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1. Introduction 

Dietary fatty acids have been traditionally viewed as substrates for the generation of high-
energy molecules and as precursors for the biosynthesis of macromolecules. However, 
accumulating data from multiple lines of evidence suggest that dietary fatty acids are linked 
to the pathogenesis of type 2 diabetes, which involves abnormalities in both insulin 
secretion and action (Lopez et al., 2010). 
Dietary fatty acids are absorbed into epithelial cells of the small intestine, are assembled into 
nascent triglyceride-rich lipoproteins, enter the bloodstream, and are transported to 
peripheral tissues. Therefore, the main physiological — but sometimes pathological — 
contribution to plasma triglycerides and tissue fatty acids, in terms of both quantity and 
quality, occurs during the postprandial period (Miles & Nelson, 2007). Acute elevation in 
plasma triglycerides, which may produce local elevation of fatty acids in beta-cells, is related 
to the increase of glucose-induced insulin secretion (Lopez et al., 2008; Lopez et al., 2010). 
Adipose tissue serves as a triglyceride storage site and, when necessary, stored triglycerides 
in adipocytes can be hydrolyzed by their adipose triglyceride and hormone-sensitive lipases 
to release fatty acids into the bloodstream. Excessive rates of lipid turnover have been 
shown to precede the development of type 2 diabetes in subjects with a family history of 
type 2 diabetes and nondiabetic obese individuals (Cusi, 2009). Decreased insulin sensitivity 
in adipose tissue is characterized by the increase of lipolysis and plasma fatty acid levels 
despite hyperinsulinemia, and impaired suppression of plasma fatty acid levels by insulin. 
This elevation in the plasma fatty acids, if chronic, induces a decrease in hepatic and skeletal 
muscle insulin sensitivity and detrimental effects on beta-cell function, which has been 
referred to as lipotoxicity (Giacca et al., 2011). Here, we review studies in insulin-secreting 
cell lines, islet cells, animal models, and human beings that have informed our current 
understanding of the mechanistic links among dietary fatty acids, beta-cell function, and 
insulin sensitivity. 

2. Types of major dietary fatty acids 

A fatty acid is a carboxylic acid that often has a long unbranched aliphatic chain. Fatty acids 
are divided into SFA and unsaturated fatty acids based on structural and chemical 
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properties (Fig. 1). SFA do not contain any double bonds or other functional groups along 
the chain, which is fully saturated with hydrogen atoms. Palmitic acid (16:0) is composed of 
16 carbon atoms and is the principal SFA in the diet. SFA is found chiefly in animal 
products, including meats and dairy foods, but is also found in some plant sources, 
including coconut, cottonseed, and palm kernel oils. MUFA are unsaturated fatty acids that 
contain one pair of carbon atoms linked by a cis double bond. The major dietary MUFA is 
oleic acid (18:1n-9), which has 18 carbon atoms with the double bond occurring 9 carbon 
atoms away from the methyl end of the fatty acid molecule. Oleic acid is the primary 
component of olive oil, but also can be found in hazelnut, canola, and peanut oils. A carbon 
chain that contains two or more cis double bonds with the first double bond located 
between the third and fourth or sixth and seventh carbon atom from the methyl end of the 
fatty acid molecule characterises the families of n-3 or n-6 PUFA. These families cannot be  
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Fig. 1. The structure of the most significant dietary fatty acids. 
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synthesised by the human body (double bonds can be introduced into all positions of the 
fatty acid chain except for the n-3 and n-6 positions) and must be obtained from the diet 
either as alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6), or their long-chain PUFA 
derivatives (Das, 2006). Of these fatty acids, eicosapentaenoic acid (20:5n-3), 
docosahexaenoic acid (22:6n-3), dihomo-gamma linolenic acid (20:3n-6), and arachidonic 
acid (20:4n-6) are the most metabolically significant. While conversion of linoleic acid to 
dihomo-gamma linolenic acid and arachidonic acid is typically very efficient, conversion of 
alpha-linolenic acid to eicosapentaenoic acid and docosahexaenoic acid is much less so 
(Brenna et al., 2009). This fact has particular importance in people with compromised alpha-
linolenic acid availability or conversion enzyme activity. Therefore, not only alpha-linolenic 
acid and linoleic acid but also long-chain n-3 PUFA should be considered as essential fatty 
acids. Linoleic acid and alpha-linolenic acid can be found in vegetable oils, linoleic acid in 
safflower, sunflower, soybean, maize, and cottonseed oils, and alpha-linolenic acid in 
flaxseed, blackcurrant, walnut, rapeseed, and soybean oils. Eicosapentaenoic acid and 
docosahexaenoic acid are abundant in cold-water fatty fish, including herring, sardines, 
mackerel, salmon, tuna, and shellfish. 
Requirements in MUFA, n-3 and n-6 PUFA are satisfied by the diet. MUFA can be 

synthesised from acetyl-CoA within mammalian tissues. However, it is unclear whether the 

entire MUFA requirement can be met by de novo metabolic machinery. MUFA, and 

specifically oleic acid, represent one of the core components of the Mediterranean diet 

(mainly due to the liberal use of virgin olive oil), which represents a prototypical dietary 

model associated with a long life expectancy and a low occurrence of chronic diseases, 

including type 2 diabetes (Lopez-Miranda et al., 2010). 

3. Dietary fatty acids on insulin secretion 

3.1 Acute and long-term in vitro or animal studies 
Pancreatic beta-cells can respond to dietary fatty acids at the metabolic, signal transduction 
and transcriptional levels to promote or attenuate beta-cell function or survival (Torres et al., 
2009). The ability of fatty acids to acutely induce insulin secretion spans a remarkably broad 
range, increasing and decreasing with chain length and degree of unsaturation, respectively. 
Oleic acid elicits half the insulinotropic potency of palmitic acid in perfused rat pancreas. 
Furthermore, acute exposure of rat insulinoma INS-1 cells to oleic acid enhances insulin 
production and even reverses the inhibitory effect of TNF-alpha (Vassiliou et al., 2009). This 
output of insulin from beta-cells can be mediated by different metabolic processes, which 
are activated once the fatty acids reach the cytoplasm and/or bind to cell surface platforms, 
including G protein-coupled receptor 40 (GPR40) (Morgan & Dhayal, 2009) and fatty acid 
translocase FAT/CD36 (Wallin et al., 2010). On the contrary, long-term (chronic) exposure of 
human islet cells to palmitic acid impairs glucose-stimulated insulin secretion, reduces 
insulin gene transcription and induces beta-cell apoptosis (lipotoxicity) (Giacca et al., 2011), 
whereas oleic acid is cytoprotective for beta-cells and even attenuates the proapoptotic 
effects of palmitic acid (Morgan, 2009). There are a growing number of proposed 
mechanisms regarding the toxicity of palmitic acid in beta-cells, ranging from physical and 
chemical rearrangement of lipid stores to transcriptional regulation of lipogenic genes 
(Poitout et al., 2009). Endoplasmic reticulum (ER) homeostasis is particularly affected by a 
sustained hypersecretory activity of beta-cells to fatty acids (Cnop et al., 2010). Other effects 
include direct ER Ca2+ depletion, an increase in phosphorylation of the ER Ca2+ sensor 
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protein kinase R-like ER kinase (PERK), and an increase in the protein level of transcription 
factor C/EBP-homologous protein (CHOP) (Gwiazda et al., 2009). Palmitic acid-induced 
INS-1 beta-cell death involves the activation of the stress-related C-Jun N-terminal kinase 
(JNK) pathway through Toll-like receptor 4 (TLR4) (Lee et al., 2011). It is notable that the 
precise mechanisms by which oleic acid antagonizes the deleterious effects of palmitic acid 
in beta-cells remain unknown. 
In a mouse model of haploinsufficiency of beta-specific glucokinase (Gck+/-), where animals 

have a normal beta-cell mass but impair insulin secretion in response to glucose, dietary 

linoleic acid was recently found to exacerbate beta-cell ER stress and apoptosis (Shirakawa 

et al., 2011). An increase in CHOP-positive nuclei and terminal deoxynucleotidyltransferase-

mediated dUTP-biotin nick-end labelling (TUNEL)-positive apoptotic nuclei were observed 

in pancreatic beta-cells of Gck+/- mice fed a diet rich in sucrose and linoleic acid, when 

compared with a diet rich in sucrose and oleic acid. These effects were not evident in 

euglycemic wild-type or insulin receptor substrate-1 deficient (IRS-I-/-) mice, indicating that 

hyperglycemia amplifies fatty acid-induced beta-cell ER stress and lipotoxicity. Likewise, 

the expression levels of CHOP, activating transcription factor 4 (ATF-4), and cleaved 

caspase-3, and the Bax/Bcl-2 ratio significantly increase in pancreatic islets from wild-type 

mice or stably transformed insulinoma cell line MIN6 when exposed to linoleic acid or 

palmitic acid in comparison with oleic acid in the presence of high-glucose concentration. 

3.2 Human postprandial studies: saturated fatty acids versus monounsaturated fatty 
acids 
Exaggerated postprandial hypertriglyceridemia is an inherent feature of diabetic 

dyslipidemia and is frequently found even in diabetic patients with normal fasting 

triglycerides (Tentolouris et al., 2008). Such phenomena would be consistent with studies 

linking SFA-rich meals to dysfunctions in insulin secretion and the frequency of type 2 

diabetes (Misra et al., 2010). It is probable that MUFA, PUFA, and SFA could compete at the 

level of the beta-cell (Fig. 2). The islet tissue, which expresses LPL, could access triglycerides 

from postprandial triglyceride-rich lipoproteins (TRL) as a source of free fatty acids, in 

which case, the type and concentration of the fatty acid in the immediate vicinity of the beta-

cells is likely to be dependent on the nature of the dietary fatty acids (Lopez et al., 2010). As 

indicated above, the input of fatty acids into the beta-cell can be mediated by cell surface 

platforms (GPR40 and FAT/CD36), but apoE-dependent and independent recognition sites 

could also cooperate with LPL to selectively remove postprandial TRL and to immediately 

generate intracellular fatty acids via catabolic pathways (Lass et al., 2011; von Eckardstein & 

Sibler, 2011). 

When compared to SFA (i.e., palmitic acid)-rich meals, MUFA (i.e., oleic acid)-rich meals 
induce a lower early postprandial insulin response in healthy subjects (Lopez et al., 2008). 
These findings are consistent with the notion that in comparison with palmitic acid, oleic 
acid might moderate the compensatory hyperactivity of beta-cells in the postprandial state, 
although whether this maintenance of glucose tolerance during feeding periods could 
prevent or delay the development of overt type 2 diabetes remains to be elucidated. 
Fasting hypertriglyceridemia results from either overproduction of triglycerides by the liver, 
impaired lipolysis, or a combination of both. In hypertriglyceridemic patients, the 
overproduction of triglycerides is disproportionately greater than the increase in apoB100 
production, resulting in the formation of large triglyceride-rich VLDL particles (Caslake & 
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Packard, 2004). Obesity and insulin resistance result in increased hepatic supply of fatty 
acids and overproduction of triglycerides. Insulin inhibits VLDL production in an effort to 
reduce the postprandial triglyceride response to a high-fat meal. A recent randomised and 
within-subject crossover study in volunteers who were newly diagnosed with type IIb or IV 
hyperlipoproteinemia revealed that postprandial beta-cell function is buffered with MUFA 
when compared to SFA (Lopez et al., 2011), therefore extending the relationship between 
MUFA-rich meals and the benefits on postprandial glucose homeostasis observed in 
subjects with normal fasting triglyceride levels (Lopez et al., 2008) to a population of 
subjects with high fasting triglyceride levels. 
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Fig. 2. The potential impact of dietary fatty acids on beta-cell function in the postprandial 
state. 

4. Dietary fatty acids on insulin sensitivity 

4.1 Long and short-term human controlled studies 
Long-term habitual dietary fatty acids also relates to insulin sensitivity. However, food-

frequency questionnaires do not provide reliable estimates of absolute amounts of dietary 

fatty acids, which may in part explain the inconsistency of long-term studies linking dietary 
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fatty acids with beneficial or detrimental effects on glucose metabolism. There is only 

consensus that a fatty acid pattern associated with decreased insulin sensitivity is 

characterized by high consumption of palmitic acid. The diversity of dietary fatty acids is 

reflected in plasma lipids and tissues. For example, the fatty acid composition in adipose 

tissue partially reflects the consumption of dietary fatty acids over a considerable time, but 

also reflects the activities of enzymes responsible for fatty acid synthesis, desaturation, and 

elongation. In a recent observational study, palmitic acid in adipose tissue was negatively 

linked to insulin sensitivity in a large community-based cohort of elderly men (Iggman et 

al., 2010). It was also found a positive association between oleic acid, linoleic acid, and 

alpha-linolenic acid in adipose tissue and insulin sensitivity. Furthermore, decreased insulin 

sensitivity and type 2 diabetes are related to increased pancreatic cancer risk. A positive 

association of palmitic acid intake, mainly from red meat and dairy products, with 

pancreatic cancer has been recently described in men and women after a mean of 6.3 years 

of follow up (Thiebaut et al., 2009). 

Despite the reasonable replacement for SFA in terms of risk factor for chronic diseases in 
general and type 2 diabetes in particular are MUFA, because the consumption of n-3 and n-6 
PUFA is limited to less than 10% of the total daily calories, most studies have involved n-3 
and n-6 PUFA for investigating the association between long and short-term dietary fatty 
acid consumption and insulin sensitivity. There is no clear evidence to suggest that n-3 
PUFA improve insulin sensitivity in humans. Very high doses of n-3 PUFA may even 
impair insulin sensitivity in subjects with type 2 diabetes (Mostad et al., 2006). However, 
after only 5 weeks, the insulin sensitivity is improved in volunteers (healthy, obese, and 
type 2 diabetics) when SFA are replaced by n-6 PUFA (Summers et al., 2002). Similar 
findings are observed in overweight individuals after substitution of SFA with MUFA 
(Lovejoy et al., 2002). 
The mechanisms by which dietary fatty acids influence insulin sensitivity have been 
previously reviewed (Riserus, 2008). The fatty acid composition of cell membrane may be 
affected by dietary fatty acids, and then cell membrane functions, e.g., translocation of 
glucose transporters, membrane fluidity, ion permeability, and/or insulin receptor 
binding/affinity. Dietary fatty acids can also improve hepatic insulin sensitivity by 
suppressing lipogenic gene expression and hepatic lipogenesis, and stimulating hepatic 
fatty acid oxidation. SFA, palmitic acid in particular, have a contrary effect. Different 
observational studies suggest that the level of palmitic acid intake may even independently 
predict type 2 diabetes (Hodge et al., 2007). 

4.2 Human postprandial studies: saturated fatty acids versus monounsaturated fatty 
acids 
Dietary fatty acid quality, rather than quantity, has been suggested to acutely influence 
insulin sensitivity in humans (Lopez et al., 2010). Compensatory hyperinsulinemia due to 
enhanced beta-cell function is considered to be an obligate accompanying feature in insulin 
resistance syndromes (Reaven, 2005). Euglycemic clamps or frequently sampled intravenous 
glucose tolerance tests are the reference methods to determine beta-cell sensitivity to glucose 
and the sensitivity of body tissues to insulin (Cobelli et al., 2007). However, these tests are 
far from physiological because insulin secretion or activity is only measured in the steady-
state. Empirical and model-based indices based on the oral glucose tolerance test (OGTT) 
provide a reasonable approximation of postprandial beta-cell function and whole-body 
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insulin sensitivity (Bartoli et al., 2011). An important caveat of the OGTT is that the events 
associated with the ingestion of a pure glucose solution are not wholly equivalent to the 
numerous metabolic events associated with eating a mixed high-fat meal when both 
carbohydrates and fatty acids are ingested. 
It has been hypothesised that insulin resistance syndromes might be a postprandial 
phenomenon linked to the acute metabolism of dietary fatty acids (Pedrini et al., 2006). 
When mixed high-fat meals with different proportions of dietary fatty acids are 
administered to healthy subjects, they become less insulin resistant postprandially as the 
proportion of MUFA to SFA, and oleic acid to palmitic acid, in dietary fatty acids increase 
(Lopez et al., 2008). In subjects who were newly diagnosed with type IIb or IV 
hyperlipoproteinemia, postprandial insulin sensitivity is also improved with MUFA when 
compared to SFA (Lopez et al., 2011). Furthermore, with regard to resistance to insulin-
mediated glucose disposal, SFA (i.e., palmitic acid) was found to stimulate additional 
insulin secretion to maintain postprandial glucose homeostasis, suggesting a mechanism of 
lipid-induced deterioration of insulin sensitivity coupled with compensatory insulin 
secretion that is distinctively modulated by dietary fatty acids. 

5. Conclusion 

Dietary fatty acids are nutrient signals that play a relevant role in modulating insulin 
secretion and action. SFA, particularly palmitic acid, are associated with damage of glucose-
stimulated insulin secretion and lipotoxicity in beta-cells and with decline of insulin 
sensitivity. MUFA, particularly oleic acid, are cytoprotective for beta-cells, even attenuate 
the cytotoxic effects of palmitic acid, and improve insulin sensitivity in comparison with 
SFA. PUFA, either of n-3 or n-6 family, do not confer additional benefit over MUFA. 
Therefore, efforts to promote the consumption of MUFA in place of SFA should be relevant 
as part of a dietary lifestyle strategy to prevent or manage type 2 diabetes. 
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