
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



3 

Face Recognition Using Frequency  
Domain Feature Extraction Methods  

Gualberto Aguilar, Jesús Olivares,  
Gabriel Sánchez, Héctor Pérez and Enrique Escamilla  

Instituto Politécnico Nacional, SEPI Culhuacan 
México, D.F. 

1. Introduction 

The development of security systems based on biometric features has been a topic of active 
research during the last years, because the recognition of the people identity to access 
control is a fundamental issue in this day. Terrorist attacks happened during the last decade 
have demonstrated that it is indispensable to have reliable security systems in offices, banks, 
airports, etc.; increasing in such way the necessity to develop more reliable methods for 
people recognition. The biometrics systems consist of a group of automated methods for 
recognition or verification of people identity using the physical characteristics or personal 
behavior of the person under analysis.  
In particular, face recognition is a task that humans perform carry out routinely in their 

daily lives. Face recognition is the most common form human beings have of telling one 

another apart. Faces are universal, and they provide a means to differentiate individuals. An 

advantage of biometric face recognition compared to other biometric is the ability to capture 

a facial image with a camera from a distance and without the subject’s knowledge. The face 

recognition has been a topic of active research because the face is the most direct way to 

recognize the people. In addition, the data acquisition of this method consists, simply, of 

taking a picture with or without collaboration of the person under analysis, doing it one of 

the biometric methods with larger acceptance among the users. The face recognition is a 

very complex activity of the human brain. For example, we can recognize hundred of faces 

learned throughout our life and to identify familiar faces at the first sight, even after several 

years of separation, with relative easy. However it is not a simple task for a computer. Thus 

to develop high performance face recognition systems, we must to develop accurate feature 

extraction and classification methods, because, as happens with any pattern recognition 

algorithm, the performance of a face recognition algorithm strongly depends on the feature 

extraction method and the classification systems used to carry out the face recognition task. 

Thus several feature extraction methods for using in face recognition systems have been 

proposed during the last decades, which achieve high accurate recognition. Among the 

situations that drastically decrease the accuracy and that must be considered to develop 

high performance face recognition method we have: partial occlusion, illumination 

variations, size change, rotation and translation of the capture image, etc. To solve these 

problems several efficient feature extraction methods have been proposed, several of them 
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using frequency domain transforms such as Discrete Gabor Transform, Discrete Cosine 

Transform, Discrete Wavelet Transform, etc.  

The face image as biometric feature has very high intra-person variations comparing with 
other features, such as iris pattern and fingerprints (Reid, 2004). These variations make the 
face recognition a very difficult task (Chellappa, Wilson and Sirohey, 1995). However 
because its advantages are overcome the potential disadvantages, several face recognition 
algorithms have been proposed to solve the still remaining problems. Thus during the last 
years have been proposed template-based face recognition methods (Brunelli, Poggio, 1993), 
face recognition using eigenfaces methods (Turk and Pentland, 1991; Moghaddam, Wahid 
and Pentland, 1998), Bayesian algorithms (Chellappa, Wilson and Sirohey, 1995), geometric 
feature based methods (Smith, 2002; Tanaka, Ikeda and Chiaki, 1998) and Walsh transform 
based algorithms (Yoshida, Kamio and Asai, 2003; Shanks, 1969), etc. Other related systems 
that also have been applied are face region locating method proposed in (Baron, 1981), the 
deformable model proposed in (Lanitis, Taylor and Cootes, 1995) and face recognition 
methods using the Karhunen-Loeve transform (Kirby and Sirovich, 1990), etc. Recently 
several authors have proposed the combination of different features to improve the face 
recognition rate (Hallinan, Gordon, Yullie, Gablin and Mumford, 1999). On the other hand, 
the discrete Gabor Transform, that presents some relation with the human visual system, 
has been successfully used in several applications such as fingerprint enhancement (Hong, 
Wan and Jain, 1998), signature recognition (Cruz, Reyes, Nakano and Perez, 2004), image 
compression (Daugman, 1988), etc. 
In this chapter, several frequency domain feature extraction methods based on the Discrete 

Gabor Transform, Discrete Wavelet Transform, Discrete Cosine Transform, Discrete Walsh-

Hadamard Transform, Eigenfaces, and Eigenphases are analyzed. These feature extraction 

methods are used with different classifiers such as artificial neural networks (ANN), 

Gaussian Mixture Models (GMM) and Support vector machines (SVM) to evaluate each 

method. 

2. Face recognition algorithms 

The face recognition systems can perform either, face identification and identity verification 

tasks. In the first case the system output provides the identity of the person with highest 

probability, while in the second case the system determines is the person is whom he/she 

claims to be. In general, in both cases consists of three modules: face detection, feature 

extraction, and matching. Face detection separates the face area from background. Feature 

extraction is performed to provide effective information that is useful for distinguishing 

between faces of different persons. In the identification process, for face matching, the 

extracted feature vector of the input face is matched against those of enrolled face in the 

database. In the verification process, the extracted feature vector of the input face is matched 

against versus one feature vector. Face recognition percentages depend too much on 

features that are extracted to represent the input face.  

2.1 Discrete Gabor transform 

To estimate the features vector, firstly the NM captured image is divided in MxMy receptive 

fields each one of size (2Nx+1)(2Ny+1), where Nx=(N-Mx)/2Mx, Ny=(M- My)/2My. This 

fact allows that the features vector size be independent of the captured image size.  

www.intechopen.com



 
Face Recognition Using Frequency Domain Feature Extraction Methods 

 

37 

 

Fig. 1. a) Original image b) Nx*Ny receptive fields and central points estimation (x,y)  

Next, the central point of each receptive field whose coordinates are given by (ci,dk), where 
i=1,2,..,Nx y k=1,2,3,...,Ny, are estimated. Subsequently the first point of the cross-correlation 

between each receptive field and the NN Gabor functions are estimated using eqs. (1)-(4), 

where N denotes the number of normalized radial frequencies and N the number of angle 
phases as follows: 

 ' ' ' ' ' '( , , ) ( , )(cos ( ) sin ( ))m n n n m n n m n nw x y w g x y w x y j w x y      (1) 

where m=1,2,...,N( and n=1,2,3,.., N, mw   is the m-th normalized radial frequency, 
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is the Gaussian function, σ2 is the radial bandwidth, λ is Gaussian shape factor and ( '
nx , '

ny ) 

is the position of the pixel (x,y) rotated by an angle n as follows 

     ' '( , ) cos sin , sin cosn n n n n nx y x y x y        (3) 

Thus the cross-correlation between the Gabor functions, given by eqs. (1)-(3), with each 
receptive field can be estimated as 

 ( , ) ( , ) ( , , , )
NyNx

i k m n
x Nx y Ny

h u v I x c y d w x y  
 

     (4) 

where u=My*(i-1)+k and v=N(m-1)+n. Next, to avoid complex valued data in the features 
vector we can use the fact that the magnitude of h(u,v) presents a great similarity with the 
behavior of the complex cells of the human visual system. Thus the magnitude of h(u,v) 
could be used instead of its complex value. However, as shown in eq.(4) the number of 

elements in the features vector is still so large even for small values of Mx, My, N y N. 
Thus to reduce the number of elements in the features vector, we can average h(u,v) to 
obtain the proposed features vector M(u) which is given by 

 
1

1
( ) ( , )

Nv

v

M u h u v
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   (5) 
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where Nv=NN. Figure 2 illustrates the results of this method. One can see that for the 
same person with different rotations the feature vector has a similarity, but with another 
person is very different. 
 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 

 
 
 

 
 

a) 

 
 

b) 

 
 

c) 

Fig. 2. a) Original images, b) Estimated features vectors, c) Features extracted from each 
receptive field h(u,v). 

2.1.1 Results  

To evaluate this method two different databases were used. “The AR Face Database”, which 

includes face images with several different illuminations, facial expression and partial 

occluded face images with transparent eyeglasses, dark eyeglasses and scarf, etc. and the 

“ORL database”, created by Olivetti Research Laboratories in Cambridge UK. A 

Backpropagation neuronal network was trained with feature vectors of 50 face images and 

tested with feature vectors of 72 face images that were not used in the training process. To 

carry out the personal verification using face images with different ages, the neural network 

was trained with feature vectors extracted from 10 different images and evaluated using 

feature vectors extracted from 24 images do not used in training process. The evaluation 

results, under the above mentioned conditions are shown in Table 1. 
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Identification Percentage Verification Percentage 

85.6% 99.3% 

Table 1. Results using Discrete Gabor Transform 

2.2 Discrete Cosine Transform 

The DCT is used in many standard image compression and stationary video as the JPEG 
and MPEG, because it presents excellent properties in codifying the outlines of the images 
that, in fact, has been one of the main reasons to be selected into almost all the coding 
standards. The cosine transform, like the Fourier transform, uses sinusoidal basis functions. 
The difference is that the cosine transform basis functions are not complex; they use only 
cosine functions and not sine functions (Scott, 1999). 2D DCT based features are sensitive to 
changes in the illumination direction (Conrad, Kuldip, 2003). The idea of using the 
transform for facial features extraction is summarized as follows: the given face image is 
analyzed on block by block basis given an image block I(x, y), where x,y = 0,1,..., Np−1, and 
result is an Np x Np matrix C(u,v) containing 2D DCT coefficients. The DCT equations are 
given by formulas (6-9) below: 
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To ensure adequate representation of the image, each block overlaps its horizontally and 
vertically neighboring blocks by 50%, thus for an image which has Ny rows and Nx 
columns, there are ND blocks found by following formula: 

 (2( / ) 1) * (2( / ) 1)DN Ny Np Nx Np    (9) 

Compared to other transforms, DCT has the advantages of having been implemented in a 
single integrated circuit because of input independency, packing the most information into 
the fewest coefficients for most natural images, and minimizing block like appearance 
(Feichtinger and Strohmer, 1998; Kamio, Ninomiya, and Asai, 1994). An additional 
advantage of DCT is that most DCT coefficients on real world images turn out to be very 
small in magnitude (Feichtinger and Strohmer, 1998). 
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Fig. 3. a) Original image, b) Reducing image, c) Spectrum of a block, d) Feature vector 

 

 
 
 

 
 

 
 
 

 
 

 
 
 

a) 

 
 

b) 

Fig. 4. a) Original images, b) Feature vectors. 

Figure 3 shows an example. Figure 3a shows the input image. Figure 3b shows the 
frequency coefficients in a block of 8 x 8 and finally Figure 3c shows the characteristic vector 
of the face. To form the feature vector, in each block were selected the first 10 coefficients in 
zig-zag to be later concatenated. Figure 4 shows the feature vectors using DCT. One can see 
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that for the same person with different distance the feature vector has a similarity, but with 
another person is very different. 

2.2.1 Results  

To evaluate this method were used the same conditions mentioned for Gabor’s method. The 
results are shown in table 2. 
 

Identification Percentage Verification Percentage 

79.7 % 95.1% 

Table 2. Results using Discrete Cosine Transform 

2.3 Discrete Walsh Transform   

The discrete Walsh transform (DWT) is one of the most important techniques as well as 
the discrete Fourier transform in the field of signal processing (Kamio, Ninomiya and 
Asai, 1994; Mar and Sheng, 1973). The DWT works well for digital signals due to the 
fundamental function called the Walsh function. The Walsh function has only +/- 1, and 
is the system of orthogonal functions. In general, the Walsh function can be generated by 
the Kronecker’s product of the Hadamard matrix H’s. First, the 2-by-2 Hadamard matrix 
H2 is defined by 

 2H
  

    
 (10) 

where the symbols + and – mean +1 and -1, respectively. Furthermore, calculating the 

Kronecker’s product between two H2’s, the 4-by-4 Hadamard matrix H4 is easily given as 

follow: 

 2 2
4 2 2

2 2

H H
H H H

H H

    
                       
     

 (11) 

where the symbol ⊗ indicates the Kronecker’s product. The Hadamard matrix can give the 

frequency characteristics. Along each row of the Hadamard matrix, the number of changes 

in sign expresses the frequency. The number of changes is called “sequence”. The sequence 

has the characteristics similar to the frequency. The Walsh function can be expressed as each 

row of HN, where N is order on Hadamard matrix. Therefore, DWT is known as a kind of 

the Hadamard transform, where HN has some useful following characteristics. Thus, the 

DWT and the inverse DWT are defined as follows: 

 

1
NV H B

N


 (12) 

 B H
N
V  (13) 
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where B is the sampled data vector, HN is the Hadamard matrix, i.e. Hadamard-ordered 
Walsh functions. V is the DWT of B. V is called Walsh spectrum. The 2D-DWT does the 
DWT toward the images of m-by-n pixels. The 2D-DWT and the 2D-IDWT are defined as 
follows:  

 

1
M NF H fH

MN


 (14) 

 M Nf H FH  (15) 

where f is the sample data matrix and F is the 2D-DWT of f. F is called 2-dimensional Walsh 
spectrum. In case of orthogonal transform of the image, the 2D-DWT is more efficient than 
the DWT. However, to use 2D-DWT, the row and column numbers of sample data, matrix 
must be 2n (n is a natural number) respectively, because Hadamard matrix can be generated 
by the Kronecker’s product of Hadamard matrix H2. 
 

 
a) 

 
b) 

 
c) 

Fig. 5. a) Original image, b) Spectrum of a block, c) Feature vector 

 

 
 

 
 

 
 

 
 

Fig. 6. Input images and features vectors of the same person. 

Figure 5 shows the input image, the frequency coefficients in a block of 8 x 8 and the feature 
vector respectively. Figure 6 shows two images of one same person but with different 
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rotation. The feature vectors have a very similar despite the change and the figure 7 shows 
that the feature vectors change significantly when the input faces are different people. 
 

 
 

 
 

 
 

 

Fig. 7. Input images and features vectors of the same person. 

2.3.1 Results  

To evaluate this method were used the same conditions mentioned for Gabor’s method. The 
results are shown in table 3. 
 

Identification Percentage Verification Percentage 

76.2 % 90.3% 

Table 3. Results using Discrete Walsh Transform 

2.4 Eigenfaces  

The objective of the recognition by the Eigenfaces method is to extract relevant information 
from face image, encode this information as efficiently as possible and compare them with 
each model stored in a database. In mathematical terms, we wish to find the principal 
components of the distribution of faces, or the eigenvectors of the covariance matrix of the 
set of face images (Smith, 2002). 
The idea of using eigenfaces was motivated by a technique developed by Sirovich and Kirby 
(Sirovich and Kirby, 1987) for efficiently representing pictures of faces using principal 
component analysis. They argued that a collection of face images can be approximately 
reconstructed by storing a small collection of weights for each face and a small set of 
standard pictures. 
The Eigenfaces computation is as follows: Let the training set of face images be 

1 2 3, , ,..., M    . The average face of the set is defined by  

 
1

1 M

n
nM 

    (16) 
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Each face differs from the average by the vector  

 n n     (17) 

 

 

Fig. 8. a) Average face. b) Eigenfaces 

The set of very large vectors is then subject to principal component analysis, which seeks a 

set of M orthonormal vectors n and their associated eigenvalues k which best describes the 

distribution of the data. The vectors k and scalars k are the eigenvectors and eigenvalues, 
respectively, of the covariance matrix 

 
1

1 M T T
n nn

C AA
M

 


 
 (18) 

where the matrix 1 2[ ... ]MA    , AT is a transposed matrix. The matrix C, however, is N2 by 

N2, and determining the N2 eigenvectors and eigenvalues is an intractable task for typical 
image sizes. We need a computationally feasible method to find these eigenvectors. 
Fortunately we can determine the eigenvectors by first solving a much smaller M by M 
matrix problem, and taking linear combinations of the resulting vectors. 

Consider the eigenvectors n of ATA such that   

 T
n n nA Av v  (19) 

Premultiplying both sides by A, we have 

 T
n n nAA Av Av  (20) 

from which we see that An are the eigenvectors of C = AAT Following this analysis, we 

construct the M by M matrix L = ATA, where ,
T

m n m nL     , and find the M eigenvectors n 

www.intechopen.com



 
Face Recognition Using Frequency Domain Feature Extraction Methods 

 

45 

of L. These vectors determine linear combinations of the M training set face images to form 

the eigenfaces un 

 
1

, 1,...,
M

n nk k n
k

u v An n M


    (21) 

With this analysis the calculations are greatly reduced, from the order of the number of 
pixels in the images (N2) to the order of the number of images in the training set (M). In 
practice, the training set of face images will be relatively small (M<<N2), and the 
calculations become quite manageable. The associated eigenvalues allow us to rank the 
eigenvectors according to their usefulness in characterizing the variation among the images. 
 

 
 

 
 

 

Fig. 9. Face and feature vectors of the same person. 

Once the Eigenfaces have been calculated, the image is projected onto "face space" by a 
simple operation, 

 ( )n nu     (22) 

for n=1,....,M. This describes a set of point-by-point image multiplications and summations. 
Some Eigenfaces are shown in figure 8b. 

The weights form a vector 1 2[ , ,..., ]T
M     that describes the contribution of each 

eigenface in representing the input face image, treating the eigenfaces as a basis set for face 

images. Finally, the simplest method for determining which face class provides the best 

description of an input face image is to find the face class k that minimizes the Euclidian 

distance 

 
22

k k     (23) 

where k is a vector describing the kth face class. Figure 9 shows the feature vectors of the 
same person with different rotation using the Eigenfaces method. 
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Figure 10 shows the feature vectors of different people using the Eigenfaces method. 
 

 
 

 
 

 
 

 

Fig. 10. Images of different people and their feature vectors. 

2.4.1 Results  

To evaluate this method were used the same conditions mentioned for Gabor’s method. The 
results are shown in table 4. 
 

Identification Percentage Verification Percentage 

83 % 99.6% 

Table 4. Results using Eigenfaces 

2.5 Discrete Wavelet Transform  

The Discrete Wavelet Transform (DWT) is a special case of the WT that provides a compact 
representation of a signal in time and frequency that can be computed efficiently it is easy to 
implement and reduces the computation time and resources required. Wavelet transform 
(WT) has been widely applied to engineering fields, including signal and image processing, 
geophysical signal processing, computer vision and encoding, speech synthesis and 
analysis, signal singularity detection and spectrum estimation, pattern recognition quantum 
physics, hydrodynamics, fractal and chaos theory, etc. The wavelet theory adopts gradually 
precise step sizes of time domain or space domain for high frequency, and thus can focus on 
any details of an analyzed target. 
The DWT of a given signal x is estimated by passing it through a series of low pass and high 
pass filters (Fig. 11). First the samples are passed through a low pass filter with impulse 
response g(n,m) resulting in a convolution of the two. The signal is also decomposed 
simultaneously using a high-pass filter h(n,m). The detail coefficients are the high-pass filter 
outputs and the approximation coefficients are the low-pass ones. It is important that the 
two filters, related to each other, are known as a quadrature mirror filter. However, since 
half the frequencies of the signal have now been removed, half the samples can be discarded 
according to Nyquist’s rule. The filter outputs are: 
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 ( , ) ( . ) (2 ,2 )LOW
j k
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     (24) 

 ( , ) ( , ) (2 ,2 )HIGH
j k

Y n m x n m h n k m j
 

     (25) 

This decomposition reduces the spatial resolution since only a quarter of each filter output 
allows characterizing the face image.  However, because each output has bandwidth equal 
to a quarter of the original one, the output image can be decimated to reduce the image size. 
 

 

Fig. 11. 3 level wavelet decomposition 

Here only the approximation coefficients are used to characterize the face image.  This 
decomposition is repeated to further increase the frequency resolution and the 
approximation coefficients decomposed with high and low pass filters and then down-
sampled. This is represented as a binary tree with nodes representing a sub-space with 
different time-frequency localization. The tree is known as a filter bank. At each level in the 
above diagram the signal is decomposed into low and high frequencies. Due to the 
decomposition process the input signal must be a multiple of 2n where n is the number of 
levels.   

2.5.1 Results  

To evaluate this method was used a SVM classifier. The feature vectors of training images 

obtained as mentioned above are applied to a SVM to obtain the optimal model of each 

class; these models are used in the classification stage. Where the input of each one is the 

feature vector of the face to classify and the output is an approximation of each model. 

Since the support vector machine is a supervised system, it needs a smaller amount of 
information in the training stage to obtain a model capable of separating the classes 
successfully. 
To evaluate this methods “The AR Face Database” was used, which has a total of 5,670 face 

images of 120 people (65 men and 55 women) that includes face images with several 

different illuminations, facial expression and partial occluded face images with sunglasses 

and scarf. The training set consists of images with and without occlusions, as well as 

illumination and expressions variations. Here the occlusions are a result of using sunglasses 

and scarf. These images sets and the remaining images of the AR face database are used for 

testing. The results are shown in table 5. 
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Identification Percentage Verification Percentage 

92.5 % 99.2% 

Table 5. Results using Discrete Wavelet Transform 

2.6 Eigenphases  

Oppenheim et al (Oppenheim, 1981) have shown that phase information of an image retains 
the most of the intelligibility of an image. This is also demonstrated by Oppenheim’s 
experiment shown in Figure 12. 
Their research also shows that given just the phase spectrum of an image, one can 

reconstruct the original image up to a scale factor, thus phase information is the most 

important in representing a 2D signal in the Fourier domain. We have taken two face 

images; one from person 1 and one from person 2 as shown. The Fourier transform of both 

images were computed, and the respective phase spectrum and magnitude spectrum were 

extracted. We then synthesized new frequency array using the phase spectrum of person 1 

combined with the magnitude spectrum from person 2. Similarly we took the phase 

spectrum from person 1 and combined it with the magnitude spectrum of person 2. We 

observe, that the synthesized face images closely resemble the face image from which the 

corresponding phase spectrum was extracted from, thus supporting the proposition that 

phase spectrum contains most of the intelligibility of images.  

Since we have established that the complex phase spectrum contains most of the image 
information, it seems logical to seek to model the image variation by modeling the variation 
in the phase spectrum of a given sequence of training images.  
 

 

Fig. 12. Oppenheim’s experiment. 

To perform the face classification task, a PCA (Smith, 2002) is used to obtain the main 

characteristics of the faces training. Figure 13 shows the process: 

Image 1, Image 2...Image N in Figure 13 are the phase spectrum of the training faces. In 

training phase, basis vectors are obtained by PCA. In the testing phase, the basis vectors 

obtained in training phase are used to extract the features for a classifier. 
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Fig. 13. Feature extraction by PCA 

This method per- forms well although the recognition performance can be de- graded in the 
presence of illumination variations and partial face occlusions. 
Figure 14 shows the features vector obtained using Eigenphases. The vectors of the same 
person with different illumination show similitude.  
 

 
 

 
 

 
 

 

Fig. 14. Features vectors. 

In this method a histogram equalization stage was proposed. Histogram equalization is a 
method in image processing for contrast adjustment. This method usually increases the 
global contrast of many images, especially when the usable data of the image is represented 
by close contrast values. Through this adjustment, the intensities can be better distributed 
on the histogram. The method is useful in images with backgrounds and foregrounds that 
are both bright and dark. 
Histogram equalization was performed in 5 different ways: 
Global equalization of the image and obtain the phase spectrum of the complete image 
(Global EQ) 
Perform a local equalization of the image using windows of size 3 × 3 and obtain the phase 
spectrum of the complete image (Local 3) 
Perform a local equalization of the image using windows of size 6 × 6 and obtain the phase 
spectrum of the complete image (Local 6) 
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Equalization of the image and estimate the phase spectrum locally using windows of size 3 
× 3 (Local Fourier 3) 
Equalization of the image and estimate the phase spectrum locally using windows of size 6 
× 6 (Local Fourier 6) 
The histogram equalization is obtained by: 

 0 1 2 1k
r k

n
p (r ) k , , ,...,L

MN
     (26) 

where pr is the probability that an intensity occurs rk, nk is the number of times the pixel 
with intensity k appearing in the picture and M and N is the number of rows and columns 
in the original image. To compute the output of the histogram equalization, the following 
equation is used: 

 
0

1 0 1 2 1
k

k r j
j

s (L ) p (r ) k , , ,...,L


     (27) 

where L is the gray scale. 

2.6.1 Results  

To evaluate this method were used the same conditions mentioned for Wavelet’s method. 

The results are shown in table 6. 

 

Identification Percentage Verification Percentage 

87.5 % 99% 

Table 6. Results using Eigenphases 

 

Method Identification Percentage False acceptance False reject 

E.G 87.24 % 0.07% 4.66% 

Local 3 87.58 % 0.03% 7.65% 

Local 6 86.95 % 0.01% 8.93% 

Local Fourier 3 89.57% 0.29% 0.8% 

Local Fourier 6 89.37% 0.68% 0.52% 

Table 7. Results using Histogram equalization 

3. Conclusion 

In this chapter several frequency domain feature extraction methods were analyzed. The 
feature vectors are then fed into a classifier, for example a multilayer neural network 
(ANN), Gaussian Mixture Models (GMM) or Support vector machines (SVM) to recognize 
the face image. 
A modification to the Eigenphases algorithm was proposed based on the Histogram 
Equalization and the Phase Spectrum of an image. Also a method that allows that the 
features vector size can be independent of the captured image size was proposed for Gabor 
method. 
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The evaluation of some methods for feature extraction show that the some vectors are 

robust against changes in illumination, wardrobe, facial expressions and additive noise, 

blurred images (filters), resizing, shifting and even with some age changes. Therefore, the 

identity verification system could verify correctly the input face images with different 

illumination level, different facial expression, with some accessories, as well as when the 

face images pass through some common image processing such as filtering, contamination 

by noise and geometrical transformation (rotating, shifting, resizing).  

The combination of methods to obtain the feature vector, such as Gabor and Eigenfaces, 

could deliver a higher percentage of recognition. Finally, we can emphasize some 

advantages of the Frequency Domain Feature Extraction Methods: Compact extraction of 

the face information, easy implementation, robustness against several condition changes 

and fast processing. 
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