stage. These cells might be B-cells, monocytes 
or natural killer cells, which are consist of mononuclear cells in peripheral blood. Because 
we stimulated the MNCs with T-cell specific mitogen PHA-P, the cells except for T-cells 
were not stimulated and thought to arrest in G0 stage. Stimulation failed T-cells also 
involved in this small sized cell population. Surprisingly and unexpectedly, two 
chromosome domains were kept as two un-fragmented (see like as two intact domains) in 
these non-proliferated cells and did not diffuse over the nucleus (indicated by arrowheads 

in Figure 6c and 6f), although these cells must be received the same 10 Gy dose of γ-rays as 
proliferating cells. We did not see any un-stimulated cells having fragmented chromosome 

domain. We therefore hypothesized that spatial and temporal redistribution of γ-irradiated 
chromosome fragments might be coupled with cell proliferation.  
To confirm this hypothesis, we γ-irradiated PBLs as same as the above experiment (i.e. 10 Gy 
of irradiation dose) but stimulation with PHA-P was omitted. At 48 or 72 hours after 
irradiation, more than half of cells were lost presumably because of interphase death caused 
by lack of mitogen stimulation, however some cells were still alive. Figure 7a (reproduced 
from Molecular Biology International, Special Issue on “DNA in 3R: Repair, Replication, and 
Recombination”, Gotoh and Asakawa 2011, in press) shows chromosome painting against 
these un-stimulated cells. The size of cell and nucleus did not increase and the chromosome 
4 domains retained as intact. This finding also seems to support that spatial redistribution of 
fragmented chromosomes in interphase nuclei is tightly coupled with cell cycle. 
We next questioned whether the spatial redistribution of fragmented chromosomes in S-
phase is coupled with DNA replication. We irradiated PBLs with 10 Gy of γ-rays, stimulated 
with PHA, but cellular DNA replication was inhibited by 2 µM of aphidicholin. As the same 
as observed in the irradiation experiment of PBLs without PHA-P stimulation, chromosomal 
domains were kept as un-fragmented, in spite of received 10 Gy dose of γ-ray exposure as 
PHA stimulated cells (Figure 7b). According to these results, we concluded that nuclear 
movement that causes spatial redistribution of the fragments was tightly coupled with cell 
cycling and in particular with DNA replication. 

3.4 Hypothetical model of chromosome repair/recombination coupled with DNA 
replication 
Two possible models have been proposed for explain how chromosome fragments close and 
associate to form radiation-induced rearranged chromosomes. Obviously, radiation-induced 
chromosome fragments must “touch” at some stage of the repair process (Savage 2000). One 
model is that fragmented chromosomes move to contact with another apart from fragment 
after breakage by irradiation (“breakage first” hypothesis or post-dispersal rejoining, Figure 
8 (1) a and Figure 8 (2) a, figures reproduced from Molecular Biology International, Special 
Issue on “DNA in 3R: Repair, Replication, and Recombination”, Gotoh and Asakawa 2011, 
in press). Another model is that fragment association occurs only where close contact 
already exists. Fragments adjacent to another fragment have rejoined each other and moved 
away (“contact first” hypothesis or pre-dispersal rejoining, Figure 8 (1) b and Figure 8 (2) b, 
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Fig. 7. (a) Chromosome painting against 10 Gy dose of γ-irradiated nuclei without 

stimulation by PHA-P, therefore cells yet arrested in G0 at 48 hours after irradiation. Two 

un-fragmented chromosome 4 domains are clearly visible (indicated by arrows). (b) 

Chromosome painting against 10 Gy dose of γ-irradiated cell nuclei, but DNA synthesis was 

inhibited by 2 µM of aphidicholin. Arrows indicate one pair of un-fragmented chromosome 

4 domain. Arrowheads indicate apoptic fragmented nuclei, which is possible caused by 

DNA synthesis inhibition by aphidicholin. Scale bar: 10 µm. (reproduced from Molecular 

Biology International, Special Issue on “DNA in 3R: Repair, Replication, and 

Recombination”, Gotoh and Asakawa 2011, in press) 

figures reproduced from Molecular Biology International, Special Issue on “DNA in 3R: 

Repair, Replication, and Recombination”, Gotoh and Asakawa 2011, in press). In the case of 

the latter model, rejoining might occur limited to among those fragments adjacent to each 

other at G0/Gl phase. Recently accumulated evidences indicate that the radiation-induced 

exchanges cannot be possible between very far apart DNA strand breaks in chromosomes 

(Savage 2000). In the present report, quiescent G0 lymphocytes were γ-irradiated with 10 Gy 

of γ-rays, and chromosome type aberrations (i.e. acentric fragments, di-centric chromosome 

or translocations) are exclusively observed in G2-PCC at either 48 hours or 72 hours after 

irradiation. The reason for formation of chromosome type aberrations in irradiated 

quiescent lymphocytes is that damages were introduced in G0/G1 cell, repair or mis-

rejoining of univalent chromosomes finishes before duplication, then DNA duplicates and 

result in bivalent chromosome type aberrations (Savage 1975). In this context, contact and 

association of cleaved chromosome ends should be finished before the cells enter in S-phase 

for the case of chromosome type aberrations formation. As the chromosome domain 

occupies the fixed space apart away in nucleus until S-phase starts as shown in Figure 5 and 

Figure 6, “breakage-first” hypothesis seems less likely to responsible in chromosome type 

aberration formation. Because chromosome fragment must move before begin of S-phase, 

but chromosome fragment move actually after S-phase starts. Thus the results reported here 

seems strongly support the “contact first” hypothesis in chromosome type aberration  
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Fig. 8. Two models for chromosome cleavage and re-union involving nuclear movement 
progress in interphase nuclei  
(1) Chromosome type aberration. Chromosome type aberration in introduced by DSBs in 
un-replicated univalent chromatid (Savage 1975). Therefore, chromosome domain is 
fragmented by DSBs. (a) Chromosome-end rejoining occurs after dispersion of chromosome 
fragments (post-dispersal rejoining or dynamic “breakage-first” model). In this case, 
chromosomes were cleaved by γ-irradiation and the fragments moved away. Then the 
fragments moved to touch and rejoin with fragmented chromosomes. However, breakage-
first model do not seem likely to happen, because association should be finished before 
chromosome duplication. However, chromosome fragments may not move before DNA 
replication starts. (b) Rejoining occurs before chromosomal fragments dispersed (pre-
dispersal rejoining or static “contact-first” model). In this case, chromosome rejoining occurs 
among the fragments that contact physically at the irradiated time (i.e. G0/Gl phase). Then 
recombined chromosomes moved away.  

formation in γ-irradiated lymphocytes. Nikiforova et al. reported the inversion aberration of 
radiation-induced thyroid cancer (Nikiforova et al. 2000). They concluded that radiation-
induced interchange between RET and H4 gene is presumably due to positional dependent 
and thus supports “contact first” hypothesis. Recently, Durante et al. showed that the 
exchange process was highly depends on chromosome localization in nucleus or 
chromosome aberration was highly dependent on cell position and irradiation geometry 
(Durante et al. 2010). Therefore, their result also seems support the “contact first” 
hypothesis. Contrary, clustering of fragmented domains after irradiation exposure was 

visualized using γH2-AX, which suggesting the “breakage-first” hypothesis is dominant in  
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Fig. 8. Two models for chromosome cleavage and re-union involving nuclear movement 
progress in interphase nuclei  
(2) Chromatid type aberration. Chromatid type aberration is introduced in the cells after S-
phase by the DSBs only one of the sister chromatid of bivalent chromosome (Savage 1975). 
Chromatid does not apart away, because the cleaved chromatid coheres with opposite sister 
chromatid. “Breakage-first” model (a) and “contact-first” (b) model may both responsible in 
chromatid type aberration formation, because the nuclear movement already exists in the 
cells after DNA replication starts. Asterisks (*) indicate the chromosome ends, which will 
later contact and rejoin. Following points are for the simplicity: only one DSBs per 
chromosome are illustrated and indicated by dotted line.  Many types of chromosome or 
chromatid type aberrations are known to be produced after ionizing irradiation exposure, 
but only typical type of aberrations are illustrated. Illustration is shown as a 2-D image for 
simplification, however dispersal and rejoining of chromosome proceed in 3-D, of course. 
(reproduced from Molecular Biology International, Special Issue on “DNA in 3R: Repair, 
Replication, and Recombination”, Gotoh and Asakawa 2011, in press) 

exchange process (Aten et al. 2004). Which mechanism works principle in chromosome ends 
association may be depend on the existence of DNA replication coupled nuclear movement. 
If replication coupled nuclear movement exists (i.e. S-phase or later), both ‘’breakage first’’ 
and “contact first’’ hypothesis may responsible. Aten et al.’s report seems to support this 
idea because they observed exchange formation in α-particle irradiated cycling HeLa cells 
(Aten et al. 2004). On contrast, “contact first’’ hypothesis only may contribute for 
chromosome ends joining if not nuclear movement occurred (i.e. before S-phase). It is, 
however still controversy, which mechanism is dominantly work or both are simultaneously 
occur, and should be elucidated in the future. 
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The finding also implies other aspects as follows: l) Generally it is believed that cycling cells 
are more sensitive to ionizing radiation or other agents that causes DNA strand break. 
Existence of S-phase coupled kinetics that drives fragmented chromosomes diffuse over 
nuclei may be one explanation for such phenomenon. After receiving damages, cell must 
repair the damages. If nuclear movement begin before the damage repaired completely, un-
repaired fragments may be separated away from each other, which gives the cells 
irreversible chromosome aberrations which in turn resulting in cell death or prone cancer. 2) 
By analysis of unstable type chromosomal aberration (such as di-centric chromosome or 
acentric fragment) induced by irradiation, it is known that quiescent PBLs survive more 
than 10 years in vivo (Buckton et al. 1967). PBLs that are not stimulated by foreign antigens 
are thought to be in resting state in vivo for long time. Cleaved DNA fragments are not 
separated and dispersion did not occur until cells enter in S-phase. So the PBL cells at 
resting state are stable and may survive for a long period in vivo. 

4. Summary and conclusion 

To visualize the dynamics of chromosome structure formation coupled with DNA 
replication, Cy3-dUTP direct-labeled active replicating DNA was observed in prematurely 
condensed chromosomes (PCCs) utilized with drug-induced premature chromosome 
condensation (PCC) technique that facilitates the visualization of interphase chromatin as 
well as condensed chromosome form. S-phase PCCs revealed clearly the drastic dynamic 
transition of chromosome formation during S-phase along with the progress of DNA 
replication; from a “cloudy nebula” structure in early S-phase to numerous number of 
“beads on a string” in middle S-phase and finally to “striped arrays of banding structured 
chromosome” in late S-phase like as usual observed  mitotic chromosomes. Drug-induced 
PCC clearly provided the new insight that eukaryote DNA replication tightly coupled with 
the dynamics of chromosome condensation/compaction for construction of eukaryote 
higher ordered chromosome structure. 
To elucidate how and when individual chromosome fragments close and association to form 
rearranged chromosomes in interphase, we next visualized the dynamics of spatial and 

temporal occupation of chromosome 4 domains in γ-irradiated human peripheral blood 
lymphocytes in interphase nuclei and in drug-induced PCCs by means of chromosome 
painting method. After γ-irradiation exposure, breakage and dispersion of chromosome 4 
domains starts when the cells entered in S-phase. This S-phase dependent dynamics was 
however not seen in un-stimulated cells or in the cells of which DNA replication was 
inhibited by aphidicholin. Thus the results seem to support “contact first” hypothesis for 
association of chromosome ends in chromosome type aberration formation. Spatial and 
temporal dynamics of chromosome fragments may tightly coupled with DNA replication, 
and this dynamic might be drive chromosome rearrangement. 
Therefore, these findings presented in this chapter strongly suggested that DNA replication, 
rejoining/recombination and chromosome structure formation are tightly coupled 
mechanism in eukaryote cells. 

5. Condolences 

During preparation of this chapter, an enormously big Earthquake and Tsunami disaster 
attacked Japan 11th March 2011, by which a lot of people have been killed or lost.  I 
lamentably dedicate this article to all of the victims. 
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