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1. Introduction  

The number of catheter associated urinary tract infections (CAUTIs) increases every year. 
The increasing number of CAUTIs bears on fact that urinary catheters became second most 
often used foreign body inserted into human body. Over 40% of nosocomial infections are 
infections of urinary tract, especially infections of catheterised patients (Gorman & Jones, 
1991). Despite good aseptic management, circa 50% of patients have bacteriuria in first  
10–14 days of catheterisation (Morris & Stickler, 1998). The risk of urinary tract infections is 
significantly higher in long-term inserted catheters (28 days); the percentage of infected 
catheters in these patients gets near to 100% (Morris & Stickler 1998).  
The high number of CAUTIs is associated with biofilm mode of growth of microbes. The 
biofilm mode of growth is advantageous from several reasons. The artificial surface of the 
implants facilitates adhesion of bacteria, which can therefore form biofilm. The bacteria in 
biofilm are protected against drying, mechanical damage and other influences of the outer 
environment. In the human body the bacteria in biofilm are protected against the immunity 
system and antibiotic treatment (Stewart & Costerton, 2001). The higher resistance of biofilm 
bacteria to antimicrobials is a serious problem and the reason of common therapy failure. The 
extracellular polysaccharide matrix plays the key role in the resistance of biofilm to the 
antibiotics. It prevents the diffusion of the antibiotics to the bacterial cells, it is the reason of the 
higher concentration of antibiotic-reducing enzymes in the bacterial surroundings and it 
partakes on the change of microenvironment in the deeper layers of biofilm. These features 
play an important role in antibiotics resistance because the low pH reduces effect of some 
antibiotics (such as aminoglycosides) and the nutrition and oxygen deficiency leads to the 
growth stasis of bacteria (e.g. the beta-lactam antibiotics become ineffective).  
The biofilms grow easily also on the surface of other implants, such as venous, prosthetic of 
heart valves, orthopaedic devices etc. (Stewart et al., 2001). It’s estimated, that biofilms are 
associated with about 65 % of nosocomial infections (Licking 1999). 
With the inserted catheter, the bacteria can more easily attack urinary tract and urinary 
bladder (Tunney et al., 1999). There are also other complications that are linked with 
bacterial colonisation of urinary tract and catheters, e.g. blockage of catheters with crystallic 
deposits of bacterial origin, generation of gravels and pyelonephritis (Gorman & Tunney, 
1997). The obstruction of the urine flow in catheters with crystallic deposits meets circa 
50% of long-term catheterised patients; and there is no method of prevention of these 
deposits nowadays. Except of crystallic deposits that are result of metabolic dysfunction, 
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there are also crystallic deposits of bacterial origin, caused mainly by urease-positive species 
of bacteria. The bacteria account to 15-20% of all gravels and these gravels are often 
connected with biofilm colonisation of long-term inserted urinary catheter or stent.  

1.1 Colonisation of urinary catheters with biofilm-positive microbes 
Adhesion of bacteria to the catheter depends on many factors, e.g. surface charge, 
hydrophobicity or hydrophility of the catheter and bacterial cell, on specific genes for 
adhesion etc. (Liedl, 2001). The risk of infection depends on the length of catheterisation and 
catheter management.  

1.1.1 Intermittent catheterisation and risk of urinary infections 
In patients with single or intermittent catheterisation is the risk of UTI significantly lower in 

comparison with indwelling catheters (Gorman & Jones, 1991). Many studies showed that 

intermittent catheterisation decreases risk of UTI up to 50% in comparison with indwelling 

catheterisation and is the preferred method of bladder drainage (Perkas & Giroux, 1993; de 

Ruz et al., 2000; Larsen et al., 1997; and others). However, intermittent catheterisation can be 

cause of urethral trauma or stricture, hematuria, epididymitis in men, and other 

complications. As far as sterile intermittent catheterisation (SIC) and clean intermittent 

catheterisation (CIC) are concerned, the US National Institute on Disability and 

Rehabilitation Research published that the CIC does not pose a greater risk of infection than 

SIC and is much more economic (NIDRR, 1993). Many studies reported CIC to be as safe as 

SIC (Lemke et al., 2005; King et al., 1992; and others) and the CIC is widely accepted to be 

appropriate method of catheterisation. However, the SIC is essential in the hospital setting 

because of the presence of wide spectrum highly antibiotic-resistant pathogens.   
The bacteria that are present in the bladder during intermittent catheterisation reach only low 
numbers and the stream of the urine does not allow them to adhere. It is assumed, that most of 
the bacteria are flushed away with the urine and the rest is killed by immune system.  

1.1.2 Long-therm catheterisation and risk of urinary infections 
The presence of catheter in urinary tract facilitates the bacterial adhesion and colonisation of 
this niche. The permanent presence of artificial surface help bacteria to colonise the urinary 
system in the short- and long-term indwelling catheters. 
In long-term catheterised patients (weeks or longer), e.g. in patients with chronic urinary 
incontinence, chronic obstruction of urinary tract or neurogenic urinary bladder, the 
bacteriuria is common; the number of bacteria in one millilitre of the urine is commonly 
higher that 105 (Mobley & Warren, 1987). Nevertheless, the CAUTI are rarely associated 
with significant clinical symptoms and more than 90% of these infections are asymptomatic 
(Tambyah & Maki, 2000). It is widely accepted that such colonisation of the catheter 
(without signs of pyelonephritis or septicaemia) is not necessary to treat (Warren, 1994). The 
colonisation of the catheter often cannot be proved by common cultivation of catheterised 
urine, but it can be proved by the cultivation of extracted catheter. The results of the study 
of Farsi et al. (1995) show the difference between bacteriuria (present only in 30% of 
patients) and real colonisation of the catheter (present in 68% of the same set of patients). 
There are three main ways, how the bacteria can reach the urinary bladder of long-term 
catheterised patients – bringing the bacterial contamination during insertion of the catheter; 
extraluminar migration of the bacteria present in urethra; and migration of bacteria in the 
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lumen of the catheter from contaminated drainage system. The intraluminar invasion to the 
urinary tract is faster (32-48 hrs) in comparison with extraluminar (72-168 hrs). The 
intraluminar upstream movement of Pseudomonas aeruginosa was 1-2 cm per hour (Nickel 
et al., 1985).  
The longer has the patient catheter, the higher diversity shows the biofilm microflora. 
Catheter infections of urinary tract are caused most commonly by faecal microflora - gram-
negative rods (Escherichia coli, Klebsiella pneumoniae, Enterobacter sp., Pseudomonas aeruginosa, 
Proteus mirabilis etc.) and enterococci (esp. Enterococcus faecalis) (Tenke et al., 2006). Less 
often the urinary infections cause other species of bacteria, e.g. Staphylococcus epidermidis, 
Streptococcus agalactiae, and yeasts (Candida albicans). Higher pathogenicity of these microbes 
is caused by the presence of many virulence factors, esp. the ability to form biofilm, the 
ability to co-aggregate or ability to withstand effect of antibiotics. Some of uropathogenic 
bacteria, those with hydrophobic surface, adhere better to hydrophobic materials of 
catheters (e.g. Enteroccus faecalis), some other, which are rather hydrophilic, adhere better to 
hydrophilic surfaces of catheters (e.g. Escherichia coli). 
The diversity of the microbial biofilm can be shown by the use of sonication techniques, as 
discussed further. The sonication of catheters followed by isolation, determination and 
biofilm assessment of particular microbial strains can discriminate particular causative 
agents of infections of urinary tract and their importance as biofilm-formers in the microbial 
community of the urinary catheter. The examination of other virulence factors, e.g. different 
types of motility, urease production etc., also helps with interpretation of importance of 
particular strains.  

1.2 Bacterial encrustation and mineralization of biofilm on catheters 
Clinical complication of the CAUTIs is obstruction of the urinary flow in the catheters by 
crystallic deposits. The problem of crystallic deposits meet c. 50% of long-term catheterised 
patients (Getliffe & Mulhall, 1991); and there is no method of prevention of these deposits 
nowadays (Stickler et al., 2002). The manipulation with the catheter with crystallic deposits, 
thus even its removal, traumatizes the mucosa of the urinary bladder and urethra which 
helps to further bacterial colonisation of the mucosa of urinary tract. 
Crystallic deposits can evolve by several mechanisms in the urinary tract, and be of different 
composition. In practice there are five types of crystallic deposits. There are deposits on the 
basis of uric acid, calcium oxalate, calcium phosphate, cystine, and magnesium ammonium 
phosphate (MgNH4PO4*6H2O). Calcium phosphate encrustation may present as brushite 
(CaHPO4), hydroxyapatite [Ca10(PO4)6(OH)2], or carbonate-apatite [Ca10(PO4)6CO3] 
complexes. The first four types listed are often referred to as metabolic encrustation, as they 
normally result from metabolic dysfunction, whereas magnesium ammonium phosphate 
encrustation (struvite) has an infectious origin (Tunney et al. 1999, as cited in 
Gorman & Jones 2003). Urinary stones of microbial origin are often associated with long-
term inserted catheters and form approx. 15 – 20% of all urinary stones. 
Morris & Stickler (1998) described origin of microbial crystallic deposits by several phases:  

 Infection of urinary tract by urease-positive bacteria 

 Bacterial adhesion to the catheter surface and biofilm formation 

 Increase of the pH of the urine by reason of present bacteria 

 Chemical interactions of negatively charged matrix of the biofilm with positively 
charged ions of magnesium and calcium 

 Crystallization of calcium and magnesium phosphates 
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One of the factors, leading to the urinary stone formation, is colonisation of the catheter by 
urease-positive bacteria (Cox et al., 1989; Morris et al., 1999). Urease, main reason of 
incrustations on the catheters, is produced by approx. 200 bacterial species. From the point 
of view of the CAUTIs, the most clinically significant are Proteus vulgaris (urease produce 
>90% of strains), Morganella morganii (>90%), Providencia stuarti (>90%), Klebsiella pneumoniae 
(>60%), Pseudomonas aeruginosa (>30%) and Serratia marcescens (~29%).  
The present urease hydrolyses urea and increases pH of urine. Urine analysis of patients 
with heavy mineral deposits showed its increased pH. The magnesium ammonium 
phosphate and hydroxyapatite were present in higher amounts (Keane et al., 1994). 
Chemically, the change of urine pH and formation of crystallic deposits has several steps 
(Griffith 1978, as cited in Gorman & Jones, 2003). The urease hydrolyses urea and catalyses 
formation of ammonium and carbon dioxide (1). The ammonium becomes ammonium ion 
in neutral or slightly acidic pH (pH of normal urine); which induces alcalization of the 
urine (2). Carbon dioxide reacts with water and forms carbonic acid (3). Depending on the 
pH of the urine, the carbonic acid may dissociate (4). 

 NH2CONH2 + H2O  2NH3 + CO2  (1) 

 NH3 + H2O  NH4
+
 + OH 

-
  (2) 

 CO2 + H2O  H2CO3  (3) 

 H2CO3 ↔ HCO3
-
+ H

+
 ↔ CO3

2-
 + H

+
 (4) 

Production of ammonium leads to increase of pH and precipitation of poorly soluble 

magnesium and calcium salts in form of magnesium ammonium phosphate, 

hydroxyapatite, and carbonite apatite, which leads to crystalline formation 

(Gorman & Tunney, 1997; McLean et al., 1991). The mineral deposits, formed on the basis of 

microbial infection, are mineralised biofilms, so the process of biofilm formation is also 

process of crystalline deposits formation.  Urethral stents, which enable urinary drainage in 

patients with obstructive uropathy, meet same problems with crystallic deposits and biofilm 

formation as urinary catheters, especially in patients with long-term stent drainage. 

According to Keane et al. (1994), nearly 75% of stents gets obstructed within 24 weeks from 

insertion. The formation of crystallic deposits and stones on the surface of these devices is 

the main problem of their management (Choong et al., 2001). These deposits may lead to 

obstruction of the lumen of catheter or stent, to the retention of urine, bacteriuria, and rarely 

to other complications, such as pyelonephritis and septicaemia. Moreover, the hardness of 

the crystals of these deposits (c. 5 according to Mohr’s scale) may lead to permanent damage 

of urethral epithelium. 

Important role in the mineral deposit formation have the bacterial capsule and other extra-

cellular polysaccharides. The chemical interactions and polarization between negatively 

charged biofilm matrix and positively charged calcium and magnesium ions lead to over-

saturation of the environment by these ions in the close proximity of the biofilm layer and 

their subsequent precipitation. These capsular exopolysaccharides may also bind 

magnesium in the struvite crystals (ammonium magnesium phosphate), which leads to full 

or partial immersion of struvite crystals in the biofilm matrix (Dumanski et al., 1994; 

Gorman & Tunney, 1997). 
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2. Sonication and biofilm protocol 

For the better understanding of poly-microbial infections, the cultivation and identification 
of microbial species is of particular interest. The best way for isolation of wide spectrum of 
pathogens from urinary catheter biofilm, the sonication seems to be most appropriate 
method (Hola et al., 2010). The catheter must be aseptically withdrawn into empty sterile 
test tube and sent immediately for microbial examination. Due to number of microbial 
species and their different growing speed, the immediate examination is of particular 
interest. Otherwise the results can be distorted by overgrowing of some fast-growing species 
(Hola et al., 2010). 

2.1 Sonication protocol 
The sonication protocol is based on procedure as previously described by Sherertz et al. 
(1990) for blood stream catheters, with several modifications. The sonication protocol, as it is 
described here, is used in our laboratory for four years with good results. The sonication of 
the catheter itself comprises of several subsequent steps, which include sonication, vortexing 
and diluting. The cut part of the catheter (2 cm; ~7,5 cm2) is sonicated in 5 mL of Brain-Heart 
Infusion (BHI) for 5 minutes, than vortexed for 2 minutes and sonicated for another 
5 minutes. The repeated sonication together with vortexing leads to more accurate results of 
the procedure. According to our findings, the sonication alone shows worse results (lower 
number of microbes and lower number of microbial species) in comparison with sonication-
vortex-sonication protocol. The suspension is subsequently diluted 10- and 100-times and 
inoculated to solid media. This step is necessary for accurate quantification and isolation of 
individual strains (Hola et al., 2010). The set of solid media used in our laboratory comprises 
of Blood Agar, UriSelect 4 (BioRad), Endo Agar, Blood Agar with 10% of NaCl, Blood Agar 
with Amikacine (32mg/1L) and Sabouraud Agar with Vankomycine (5mg/1L) and 
Amikacine (20mg/1L). The quantification is performed on Blood Agar, the UriSelect helps 
with quantification of mixed cultures and also with species isolation and preliminary 
identification, the other four media are used for species isolation and preliminary 
identification; Endo Agar for selective cultivation of most of Gram negative rods, BA with 
NaCl for selective cultivation of staphylococci, BA with Amikacine for selective cultivation 
of streptococci and Sabouraud Agar for selective cultivation of yeasts. All isolated strains 
are identified by the conventional biochemical tests to the species/genus level (Micro-LA-
tests, Lachema, CZ and/or API Biomerieux, FR).  

2.2 Biofilm protocol 
Prior to biofilm production assay, the strains are cultured on Blood Agar and incubated 
overnight aerobically at 37°C. After verifying purity of the tested strain, several colonies 
with identical morphology are suspended in sterile physiological saline. The turbidity of the 
bacterial suspension is adjusted to 0,5 of the McFarland standard (~1,5 x 108 CFU/ml) using 
a photometric device. The obtained suspension is vortexed for 1 min and subsequently 
diluted 1:100 with fresh medium. The inoculum size should be carefully determined, 
because the size of the inoculum considerably influences the amount of biofilm produced, 
i.e. biofilm density increases with increaseing initial inoculum (Stepanovic et al. 2003). 
All strains are cultivated in triplicate in flat-bottomed microtiter tissue culture plates (Fig. 1) 
in the temperature 37°C for 24 hours in the Brain-Heart Infusion with 4% of glucose (200 μL 
per well). The choice of the medium depends on planned experiments. For the biofilm 
formation, the Brain Heart Infusion with 4% of glucose seems to be good choice for most of 
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the microbial species. The negative control wells contain pure culture medium. After 
cultivation, the wells of microtiter plates are washed three times with sterile phosphate-
buffered saline (PBS; pH 7,2). With every washing step, the wells should be emptied by 
flicking the plates. The biofilm layer is fixed by air-drying (Stepanovic et al. 2007). 
 

 

Fig. 1. Biofilm formation assay. 

The fixed biofilm layer is stained with crystal violet for 15 min at room temperature. After 
staining, the stain is aspirated with a pipette and excess stain is rinsed off by placing the 
microtiter plate under running tap water. The washing continues until the water from the 
plate remains clean. After the microplate is air dried at room temperature, the dye bound to 
the cells is resolubilized with 150 μL of 95% ethanol per well. Ethanol should be added 
gently. Thereafter the microtiter plate covered with the lid (to minimize evaporation) is left 
at room temperature for approx. 30 min (Stepanovic et al. 2007) and the biofilm-positivity is 
assessed quantitatively by means of optical density (OD) assessment (595 nm). 
For all tested strains and negative controls, the average OD values are calculated (from the 
inoculated triplets). The cut-off value (ODc) should be established; the ODc is defined as 
three standard deviations (SD) above the mean OD of the negative control (5). The OD value 
of the tested strain is expressed as average OD value of the strain reduced by ODc value (6). 
ODc value should be calculated for each microtiter plate separately. 

 ODc = Ø ODnegative control + 3 x SDnegative control  (5) 

 OD = Ø ODtested strain - ODc  (6) 

For easier interpretation of the results, strains may be divided into the following categories 
(Stepanovic et al. 2000): strain no producing biofilm (7), strain weakly producing biofilm (8), 
strain moderately producing biofilm (9) and strain strongly producing biofilm (10). This 
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categorization should be based of the previously calculated OD values (for this type of data 
interpretation the OD value of the strain should not be reduced by ODc value). 

 OD ≤ ODc  (7) 

 ODc < OD ≤ 2x ODc  (8) 

 2x ODc < OD ≤ 4x ODc  (9) 

 4x ODc < OD  (10) 

As the control, biofilm-positive strains deposited in several culture collections may be used, 

e.g. Staphylococcus epidermidis strains No. ATCC 35981, ATCC 35982, ATCC 35983 and ATCC 

35984 or S. epidermidis CCM 7221, deposited in the Czech Collection of Microorganisms in 

Brno (Christensen et al. 1985; Ruzicka et al. 2004).  

3. Antibiotic susceptibility testing  

Biofilm, as an important factor of virulence, enables microbes to colonise surfaces and 
increases their resistance to the antimicrobial agents. For the study of resistance of biofilm 
isolates to antimicrobials, three assays should be performed, the minimum inhibitory 
concentration assay (MIC), the minimum biofilm inhibitory concentration assay (MBIC) and 
minimum biofilm eradication concentration assay (MBEC). The results of these three assays 
can show the actual susceptibility/resistance of particular strains to antimicrobials.  
The methods of the minimum biofilm inhibition concentration (MBIC) and minimum 
biofilm eradication concentration (MBEC) assessment, together with minimum inhibitory 
concentration assessment, are applicable for the evaluation of the differences in the 
antibiotic resistance in planktonic and biofilm forms of growth and for the evaluation of 
differences in the biofilm-positive and biofilm-negative strains (Hola et al., 2004 a).   
In our studies we examined coagulase-negative staphylococci and the set of anti-
staphylococcal and wide-spectrum antibiotics: penicillin, oxacillin, ampicillin-sulbactam, 
chloramphenicol, tetracycline, co-trimoxazole, erythromycin, clindamycin, ciprofloxacin, 
gentamicin, teicoplanin and vancomycine. To the commercially available microtiter plates 
with serial dilutions of antibiotics covering break-point concentration, we prepared second 
microtiter plate with serial dilutions of the same antibiotics, which linked up with increasing 
concentrations of tested antibiotics to cover the MBIC and MBEC values.  For the 
concentrations of diluted antibiotics see Table 1. 

3.1 Minimum inhibitory concentration assay 
Minimum inhibitory concentration assay (MIC) was proved by the microdilution method 
according to the European Standards as they are implemented in the Czech Microbiological 
Standards (Urbášková, 1998). Briefly, fresh 24-hrs culture of the strain cultured on Blood 
Agar is suspended in physiological saline to the optical density equal to 0,5 according to 
McFarland Standard. This suspension is inoculated in the wells of microtiter plate with 
serial (logarithmic) dilutions of tested antibiotics in Mueller-Hinton Broth (commercially 
available from Trios Ltd., Prague, CZ). The final concentration of cells of the tested strain is 
equal to 500 000 CFU/ml. After 18 hrs of cultivation the minimum inhibitory concentration 
is assessed.  
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Standard antibiotic concentrations (mg/L) 

PEN OXA AMS CMP TET COT ERY CLI CIP GEN TEI VAN 

0,015 0,125 2 0,125 0,125 0,5 0,063 0,063 0,063 0,063 0,25 0,25 

0,031 0,25 4 0,25 0,25 1 0,125 0,125 0,125 0,125 0,5 0,5 

0,063 0,5 8 0,5 0,5 2 0,25 0,25 0,25 0,25 1 1 

0,125 1 16 1 1 4 0,5 0,5 0,5 0,5 2 2 

0,25 2 32 2 2 8 1 1 1 1 4 4 

0,5 4 64 4 4 16 2 2 2 2 8 8 

1 8 128 8 8 32 4 4 4 4 16 16 

2 16 256 16 16 64 8 8 8 8 32 GC 

Increased antibiotic concentrations (mg/L) 

PEN OXA AMS CMP TET COT ERY CLI CIP GEN TEI VAN 

4 32 512 32 32 128 16 16 16 16 64 32 

8 64 1024 64 64 256 32 32 32 32 128 64 

16 128 2048 128 128 512 64 64 64 64 256 128 

32 256 4096 256 256 1024 128 128 128 128 512 256 

64 512 8192 512 512 2048 256 256 256 256 1024 512 

128 1024 16384 1024 1024 4096 512 512 512 512 2048 1024 

256 2048 32768 2048 2048 8192 1024 1024 1024 1024 4096 2048 

512 4096 GC 4096 4096 16384 2048 2048 2048 2048 8192 4096 

PEN – penicillin; OXA – oxacillin; AMS – ampicillin-sulbactam; CMP – chloramphenicol;  
TET – tetracycline; COT – co-trimoxazole; ERY – erythromycin; CLI – clindamycin; CIP – ciprofloxacin; 
GEN – gentamicin; TEI – teicoplanin; VAN – vancomycine, GC – growth control  

Table 1. Used concentrations of antibiotics. 

3.2 Minimum biofilm inhibitory concentration and minimum biofilm eradication 
concentration assays 
The resistance/susceptibility was assessed on the hardened-polystyrene pegged plates that 

fit into standard microtiter plates. These pegged plates enable the biofilm cultivation on all 

96 pegs simultaneously, so they prompt and simplify the manipulation with the biofilms 

(see Fig. 2). For better cell-adhesivity, the surface of the pegged plate was modified by poly-

L-lysine (Hola et al. 2004 c). The wells of the microtiter plate were filled with S. epidermidis 

culture (precultured in BHI supplemented with 4% of glucose) and the pegs were 

submerged in it. The primary adhesion was performed for 90 minutes. Then the pegged 
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plates were removed into fresh sterile Brain Heart Infusion (BHI) and cultivated at 37 °C for 

24 hours. 

 

 

Fig. 2 – Pegged plate with grown biofilm; the biofilm layer was fixed by drying and stained 
with crystal violet. 

In the MBIC assessment, the biofilm grown on the pegs of the pegged plate was exposed 

to the action of antibiotics by submerging into the medium with antibiotics compounds 

(concentrations listed in Table 1). The MBIC value was assessed after 18 hours of 

cultivation on the basis of presence of turbidity in the wells. After the exposure of the 

pegs with grown biofilm to the antibiotics (18 hours of cultivation) the pegs were three 

times washed by the sterile phosphate buffered saline (pH 7,4) and moved into the 

colorimetric medium, which changes the colour in the presence of living cells. After next 

18 hours of cultivation the MBEC was assessed on the basis of colour change of the 

medium, the presence or absence of turbidity in the well being of no importance (Hola et 

al., 2004 a). 

3.3 Minimum Inhibitory Concentration in biofilm-positive and biofilm-negative strains 
Figure 3 shows average values of MIC of biofilm-negative and biofilm-positive strains of 

tested antibiotics. The biofilm-positive strains have higher average values of MICs. The 

median values of MICs of both groups of strains are shown in Table 2.  The differences 

between biofilm-positive and biofilm-negative strains were statistically significant in 

oxacillin, tetracycline, co-trimoxazole, ciprofloxacin, gentamicin and clindamycin (P  0,05, 

n = 88). All strains were susceptible to teicoplanin and vancomycine in both tested groups. 

Despite the fact, that the MIC value is defined for planktonic form of growth, there is 

significant difference between biofilm-positive and biofilm-negative strains of microbes 

(Hola et al., 2004 b). 
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PEN – penicillin; OXA – oxacillin; AMS – ampicillin-sulbactam; CMP – chloramphenicol; TET – 
tetracycline; COT – co-trimoxazole; ERY – erythromycin; CLI – clindamycin; CIP – ciprofloxacin; GEN – 
gentamicin; TEI – teicoplanin; VAN – vancomycine, blue – biofilm-positive, green – biofilm-negative 

Fig. 3. Mean values of MICs in biofilm-positive and biofilm-negative strains. 

One of the factors, increasing the resistance of biofilm-positive strains to antibiotics, is the 
extracellular polysaccharide, in staphylococci presented as polysaccharide intercellular 
adhesine (PIA). The PIA is inherent compound of the biofilm layer and covers staphylococcal 
cells as slimy layer. The PIA facilitates bacterial adhesion to solid surfaces and co-aggregation 
of the bacterial cells. The mechanisms of resistance of cells covered by PIA to antibiotics are not 
yet fully understood, but it is widely accepted, that they differ from mechanisms of resistance 
of individual cells (enzyme production, change of bonding place etc.) (Costerton et al., 1995).  
 

 Biofilm-positive strains Biofilm-negative strains 

 Mean SE Median Mean SE Median 

PEN 2,516 0,243 2 2,788 0,234 4 

OXA 13,777 2,321 8 6,439 1,432 2 

CMP 5,360 1,258 2 6,535 1,596 2 

TET 4,942 1,446 1 1,695 0,316 0,5 

COT 34,419 4,513 32 17,267 3,428 4 

ERY 11,225 1,211 16 8,826 1,171 16 

CLI 9,540 1,596 8 6,785 1,695 0,125 

CIP 9,426 1,136 16 6,753 0,960 8 

GEN 14,387 1,956 16 5,735 1,824 0,125 

TEI 1,953 0,205 2 2,680 0,275 2 

VAN 1,686 0,074 2 1,802 0,087 2 

SE – standard error; PEN – penicillin; OXA – oxacillin; AMS – ampicillin-sulbactam;  
CMP – chloramphenicol; TET – tetracycline; COT – co-trimoxazole; ERY – erythromycin;  
CLI – clindamycin; CIP – ciprofloxacin; GEN – gentamicin; TEI – teicoplanin; VAN – vancomycine 

Table 2. Mean and median of MICs in biofilm-positive and biofilm-negative strains. 
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The bonding of the molecules of antibiotic to the negatively charged chemical compounds 
present in biofilm layer may be the reason of the increased gentamicin resistance. The 
change of physico-chemical conditions may affect tetracycline and the production of 
enzymes degrading antibiotics may affect action of oxacilline.  
The higher resistance to antibiotics of biofilm-positive strains even in their planktonic form 

can be explained by influence of weak biofilm layer covering the cells and formation of 

micro-colonies surrounded by PIA. However, the layer of the polysaccharides is still 

relatively weak. This, together with the absence of resistance factors that act in the layer of 

matured biofilm (decreased growth rate inside biofilm layer, strong changes in the inner 

environment including acidification, lack of oxygen etc.), leads to the observed differences 

between MIC values of biofilm-positive and values of biofilm-negative strains.  

3.4 MIC, MBIC and MBEC in biofilm-positive strains 
Figure 4 shows average values of MICs, MBICs and MBECs of biofilm-positive strains to 

tested antibiotics. The minimum concentrations of antibiotics, which are able to penetrate 

biofilm, in most cases exceed the minimum inhibitory concentrations (MIC) measured for 

planktonic form of the bacteria by several orders. Comparing the minimum inhibitory 

concentrations with concentrations affecting the cells in the biofilm (MBIC, MBEC), the all 

the differences were statistically significant (P  0,01). For summary results see Table 3.  
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PEN – penicillin; OXA – oxacillin; AMS – ampicillin-sulbactam; CMP – chloramphenicol;  
TET – tetracycline; COT – co-trimoxazole; ERY – erythromycin; CLI – clindamycin; CIP – ciprofloxacin; 
GEN – gentamicin; TEI – teicoplanin; VAN – vancomycine; MIC – yellow; MBIC – green; MBEC - blue 

Fig. 4. Comparison of MIC, MBIC and MBEC values (log). 

The results show, that the MIC values did not correspond with the values that are able 
eradicate the biofilm. The biofilm layer act as a barrier for antibiotic diffusion to the cells, 
e.g. glycopeptides, with their large molecules have very low effect on staphylococci in the 
biofilm layer, because their large molecules cannot penetrate the biofilm layer (König et al., 
2001). Another mechanism of resistance is chemical bonding of the positively charged 
antibiotics to the negatively charged compounds of the biofilm layer (aminoglycosides) 
(Lewis, 2001). The diffusion barrier formed by the biofilm layer acts also in the opposite 
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direction – the enzymes such as beta-lactamases cannot diffuse from the close proximity of 
the bacterial cells, so the concentration of these enzymes in the bacterial surrounding is 
relatively high (Stewart, 1996). The accumulation of waste products and defection of 
nutrients may lead to the change of physico-chemical conditions in micro-colonies. Such 
environment decreases efficiency of aminoglycosides. These entire factors act in 
combination, which enhances their effect (Lewis, 2001) and similar mechanisms can be 
found also for other antimicrobial compounds.  
 

  MIC MBIC MBEC 

  Mean Median Mean Median Mean Median 

PEN 2,21 2 931 1024 936 1024 

OXA 11,1 4 219 256 2420 2048 

AMS 5,6 2 34,2 32 1979 2048 

CMP 8,27 2 37,8 4 698 512 

TET 6,68 0,5 25,3 1 1002 128 

COT 16,9 4 289 16 15639 2048 

ERY 14,9 16 4096 4096 4096 4096 

CLI 9,17 16 2283 4096 2340 4096 

CIP 9,96 16 922 256 3377 4096 

GEN 10,4 0,25 80,8 64 182 128 

TEI 2,02 2 10,4 8 558 512 

VAN 1,64 2 7,09 4 209 256 

PEN – penicillin; OXA – oxacillin; AMS – ampicillin-sulbactam; CMP – chloramphenicol;  
TET – tetracycline; COT – co-trimoxazole; ERY – erythromycin; CLI – clindamycin; CIP – ciprofloxacin; 
GEN – gentamicin; TEI – teicoplanin; VAN – vancomycine 

Table 3. Average MIC, MBIC and MBEC values. 

The results of our studies confirm the importance of biofilm-positive bacteria as causative 

agents of biofilm infections of catheters and implants and indicate increased risk of failure of 

conventional antimicrobial therapy caused by increased resistance of such strains. 

4. Poly-microbial biofilms and their composition  

In our studies we presented the difference in results of microbial assessment based on use of 
pre-cultivation and sonication techniques (Hola et al., 2010). Our results showed that the 
sonication technique is more reliable for examination of biofilm infections of catheters, 
because it detects wider number of microbial species. Another advantage of sonication 
technique is quantification of isolated microbes, which can be very helpful for the treatment 
of the infection and for more detailed knowledge about mixed-species biofilm community. 
The sonication technique also solves problem of over-growing of some fast-growing 
microbes, such as Pseudomonas aeruginosa. The over-growing is often present in “classic” pre-
cultivation technique and can suppress growth of other species and thus lead to the lower 
sensitivity of these techniques. From all above-mentioned reasons, the infection can be 
misinterpreted as single- or dual-species infection only (Hola et al., 2010).  
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The CAUTI are rarely single-species. More often these infections are poly-microbial. The 
number of isolated strains from one catheter/stent ranges between one and seven, where 
the mono-species infection is present only in 16,2% of catheters. Most of the CAUTI are 
three-species biofilms – c. 30%, less often two- and four-species biofilms (see Fig. 5).  
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Fig. 5. Number of strains isolated from one catheter. 

In these mixed-species biofilm communities, several microbial species are very often 

present, although the species composition of catheter is variable. Such species are Escherichia 

coli (present in 76,5% of poly-microbial catheter infections), Enterococcus sp. (at least one 

species present in 76,5% of poly-microbial catheter infections), Candida sp. (at least one 

species present in 64,7% of poly-microbial catheter infections) and Klebsiella sp. (at least one 

species present in 41,1% of poly-microbial catheter infections). The composition of other 

microbial species in the biofilm community is variable (Hola et al., 2008).  Up to now we 

isolated 47 different microbial taxa from urinary tract catheters. Most often we isolated 

Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, 

Staphylococcus epidermidis and Candida albicans. These microbial species presented over 

65% of total microbial isolates. For the full list of microbial taxa present in poly-microbial 

CAUTIs see Table 4.  

The ability to form biofilm is present in most of our isolates. Very often, circa in 70% of the 

isolates, we can prove strong biofilm production.  

Only very low number of strains isolated from IUC is not able to form biofilm (less 

than 5%). The biofilm formation also differs among particular microbial species. Some 

species show high ratio of biofilm-positive strains whereas other show lower. The 

differences in the biofilm formation among microbial species were statistically significant 

(ANOVA, p = 0,0031). The highest ratios of strong biofilm-positive strains have species 

Enterococcus faecalis (95%), Proteus mirabilis (94%), Candida tropicalis (91%) and 

Staphylococcus aureus (100%). Low ratio of strong biofilm-positive strains had e.g. 

Escherichia coli (35%). 
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Microbial taxa present in poly-microbial CAUTIs 

Acinetobacter baumannii Klebsiella sp. (other) 

Burkholderia cepacia Kluyvera cryocrescens 

Candida albicans Morganella morganii 

Candida glabrata Ochrobactrum anthropi 

Candida krusei Pantoea agglomerans 

Candida parapsilosis Pantoea sp.  

Candida tropicalis Proteus mirabilis 

Citrobacter koseri Proteus vulgaris 

Citrobacter freundii Providencia rettgeri 

Citrobacter sp. (non-freundii, non-koseri) Providencia stuartii 

Corynebacterium sp. Pseudomonas aeruginosa 

Enterococcus faecium Pseudomonas sp. 

Enterococcus faecalis Ralstonia picketii 

Enterobacter aerogenes Raoultella terrigena 

Enterobacter cloacae Serratia marcescens 

Enterobacter dissolvens Serratia odolifera 

Enterobacter kobei Streptococcus agalactiae 

Enterobacter sp. (other) Streptococcus sp. (alpha-haemolytic) 

Escherichia coli Streptococcus pyogenes 

Hafnia alvei Staphylococcus aureus 

Klebsiella ornithinolytica Staphylococcus epidermidis 

Klebsiella oxytoca Staphylococcus haemolyticus 

Klebsiella ozanae Staphylococcus hominis 

Klebsiella pneumoniae  

 

Table 4. List of microbial taxa isolated from poly-microbial CAUTIs in St. Anne’s University 
Hospital during years 2007-2010. 

The strong biofilm forming strains seem to be responsible for biofilm production in mixed-

species biofilms. These species seem to be primary colonisers and co-aggregate with other 

species or just provide refuge to other species that are only weak biofilm-producers building 

up the mixed-species biofilm community.  

The other virulence factors, which can be present in bacteria, play important role in the 

mixed-species biofilms. These virulence factors affect the microenvironment in the biofilm 

niche, e.g. urease production increases pH of the biofilm layer; the production of beta-

lactamases protect whole mixed-species community etc. 

Also presence of microbes in different stages and forms plays important role in the mixed-

species biofilm formation, for example the Candida species form pseudohyphae in their 

biofilm mode of growth; the strains of the genus Proteus may profit from close contact with 

each other, because in the formation of parallel cells they are capable of faster movement on 
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the catheter surface and they produce higher amount of extra-cellular polysaccharides 

(Stickler & Hughes, 1999), which protects the microenvironment in the biofilm layer.   

5. Prevention of biofilm infections of urinary tract 

Progress in the area of prevention of urinary catheter–associated infections is very limited 
and the preventive procedures used nowadays rather only prolong the “abacterial window” 
then really prevent the infection. There are only few effective preventive strategies available 
for prevention of CAUTIs. These include avoiding unnecessary catheterisation, selecting 
alternative catheterisation procedures, maintaining the closed drainage system, and 
eliminating bacterial colonisation of the patient (Jacobsen et al., 2008). 
Every from above-mentioned preventive strategies are bound onto well-informed 
personnel, which plays the key role in the prevention of biofilm infections of urinary tract.   
The prolongation of the catheterisation or even unnecessary flat catheterisation are the first 
steps which can be changed in the course of prevention of the CAUTIs. More attention to the 
selective and limited catheter use can lead to reduction of the number of CAUTIs. Once it is 
determined that a patient requires urinary catheterisation, the risk of developing CAUTI is 
affected by the duration of the catheterisation (Jacobsen et al., 2008). To reduce the risk of 
infection; the urinary catheter should be changed approx. every 8 days (Rudra & Rudra, 
2002) and drainage bags should be emptied minimally every 4 hours to prevent bacteria 
reaching the lumen of catheter (Newman, 1998). To the minimization of inappropriate 
prolongation of the catheterisation may help various reminder systems (Blodgett, 2009; 
Jacobsen et al., 2008).  
The use of a closed drainage system rather than open collection container, reduces the 
incidence of bacteriuria to approximately 50% at 11 days of continuous catheterisation in 
comparison with 95% presence of significant bacteriuria in patients with open catheter 
drainage for 96 hours (Trautner & Darouiche, 2004). The drainage system should be 
dependent at all times. The presence of the drainage tube and/or collection bag above the 
level of the urinary bladder is associated with an increased risk of CAUTIs, as well as the 
presence of the drainage tube below the level of the collection bag  (Maki & Tambyah, 2001). 
The differences in bacterial colonisation of the urinary tract with intermittent catheterisation 
and with indwelling catheters are discussed in chapter 1.1.1 and 1.1.2. 
There are many ways of surface treatment of catheters, which have been examined during 
last decade. These techniques of catheter surface treatment should prevent bacterial 
adhesion to the artificial surface ant thus prevent formation of biofilm infection. These 
procedures include e.g. incorporation of the antimicrobial compound into the catheter 
material (without chemical bond), increase of surface concentration of antimicrobial 
compounds by means of catheter soaking, chemical bonding of antimicrobial compounds to 
the surface of the catheter, chemical bonding of antimicrobial compounds in polymer 
structure of the material or use of new anti-adherent coatings. These procedures lead to 
significantly higher concentrations of antibiotic, which can act directly in the place of origin 
of the biofilm focus (Jansen & Peters, 1991).  
These methods, such as antimicrobial-impregnated urinary catheters rather only prolong the 
“abacterial window” then really prevent the infection and the colonising microflora one day 
anyway appears. Study performed in patients with acute spinal cord injury, who received 
long-term urinary catheters, showed that the silver-coated catheters delayed but did not 
prevent the onset of bacteriuria (Schaeffer et al., 1988). The in vitro laboratory study of 
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colonisation of different types of catheters showed no differences among silicone and silver-
coated catheters (Hola et al., 2009) The same problem is in antibiotic impregnation of 
urinary catheters – the onset of bacterial colonisation is later, but is always present 
(Darouiche at al., 1999; Guay, 2001; Johnson et al., 1999). In general, the antimicrobial-coated 
urinary catheters may be beneficial in hospitalized patients that undergo short-term bladder 
colonisation (Trautner & Darouiche, 2004). Additionally, all antibiotic-impregnated urinary 
catheters have same problem – the subinhibitory levels of the antimicrobial agent that is 
eluted into the urine may induce resistance in the resident organisms, especially in patients 
with prolonged catheter use (Stickler, 2002). 
The consensus of antimicrobial treatment of CAUTIs is, that systemic antibiotics are not 
recommended in general for patients with asymptomatic bacteriuria (Warren, 1994). The 
systemic dosage of antibiotic should be used only in cases with clear indication of 
antimicrobial therapy (signs of septicaemia, pyelonephritis etc.). 

6. Treatment of biofilm infections of urinary tract 

The antibiotic treatment cannot efficiently affect bacteria embedded in the biofilm layer. In 
vivo the antibiotics can suppress symptoms of the infection by the eradication of planktonic 
cells, but they fail in the eradication of the cells embedded in the biofilm. After antibiotic 
treatment the biofilm can act as the focus of the infection and cause recurrence of the 
infection. It is well known, that biofilm-associated infections commonly persist, until the 
colonised surface is removed from the patient’s body (Stewart & Costerton, 2001). 
Comparison of the antibiotic resistance of planktonic and biofilm form of microbes causing 
CAUTIs showed, that bacterial biofilms may survive several orders higher concentrations of 
antibiotic (Hola et al. 2004 c; Souli & Giamarellou, 1998; Mah & O'Toole, 2001). It is obvious, 
that the presence of biofilm on the urinary catheter leads to therapy failure. There are many 
mechanisms of biofilm resistance against antibiotics, which supply and overlap. 
Some mechanisms of biofilm resistance were discussed above. The most important type of 
the biofilm resistance is the diffusion barrier formed by biofilm matrix (Ishida et al., 1998). 
The penetration potential differs among different antibiotics and depends also on the 
infectious agents present in the biofilm layer (Vrany et al., 1997).  
The chemical bonding of antibiotics and increased concentration of antibiotic-degrading 
enzymes in the close proximity of bacterial cells are other two mechanisms, which can 
suppress action of beta-lactam antibiotics (Lewis, 2001; Stewart, 1996). 
Another mechanism is based on changes in the biofilm layer, the absence of nutrients and 
decreased levels of oxygen. These conditions may lead to the starvation of cells in the 
biofilm layer. The starving cells grow more slowly or don’t grow at all. Such slowly growing 
cells show increased resistance to beta-lactams (Spoering & Lewis, 2001; Schierholz & Beuth, 
2001). The accumulation of waste products, which changes physico-chemical properties 
inside the biofilm layer, decreases efficiency of aminoglycosides and tetracyclines (Lewis, 
2001). 
Spatial heterogeneity of the cells in the biofilm layer is another important form of biofilm 
resistance. The spatial heterogeneity is important survival strategy, because minimally part 
of the cells, which represent wide scale of different metabolic states, have always chance to 
survive every metabolically targeted attack (Costerton et al., 1999). Because of these unique 
and changing properties of the biofilm-positive microbes, it is extremely difficult to find 
simple antimicrobial compound, which would be capable of getting over most of strategies 
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of biofilm resistance. Despite the antibiotic treatment, the infections of the implants often 
persist until the device is removed (Schierholz & Beuth, 2001). 
To the particular recommendations for the treatment of biofilm infection of uropoetic 
system belong replacement of colonised catheter (and by this way removal of the biofilm 
nidus) and, if necessary for successful treatment, increased dosage of antibiotics. On the 
other side, if the patient has no signs of septicaemia or pyelonephritis, the colonisation of the 
catheter is not necessary to be treated (Warren, 1994). 

7. Acknowledgment  

The research was funded by grants IGA MZ 9678, MSMT 1M0528 and MSMT INGO 
LA10037.  

8. References  

Blodgett TJ. Reminder systems to reduce the duration of indwelling urinary catheters: a 
narrative review. Urol Nurs. 2009; 29 (5): 369-378. 

Choong, S, Wood, S, Fry, & C, Whitfield, H: Catheter associated urinary tract infection and 
encrustation. Int. J. Antimicrob. Agents. 2001, 17, 305-310. 

Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, et al. 
Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a 
quantitative model for the adherence of staphylococci tomedical devices. J 
ClinMicrobiol 1985;22:996–1006. 

Costerton, J. W., Stewart, P. S., Greenberg, E. P.: Bacterial biofilms: a common cause of 
persistent infections. Science, 284, 1999, 1318-1322. 

Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M.: 
Microbial biofilms. Annu. Rev. Microbiol., 49, 1995, 711-745. 

Cox, A.J., Hukins, D.W., Sutton, T.M.: Infection of catheterised patients: bacterial 
colonisation of encrusted Foley catheters shown by scanning electron microscopy. 
Urol. Res. 17, 1989, 349-352. 

Darouiche R, Smith J, Hanna H, et al. Efficacy of antimicrobial-impregnated bladder 
catheters in reducing catheter-associated bacteriuria: a prospective, randomized, 
multicenter clinical trial. Urology 1999; 54: 976–981. 

de Ruz AE, Leoni EG, Cabrera RH. Epidemiology and risk factors for urinary tract infection 
in patients with spinal cord injury. J Urol. 2000; 164: 1285–1289. 

Dumanski, A. J., Hedelin, H., Edin-Liljegren, A., Beauchemin, D., & McLean, R. J.: Unique 
ability of the Proteus mirabilis capsule to enhance mineral growth in infectious 
urinary calculi; Infect.Immun. 62, 1994, 7,  2998-3003. 

Farsi, H. M., Mosli, H. A., Al Zemaity, M. F., Bahnassy, A. A., & Alvarez, M.: Bacteriuria and 
colonization of double-pigtail ureteral stents: long-term experience with 237 
patients, J. Endourol. 1995, 9; 6: p. 469-472.  

Getliffe, K. A., Mulhall, A. B.: The encrustation of indwelling catheters; Br.J.Urol. 1991, 67, 4, 
337-341. 

Gorman, S.P., Jones, D.S.: Biofilm complications of urinary tract devices. In: Wilson M, 
Devine D (eds.): Medical Implications of Biofilms. Cambridge University Press, 
Cambridge 1991, 136-170. 

www.intechopen.com



 
Urinary Tract Infections 

 

170 

Gorman, S.P., Tunney, M.M.: Assessment of encrustation behaviour on urinary tract 
biomaterials. J. Biomater. Appl. 1997, 12, 136-166. 

Gorman SP, Jones DS: Biofilm complications of urinary tract devices. In: Wilson M, Devine 
D (eds.): Medical Implications of Biofilms. Cambridge University Press, 
Cambridge, 2003. p. 136-170. 

Guay D. An update on the role of nitrofurans in the management of urinary tract infections. 
Drugs 2001; 61: 353–364. 

Holá V., Růžička F., Tejkalová R., & Votava M.: [Determination of sensitivity of biofilm-
positive forms of microorganisms to antibiotics]; Klinická mikrobiologie a infekční 
lékařství; 2004 a, vol. 10; 5; p. 218–222. 

Holá V., Růžička F., Votava M.: [Differences in antibiotic sensitivity in biofilm-positive and 
biofilm-negative strains of Staphylococcus epidermidis isolated from blood cultures]; 
Epidemiologie, mikrobiologie a imunologie; 2004 b; 53; č. 2; p. 66 – 69. 

Holá V., Růžička F., Votava M.: Impact of surface coating on the adherence of slime 
producing and nonproducing Staphylococcus epidermidis; Microbiologica; 2004 c; vol. 
27; 3, p. 305-308. 

Holá V, Růzicka F.: [Urinary catheter biofilm infections]. Epidemiol Mikrobiol Imunol. 2008; 
57 (2): 47-52.  

Hola V, Ruzicka F, Horka M.: Microbial diversity in biofilm infections of the urinary tract 
with the use of sonication techniques. FEMS Immunol Med Microbiol. 2010, 
59(3):525-8.  

Holá V., Růžička F., Tejkalova R., Kadlec R. The surface charge of the urinary catheters and 
biofilm adhesion. ASM Conference Biofilms. 2009; Cancún, Mexico; Abstract book, 
p. 151. 

Ishida, H., Ishida, Y., Kurosaka, Y., Otani, T., Sato, K., & Kobayashi, H.: In vitro and in vivo 
activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa, 
Antimicrobial Agents and Chemotherapy 1998, 42, 7, 1641-1645. 

Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. Complicated catheter-associated urinary 
tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008; 
21 (1): 26-59. 

Jansen, B., Peters, G.: Modern strategies in the prevention of polymer-associated infections; 
J. Hosp. Infect. 1991, 19, 2, 83-88. 

Johnson J, Delavari P, Azar M. Activities of a nitrofurazone-containing urinary catheter and 
a silver hydrogel catheter against multidrug-resistant bacteria characteristic of 
catheter-associated urinary tract infection. Antimicrob Agents Chemother 1999; 43: 
2990–2995. 

Keane, P.F., Bonner, M.C., Johnston, S.R., Zafar, A., & Gorman, S.P.: Characterization of 
biofilm and encrustation on ureteric stents in vivo, Br. J. Urol. 1994, 73, 687-691. 

King RB, Carlson CE, Mervine J, Wu Y and Yarkony GM. Clean and sterile intermittent 
catheterisation methods in hospitalized patients with spinal cord injury. Arch Phys 
Med Rehabil. 1992, 73: 798-802. 

König, C., Schwank, S., Blaser, J.: Factors compromising antibiotic activity against biofilms 
of Staphylococcus epidermidis. Eur. J. Clin. Microbiol. Infect. Dis., 20, 2001, s. 20-26. 

Larsen LD, Chamberlin DA, Khonsari F, Ahlering TE. Retrospective analysis of urologic 
complications in male patients with spinal cord injury managed with and without 
indwelling urinary catheters. Urology. 1997; 50: 418–422. 

www.intechopen.com



 
The Formation of Poly-Microbial Biofilms on Urinary Catheters  

 

171 

Lemke, J.R., Kasprowicz, K., & Worral, S. Intermittent catheterisation for patients with a 
neurogenic bladder: Sterile versus clean: Using evidence-based practice at the staff 
nurse level. Journal Nursing Care Quality. 2005, 20, 302-306. 

Lewis, K.: Riddle of biofilm resistance. Antimicrob. Agents Chemother., 45, 2001, s. 999-1007. 
Licking E. Getting a grip on bacterial slime. Bussiness Week 1999;13:98 – 100. 
Liedl B.: Catheter-associated urinary tract infections. Curr. Opin. Urol. 2001, 11, 75-79. 
Mah, T. F., O'Toole, G. A.: Mechanisms of biofilm resistance to antimicrobial agents ; Trends 

Microbiol. 2001, 9, 1, 34-39. 
Maki D., Tambyah P. Engineering out the risk of infection with urinary catheters. Emerg. 

Infect. Dis. 2001; 7: 1–13. 
McLean, R.J., Lawrence, J.R., Korber, D.R., & Caldwell, D.E.: Proteus mirabilis biofilm 

protection against struvite crystal dissolution and its implications in struvite 
urolithiasis. J. Urol. 1991, 146, 1138-1142. 

Mobley, H. L., Warren, J. W.: Urease-positive bacteriuria and obstruction of long-term 
urinary catheters; J.Clin.Microbiol. 1987, 25, 11, 2216-2217. 

Morris, N.S., Stickler, D.J.: Encrustation of indwelling urethral catheters by Proteus mirabilis 
biofilms growing in human urine. J. Hosp. Infect. 1998, 39, 227-234.  

Morris, N.S., Stickler, D.J., McLean, R.J.: The development of bacterial biofilms on 
indwelling urethral catheters. World J. Urol. 1999, 17, 345-350. 

National Institute on Disability and Rehabilitation Research: The prevention and 
management of urinary tract infections among people with spinal cord injuries. 
National Institute on Disability and Rehabilitation Research consensus statement. 
January 27-29, 1992. SCI Nurs. 1993, 10: 49-61. 

Newman, D. K. 1998. Managing indwelling urethral catheters. Ostomy. Wound Manage. 44: 
26–28, 30, 32. 

Nickel, J.C., Grant, S.K., Costerton, J.W.: Catheter-associated bacteriuria. An experimental 
study. Urology, 1985, 26, 369-375. 

Perkash I, Giroux J. Clean intermittent catheterisation in spinal cord injury patients: a 
followup study. J Urol. 1993; 149: 1068–1071. 

Rudra, A., and P. Rudra. 2002. Nosocomial infections in intensive care unit. Ind. J. Crit. Care 
Med. 6: 127–138. 

Růžička, F., Holá, V., Votava, M., Tejkalová, R., Horváth, R., Heroldová, M., & Woznicová, 
V. 2004. Biofilm detection and the clinical significance of Staphylococcus epidermidis. 
Folia Microbiologica. 49 : 596-600. 

Schaeffer AJ, Story KO, Johnson SM. Effect of silver oxide/trichloroisocyanuric acid 
antimicrobial urinary drainage system on catheter-associated bacteriuria. J Urol 
1988; 139: 69–73. 

Schierholz, J. M., Beuth, J.: Implant infections: a haven for opportunistic bacteria; Journal of 
Hospital Infection 2001, 49, 2, 87-93. 

Sherertz RJ, Raad II, Belani A, Koo LC, Rand KH, Pickett DL, Straub SA, & Fauerbach LL: 
Three-year experience with sonicated vascular catheter cultures in a clinical 
microbiology laboratory. J Clin Microbiol 1990, 28: 76-82. 

Souli, M., Giamarellou, H.: Effects of slime produced by clinical isolates of coagulase-
negative staphylococci on activities of various antimicrobial agents; 
Antimicrob.Agents Chemother. 1998, 42, 4, 939-941. 

www.intechopen.com



 
Urinary Tract Infections 

 

172 

Spoering, A. L., Lewis, K.: Biofilms and planktonic cells of Pseudomonas aeruginosa have 
similar resistance to killing by antimicrobials; Journal of Bacteriology, 2001, 183, 23, 
6746-6751. 

Stepanovic S, Djukic N, Opavski N, & Djukic S. Significance of inoculum size in biofilm 
formation by staphylococci. NewMicrobiol 2003; 26:129–32. 

Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. 
Quantification of biofilm in microtiter plates: overview of testing conditions and 
practical recommendations for assessment of biofilm production by staphylococci. 
APMIS 2007 ; 115: 891-9. 

Stewart, P. S.: Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob. 
Agents Chemother., 40, 1996, s. 2517-2522. 

Stewart, P. S., Costerton, J. W.: Antibiotic resistance of bacteria in biofilms. Lancet, 358, 2001, 
s. 135-138. 

Stickler D. Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a 
perspective from the study of catheter biofilms. J Appl Microbiol 2002; 92: 163S–
170S. 

Stickler, D.J., Evans, A., Morris, N., & Hughes, G.: Strategies for the control of catheter 
encrustation. Int. J. Antimicrob. Agents 2002, 19, 499-506. 

Stickler, D., Hughes, G.: Ability of Proteus mirabilis to swarm over urethral catheters; 
Eur.J.Clin.Microbiol.Infect.Dis. 1999, 18, 3, 206-208. 

Tambyah, P. A., Maki, D. G.: Catheter-associated urinary tract infection is rarely 
symptomatic: a prospective study of 1,497 catheterized patients; Arch.Intern.Med. 
2000, 160, 5, 678 -682. 

Tenke, P., Kovacs, B., Jackel, M., & Nagy, E.: The role of biofilm infection in urology. World 
J. Urol. 2006, 24, 13-20. 

Trautner BW, Darouiche RO. Catheter-associated infections: pathogenesis affects 
prevention. Arch Intern Med. 2004; 164 (8): 842-50. 

Tunney, M.M., Jones, D.S., Gorman, S.P.: Biofilm and biofilm-related encrustation of urinary 
tract devices. Methods Enzymol. 1999, 310, 558-66. 

Urbášková P. Resistance of bacteria to antibiotics. Selected methods. Praha, Trios, 1998:100. 
Vrany, J. D., Stewart, P. S., Suci, P. A.: Comparison of recalcitrance to ciprofloxacin and 

levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-
transport characteristics; Antimicrobial Agents and Chemotherapy 1997, 41, 6, 
1352-1358. 

Warren, J. W.: Catheter-associated bacteriuria in long-term care facilities; Infect. Control 
Hosp. Epidemiol. 1994, 15, 8, 557-562. 

www.intechopen.com



Urinary Tract Infections

Edited by Dr. Peter Tenke

ISBN 978-953-307-757-4

Hard cover, 360 pages

Publisher InTech

Published online 30, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, and they are also

the leading cause of hospital-acquired infections. Therefore, the appropriate management of UTIs is a major

medical and financial issue. This book covers different clinical manifestations of UTI, with special emphasis on

some hard-to-treat diseases, and special conditions in respect of treatment; antibiotic resistance and the

available alternative strategies for the prevention and treatment of UTIs and it deals with urinary tract

infections in children. The aim of this book is to give a summary about the different aspects of the diagnosis,

management and prevention of urinary tract infections for all medical disciplines.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Veronika Hola and Filip Ruzicka (2011). The Formation of Poly-Microbial Biofilms on Urinary Catheters,

Urinary Tract Infections, Dr. Peter Tenke (Ed.), ISBN: 978-953-307-757-4, InTech, Available from:

http://www.intechopen.com/books/urinary-tract-infections/the-formation-of-poly-microbial-biofilms-on-urinary-

catheters



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


