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1. Introduction 

 Ionic Liquids (ILs) are known and used for the past several decades (Davis J.H. et al, 2003; 
Wasserscheid & Welton, 2008). In general, there are salts made up of an organic cation and 
inorganic anion. Their ionic structure gives them particular properties: they are usually 
liquid at room temperature, non volatile even at high temperature, capable of solubilizing 
organic and inorganic compounds… Because of these properties, enthusiasm for ILs was 
initially focused on their use as a solvent and at the beginning of 1990, most of the 
researches consisted in reproducing conventional reactions in this new reaction medium 
(Earle & Seddon 2000; Rogers & Seddon, 2003; Baudequin C. et al., 2005; Biswas A. et al., 
2006). Compared to conventional solvents, ILs present a great advantage: they are tuneable. 
In modifying the side chain length of the cation or in exchanging the anion for a bigger or a 
smaller one, you are able to obtain ILs with specific chemical properties and make them 
miscible in the aqueous or organic phase or allow them to dissolve a particular compound. 
As a logical course of events, the early 2000’s, a new class of ILs was synthesized to meet 
special needs such as catalyzing a particular reaction or enabling a reaction which is 
typically not achievable in a conventional organic solvent. Task Specific Ionic Liquids 
(TSILs) results from the covalent tethering of a functional group to the cation or the anion or 
both of them of an ordinary IL, giving the latter the capacity to interact with dissolved 
substrates in specific ways.  
The scope of their applications has expanded over the years. They are attracting much 
interest in many fields of chemistry and industry due to their properties cited above. First 
seen as an alternative to volatile solvent, they are now used in electrochemistry, catalysis, 
asymmetric synthesis, extraction, chromatography... (Seddon, 1997; Sheldon, 1993; Cull et al, 

2000; Wilkes, 2004; Wasserscheid & Keim, 2000; Welton, 1999; Brennecke & Maginn, 2001; 
Fredlake et al., 2004; Henderson & Passerini, 2004). 
One of the most recent uses of ionic liquids is as an electrolyte in batteries of the new 
generation. Ionic liquids are introduced in a polymer matrix and leads to better performance 
and reliability system, thus allowing no electrochemical reactions which could cause 
damage (electrochemical window), low pressure steam, and a high ionic conductivity even 
at room temperature. 
The cost and availability of ILs, especially those with an atypical function in their side chain 
are two issues curbing the use of TSILs in protocols on an industrial scale. One of our 
objectives is to develop an efficient and rapid synthesis of new TSILs with a function in their 
side chain. To achieve our goal, we chose to use acrylic compounds which are industrial 
products easily accessible, available in large quantity and relatively inexpensive. Moreover, 
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our laboratory has a great knowledge of acrylic compounds since we worked in this field for 
years (Caye et al., 1998; Cerf et al., 1992, Cochez et al., 2000; Curci et al., 1993; Gentilhomme 
et al., 2005; Jullien et al., 1996a, 1996b; Mancardi et al., 2007; Pees et al., 2001, 2002, 2003, 
2004)   
 The reactivity of acrylic compounds can provide extensive opportunities to access to 
various original ILs. As shown on Fig. 1, on an acrylic type compound, it is possible to 
introduce an Ionic Part (IP) on two different sites: via a nucleophilic substitution at the end 
of the esterifying chain (Way 1) or via a Michaël type addition on the activated double bond 
(Way 2). As a consequence it’s possible to obtain cationic or anionic polymerisable 
monomers using Way 1, depending on the type of ionic part.  
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Fig. 1. Reactivity ways of (meth)acrylic compounds 

A variety of cations can potentially be used to produce ILs. However later in this chapter, 
we will only give description of syntheses of ILs with a cation-type N-alkylimidazolium. 

1.1 General synthetic method 

A mass of methods exist to synthesize ILs. However there is a common denominator among 
all of them: the first step which lies in the formation of the cation. In the case of an N-
alkylimidazole, it consists in quaternization of the molecule’s nitrogen atoms. This step is 
often followed by the metathesis of the resulting counter ions, meaning the exchange of the 
anion of the molecule by another one, providing different or more interesting properties. 
The basis of ILs synthetic path is summarized in Figure 2. 
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Fig. 2. Typical steps for the ionic liquid (type N-alkylimidazolium) 

Depending on haloalkanes and temperature used in the first step, reaction time can vary 
from one to several hours. Nevertheless, the use of microwaves to perform the nucleophilic 
substitution can significantly reduce reaction time (Varma & Namboodiri, 2001a; Levêque et 
al., 2006). Alkyl triflates (Bonhôte et al., 1996) or tosylates (Karodia et al., 1998) may also be 
used.  
It is also possible to easily obtain imidazolium ionic liquids, by performing a one-pot synthesis 
of 2 steps, using Michael addition. First the counter-ion is introduced via the protonation of N-
alkylimidazole by an acid (p-toluenesulfonic acid, methanesulfonic acid, tetrafluoroboric acid 
...). Then, in a second step, the addition of the N-protonated alkylimidazole on a 

α, β unsaturated compound (methyl vinyl ketone, methyl acrylate, acrylonitrile ...) leads to the 
obtention of an imidazolium type IL with a functionalized side (Fig. 3): 
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Fig. 3. One pot synthesis of N-methyl-N-alkylimidazolium ionic liquid   

In reversing the two steps, i.e. first imidazole addition on a conjugated double bond, then a 

N-alkylation, the same derivatives may be obtained. The Michael addition of imidazole or 

its derivatives on an activated double bond can be catalyzed by various reagents: enzyme 

catalysis (Cai et al., 2004), Montmorillonite catalysis (Martin Aranda et al., 1997, 2002) and 

activated microwave or ultrasound (Zaderenko et al., 1994), or molecular sieve graft (Blasko-

Jimenez et al., 2009), KF(Yang et al., 2005), Cu (Acac)2(Lakshmi Kantam et al., 2007), liquid 

ion ([bMIM] OH) (Xu et al., 2007).   

1.2 Acrylic monomers  

One of the latest applications of ILs is the synthesis of polymer electrolytes with high ionic 

conductivity. Polymer electrolytes are an area of active research since the early 1980s and 

have applications ranging from rechargeable lithium electrochromic flexible displays and to 

smart windows (Ratner & Shriver, 1988). Most of the time they are made of polymers like 

polyethylene oxide (PEO) filled with diluted alkali salts leading to conductive solutions. 

However, their conductivity remains relatively low at room temperature, so the researchers 

are trying to find ways to improve it. For this they usually carry out doping of the polymer 

structure using compounds such as ion-NTF2 (Christie et al., 2005; Reiche et al., 1995) or 

with salts as plasticizers LiClO4, and NaCF3SO3 LiCF3SO3 (MacFarlane et al., 1995; Forsyth et 

al., 1995) Recently, polymers have also been doped with ionic liquid type imidazolium and 

pyridinium (Noda & Watanabe, 2000): the conductivity of these compounds is located 

around 1mS.cm-1. The team of H. Ohno (Ohno, 2001), has chosen to synthesize polymers 

bearing ionic function, rather than using the ionic liquid as a dopant. The molecular weights 

of synthesized polymers were not measured, the authors only report the stickiness and 

rubbery compounds obtained as proof of proper functioning of the reaction (Yoshizawa & 

Ohno, 2001; Ohno, 2001). The team of Chen (Chen et al., 2009) studied the effect of random 

polymer composition of ionic liquid polymerize, while recent publication of Matsumoto 

(Matsumoto et al., 2010) report the synthesis of Met-IL (1-(2-methacryloloxyethyl)-3-

methylimidazolium bis(trifluoromethanesulfonyl)imide), and evaluate molecular weight of 

homopolymer, after transformation in PMMA. As expected the ionic conductivity of ILs 

decrease during their polymerization: it’s reported that they lose 20% to 33% of their initial 

conductivity. The authors show that the chain length between the imidazolium cation  and 

the polymeric chain seems to have an influence on the polymer conductivity: if the string is 

longer, it should have a greater flexibility and as a consequence a higher conductivity. 

Furthermore the length of the side chain has more influence on the conductivity of a cationic 

polymer than that of an anionic polymer. 

Since the beginning of our researches, one of our main concerns has been to prepare new 

monomers having an element that can confer flexibility in their esterifying chain: we chose 

the sulfur atom, known for this property. 
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2. Synthetic methods modifying the esterifying chain: Way 1 

Herein, we wish to report our recent work on the syntheses of new ILs containing (meth) 

acrylic functions. Looking for interest of potential applications of ILs we focused our 

attention in two directions: 

- Synthesis of new ILs possessing a high conductivity and a polymerisable double bond 

which can lead, after polymerization, to a novel family of polymer electrolytes, 

- Development of new synthetic methods from (meth) acrylic compounds which provide 

simple and efficient ILs containing a carboxylate function. 

The (meth) acrylic compounds are of some interest. They are highly reactive due to the 

presence of the activated double bond. This latter can undergo nucleophilic attack (Michael 

reaction) or can be subject to radical reaction. The esterifying chain can also be modified by 

simple (trans) esterification reaction. Moreover they are cheap industrial compounds 

synthesized on very large scale. Figure 4 describes two aspects of the synthetic methods 

(process 1 -process 2): 
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Fig. 4. General scheme of ionic acrylic monomers synthesis 

The process consists in modifying the esterifying chain of the (meth) acrylic system thus 

leading to two types of ILs : 

- Cationic ILs, which are (meth)acrylic monomers with a cationic part grafted at the end 

of their esterifying chain (Fig.5a). 

- Anionic ILs, which have this time an anionic part attached to the (meth)acrylate 

function (Fig.5b). 
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Fig. 5. General structure of cationic (a) and anionic (b) (meth)acrylic IL, (R=H,Me) 
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2.1 Process 1: Synthesis of cationic monomers  
2.1.1 Synthesis 

The starting material, halogeno alkyl (meth)acrylate, can easily be prepared through the  
esterification of a (meth) acrylate type compound with various halogenoalcohols. Two 
methods are then available: the use of (meth)acrylic acid refluxing in cyclohexane or the one 
of (meth)acryloyl chloride in the presence of a tertiairy amine (pyridine or triethylamine). In 
order to avoid polymerization during the process, hydroquinone methyl ether (HQME) is 
added in the reaction medium. Yield depends on the halogenoalkyl chain length and also on 
the (meth)acrylic system nature. The best results are obtained with n=6 and acrylic acid 
(Fig.6). 
Note: halogenoalcohols were purchased from Aldrich chemical or synthesized using the 
described methods (Ford-Moore & Perry, 1963; Suk-Ku et al., 1985)  
At first, we adapted a classical well described method consisting in the reaction of the 

halogeno(meth)acrylates with N-methylimidazole (Nakajima & Ohno, 2005) (Fig. 6). 
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n = 2,3,6

HO X

n O

R

O

X

n

49-93% yields

N
N

O

R

O

N N

n
X

52-99% yields

 

Fig. 6. Synthesis of cationic monomers (R = Me, [MAlkylMim][X] and R = H, 
[AAlkylMim][X]) 

Unlike Ohno’s procedure (i.e. an excess of N-methylimidazole) we used an equivalent 
amount of N-methylimidazole and halogeno(meth)acrylate which enabled us to avoid a 
purification step since no N-methylimidazole was left in the final product. Some amount of 
HQME was added to the other reactants in order to avoid polymerization reaction. The 
reaction was followed by 1H NMR and its completeness was unambiguous since the signals 
of N-methylimidazole moieties at 3.64 (CH3), 6.86 (HCN(Me)), 7.01 (NCH) and 7.38 (NCHN) 
ppm have disappeared in favour of those from N-methylimidazolium  respectively at 3.74, 
7.35, 7.41, 8.5-10 ppm. 
We observed that when n = 6, the product is well synthesized, both with Br and Cl halides. 
When n = 3, the reaction is really slower. As a consequence, the reaction time must be 
increased when the less reactive halide (X = Cl) is present and consequently some 
polymerization products appears. Nevertheless the final product is easily purified by an 
ether washing.  
All synthesized products are viscous liquids or solids having melting below 130°C which 
can be considered as ILs. They are also watersoluble. As the reaction is carried out without 
any solvent, the work up is very easy and yields are generally around 90%. However, as 
reaction time is somewhat too long, several trials to reduce it were attempted. 
Sonochemistry (Namboodiri & Varma, 2002; Estager et al., 2007; Levêque et al., 2007) and 
microwave chemistry (Levêque et al., 2007; Varma & Namboodiri, 2001b) which are well 
described in the literature and often named as a good way to shorten reaction times, were 
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used to try to improve our reaction. In the previous synthetic method the quaternarisation 
of 3-bromopropyl methacrylate with N-methylimidazole leads to 99 % yield in 24 hours. The 
same reaction was realized using ultrasonic amplitude of 40 %( apparatus: 20 kHz ultrasonic 
processor, power: 130 W). In a few minutes temperature raised and 1H NMR follow-up 
revealed the disappearance of N-methylimidazole protons at the favour of those of 
imidazolium salt. The final product is obtained with a 99% yield in only 35 minutes (Fig. 7). 
Still the will to decrease the reaction time of the quaternarisation step, an experiment was 
realized in a microwave oven (150 W delivered, power is a function of temperature) 
determinate temperature (75°C) to avoid the polymerization of the methacrylate. After 45 
seconds, the quaternarisation is achieved with a 99% yield (Fig. 7). :  
 

O

O

Br

+ N N
O

O

N N

Br

)))), 40% ampl., 35 min. 99% yield
MW, 150W max, 75°C, 45s., 99%yield  

Fig. 7. Synthesis of [MPMIm][Br] using ultrasons or microwave activation 

Remark: the reaction with n=2 has not been studied. Indeed The halide in β-position for the 

ester function is somewhat poor reactive referring to some other works (Dubosclard-

Gottardi et al, 1995; Fort et al., 1993; Cerf, 1991) which clearly explain the non-reactivity of 

the β-C in halogeno(meth)acrylates.  

In conclusion, we have demonstrated that synthesis of imidazolium acrylates are possible 

varying length chain. Moreover, N-(methacryloyloxypropyl)-N’methylimidazolium 

bromide [MPMIm][Br] was successfully obtained via quaternarisation using alternative 

methods: under ultrasounds and under microwave irradiation in a microwave oven. 

Compared with thermal heating, we observed a rate acceleration and drastically reduced 

reaction times. 

2.1.2 Metathesis of halogenoimidazolium salts 

The properties of IL are widely dependent on the nature of the counter-ion: its size or 

structure can affect the physical properties of the resulting IL, especially its melting point 

and its viscosity (Handy S.T, 2005). When the anion is small, the structure tends to act as a 

classical crystal salt like sodium chloride (Fig 8.A). But when the anion becomes more bulky, 

the structure of the IL is then disorganized and, becomes unsymmetrical: so it acts like a 

liquid (Fig. 8.B): 
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Fig. 8. Ionic structure of crystal salt (A) and liquid (B) 
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On this basis we explored several ways to realize the counter-ion metathesis (Fig. 9). 
- Metathesis of anion with hydracids: at first we applied a well-established method 

consisting of a reaction between an IL and an hydracids (HY) in an aqueous medium 
(Gordon et al., 1998). The IL (Br counter-ion) reacts with HY in water: the reaction is 
very exothermic and HY must be carefully added. The novel IL is obtained by filtration 
or extraction with an organic solvent, depending on the compound state (solid or 
liquid). In all cases IL are not (or only lightly) water-soluble. Yields (table 1, entry 1, 3, 5, 
7, 9, 11, 13, 15) are depending on the solubility of ILs. When they are partially water-
soluble, a small quantity of them is lost and yields decrease. 

- Metathesis of anion with ammonium and lithium salts: we try to perform a counter-
anion metathesis of the IL with NH4BF4 salt in order to try to improve the reaction 
yield. The solvent used during the reaction is acetone which allows the solubilisation of 
final product but not the one NH4Br, by-product of the reaction, which makes the 
purification easier. Moreover the solvent is simple to remove. The reaction is carried out 
with one molar equivalence of IL ammonium salt which are soluble in acetone. The by-
product is removed by filtration and the filtrate is concentrated under vacuum to get a 
liquid or a solid. Yields are quite improved compare to the first metathesis (table 1, 
entry 2, 6, 10, 14). 

 

O

R

O

N N

n
Br

O

R

O

N N

n
Y

R = H, Me
n = 3, 6
Y= BF4, NTf2  

Fig. 9. Metathesis of bromide in [MAlkylMim][Br] or [AAlkylMim][Br] 

 

Entry Product n R Reagent Yield 
Solubility in 

water 

1 
2 

[MPMim][BF4] 
 

3 Me 
HBF4 

NH4BF4 
33% 
91% 

Partial 

3 
4 

[MPMim][NTf2] 3 Me 
HNTf2 
LiNTf2 

34% 
91% 

No 

5 
6 

[APMim][BF4] 
 

3 H 
HBF4 

NH4BF4 
34% 
82% 

Partial 

7 
8 

[APMim][NTf2] 3 Me 
HNTf2 
LiNTf2 

85% 
68% 

No 

9 
10 

[MHMim][BF4] 
 

6 Me 
HBF4 

NH4BF4 
56% 
87% 

Partial 

11 
12 

[MHMim][NTf2] 6 Me 
HNTf2 
LiNTf2 

78% 
89% 

No 

13 
14 

[AHMim][BF4] 
 

6 H 
HBF4 

NH4BF4 
51% 
79% 

Partial 

15 
16 

[AHMim][NTf2] 6 Me 
HNTf2 
LiNTf2 

38% 
63% 

No 

Table 1. Results of Metathesis of bromide in [MAlkylMim][Br] or [AAlkylMim][Br] 
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In a similar way, we tried the same reaction but this time with a lithium salt, LiNTf2, which 

is far less expensive than HNTf2. We chose CHCl3 as solvent reaction because the reaction 

by-product, LiBr, isn’t soluble in it and so, this latter is easy removable from the reaction 

mixture. The reaction was performed under the same conditions than those used with the 

tetrafluoroborateammonium salt. The IL is obtained by extraction and the solvent is 

removed under vacuum to get a liquid. We observed that yields are generally improved 

compare to those from the first method (table 1, entry 4, 8, 12, 16) 

In conclusion, the metathesis of anion can be performed in different ways. Laborious 

reactions with hydracids can be satisfactorily avoided using the corresponding salts.  

2.1.3 Special IL and new development 

In cationic ILs, viscosity and conductivity are largely dependant on the flexibility of the 

esterifying chain of the (meth) acrylic moiety. From this point of view, we tried to insert a 

sulfur atom in the esterifying chain. The synthesis is realised in three steps and the overall 

yields are 50% and 58% when R is respectively Me and H (Fig. 10). 

 

HO
SH

+ ClBr
NaOH 50% / Bu4NBr ClS

HO

0°C to RT, 2 h,
79% yield

O

OH

R

APTS, cyclohexan, EMHQ
reflux, 2 h

R = H, 71% yield
R = Me, 79% yield

ClS
O

O

R

S
O

O

R

N

N

+

Cl-

Imidazole, 50°C

48 h, EMHQ

R = H, 90% yield
R = Me, 93% yield  

Fig. 10. Synthesis of sulfurated ionic (meth)acrylic monomers 

These new compounds are identified without ambiguity with the NMR spectra:  

R = H :1H NMR, δ ppm (250 MHz; CDCl3): 8.25 (NCHN, s), 7.86 (2 CHN,d), 6.39 (CH=, dd, 

Jgem=1,5Hz,Jtrans=16,7Hz), 6.14 (CH=, dd), 5.87 (CH=, dd, Jgem=1,5Hz, Jcis=10Hz), 4.32 (CH2O, 

t), 4.25 (CH2N, t), 3.74 (CH3N, s), 2.81 (2 CH2S, m), 1.98 (CH2, q). 13C NMR, δ ppm (250 MHz; 

CDCl3): 165.8 (CO), 136.7 (NCHN), 131.0 (CH2=), 128.1 (CH=), 122.9 (CHN), 122.4 (CHN), 

63.6 (CH2O), 40.9 (CH2N), 35.8 (CH3N), 33.2 (CH2S), 30.4 (CH2S), 28.0 (CH2). 

R = Me: 1H NMR, δ ppm (250 MHz; CDCl3): 8.25 (NCHN, s), 7.42 (2 CHN,d), 6.12 (CH=, d), 

5.55 (CH=, d), 4.36 (CH2O, t), 4.21 (CH2N, t), 3.74 (CH3N, s),2.80 (2 CH2S, m), 1.92 (CH2, q), 

1.85 (CH3, s). 13C NMR, δ ppm (250 MHz; CDCl3): 167.1 (CO), 136.7(NCHN), 136.0 (C=), 

125.8 (CH2=), 122.9 (CHN), 122.4 (CHN), 63.8 (CH2O), 41.0 (CH2N), 35.8 (CH3N), 33.0 

(CH2S), 30.5 (CH2S), 28.2 (CH2). 

This work is currently under study. 
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2.2 Process 2: Synthesis of anionic monomers 

As mentioned above, anionic ILs generally have a better conductivity and a lower viscosity 
than cationic ILs: This is due to the higher lability of the cation in an anionic IL which 
induces a greater flexibility of the structure. In order to compare physicochemical properties 
of cationic and anionic IL, we focused our attention on two ionic ILs, we chose to synthesize 
two anionic ILs which structures are alike with those from cationic ILs described above: one 
has three carbon atoms in the side chain and the other exhibits a sulfur atom. 

2.2.1 Synthesis of 4-(meth)acryloyloxybutanoate N-methylimidazolium salt  

1,4 butanediol, in large excess, was reacted with (meth)acryloyloxy chloride to prepare 4-
hydroxybutyl(meth)acrylate (Chaudron, 1999). Resulting monomers were reacted with 
Jones reagent (CrO3/H2SO4/H2O) in order to prepare corresponding carboxylic acids. 
Filtration on silica and a liquid-liquid extraction allowed the obtention of pure acids. Finally 
an acido-basic reaction between carboxylic acids and N-methyl imidazole to led the 
formation of the corresponding anionic IL (Fig. 11).  
 

O

Cl

R

HO
OH

O

R

O
OH+

CHCl3 / Et3N / EMHQ

0°C to RT, 24h

R = H, 63% yield
R = Me, 83% yield

O

R

O COOH

Jones reagent

10°C to RT, 20h

R = H, 69% yield
R = Me, 65% yield

O

R

O CO2
-

N
N

H

+
N-Me imidazole

R =  Me, 50°C, 3h
or US, 40', 95% yield

R = H, RT, 10', 96% yield  

Fig. 11. Synthesis of 4-(meth)acryloyloxybutanoate N-methylimidazolium salt  

In a first step, the reaction (R = Me) was performed at 50°C during 48h. Along with the 
desired IL, we observed the presence of a by-product resulting from the Michael addition 
of N-methyl imidazole on the activated double bound of the (meth)acrylate 
compound(Fig.12). 
It seemed that the reaction time was too long. In fact we observed that the reaction was 
complete after 3h of heating. After this period, if heating continues, IL decomposes to give 
back initial products which perform a Michael addition. As a consequence it is preferable to 
stop the reaction as soon as the IL is synthesized.  In order to avoid formation of the Michael 
addition by-product and to decrease reaction time, sonochemistry was tested on this 
synthesis. In these conditions, it only took 40 minutes to prepare the desired IL. When R = 
H, the conditions have to be less harsh since the acrylic compounds is more reactive than the 
methacrylic one and is more inclined to give the Michael by-product. 10 minutes room 
temperature are enough to obtain the acrylic type IL. 
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O
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NN

T = 50°C, 48h

 

Fig. 12. Scheme for the formation of expected IL an by-product (Michael reaction) 

Finally the overall yields are 42% and 54% for the acrylate and methacrylate compounds 

respectively. These new compounds are identified with the NMR spectra:  

R = H :1H NMR, δ ppm (250 MHz; D2O): 8.40 (NCHN, s), 7.21 (2 CHN, m), 6,34 (CH=, dd, 

Jgem=1Hz,Jtrans=17.5Hz) ; 6,07 (CH=, dd), 5.82 (CH=, dd, Jgem=1Hz, Jcis=10Hz ), 4.16 (CH2O, t), 

3.72 (CH3N, s), 2.44 (CH2C(O), t), 1.98 (CH2, m). 13C NMR, δ ppm (250 MHz; D2O): 178 (CO), 

166.3 (CO acryl.), 136 (NCN), 130.9 (CH2=), 128.3 (CH=), 123 (CN), 120 (CN), 65 (CH2O), 35 

(CH3N), 34 (CH2CO), 25 (CH2). 

R = Me :1H NMR, δ ppm (250 MHz; D2O): 8.41 (NCHN, s), 7.21 (2 CHN, m), 6.06 (CH=,d), 

5.5 (CH=, d), 4.17 (CH2O, t), 3.73 (CH3N, s), 2.11 (CH2C(O), t), 1.73 (CH3 and CH2, m). 13C 

NMR, δ ppm (250 MHz; D2O): 182 (CO), 170 (CO acryl), 136 (NCN), 135 (C=), 126.5 (CH2=), 

123 (CN), 120 (CN), 65 (CH2O), 35 (CH3N), 34 (CH2CO), 25 (CH2), 18 (CH3) 

2.2.2 Synthesis of 6-(meth)acryloyloxy-4-thiahexanoate N-methylimidazolium salt  

Tertiobutylacrylate was first reacted with mercaptoethanol in the presence of triton B (N- 

benzyltrimethyl ammonium hydroxyde (Kharasch & Fuchs, 1948; Melwig, 1995) resulting in 

a Michael reaction with a 99% yield. These conditions tend to be more effective than those 

used in classical radical reaction which only give 54% yield (Curci, 1992). Resulting alcohol 

was esterified with (meth)acryloyl chloride under usual conditions. Nevertheless, the choice 

of the acidic medium during the workup must be taken really carefully. Indeed HCl 10% 

leads easily to the desired products, while H2SO4, hydrolyzes the two ester functions and 

which recovers HO(CH2)2S(CH2)2COOH. Tertiobutyl group was then removed with formic 

acid 98%. In a final step, the quaternarization of the acid was realized with N-methyl 

imidazole using the conditions described above. The reaction time depends on the type of 

compound: 10 minutes for an acrylate compound and 15 minute for a methacrylate one. 

Finally the overall yields are 31% and 37% for the acrylate and methacrylate compounds 

respectively (Fig.13). 

We identified these new compounds with the NMR spectra:  

8.45 (NCHN, s), 7.21 (2 CHN, m), 6,35 (CH=, dd, Jgem=1.5Hz,Jtrans=17Hz), 6,08 (CH=, dd), 

5.79 (CH=, dd, Jgem=1.5Hz, Jcis=10.2Hz ), 4.30 (CH2O, t), 3.72 (CH3N, s), 2.82 (CH2C(O), t), 

2.71 (CH2S, t), 2.58 (CH2S, t)  
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MHz; CDCl3): 178 (CO), 168 (CO acryl.), 136 (NCN), 130.6 (CH2=), 128.3 (CH=), 123 (CN), 

120 (CN), 64.6 (CH2O), 35 (CH3N), 34 (CH2CO), 31.5 (CH2S), 26.9 (CH2S). 

8.42 (NCHN, s), 7.21 (2 CHN, m), 6.07 (CH=,d), 5.62 (CH=, d), 4.27 (CH2O, t), 3.71 (CH3N, s), 
2.83 (2 CH2S, t), 2.82 (CH2C(O), t), 1.92 (CH3, s) 
 

OH
HS+

0°C to RT, 2h, 99% yield

Triton B 5%

O

Cl

R Et3N, CHCl3, EMHQ

0°C to RT, 24h
R = H, 69% yield
R = Me,76% yield

CO2t.Bu
S

HO

O

R

O
S

CO2t.Bu

CO2t.Bu

O

R

O
S

CO2H
HCO2H 98%

RT, 24h

R = H, 49%yield
R = Me, 52% yield

N-methylimidazole
50°C, 10-15'

O

R

O
S

CO2
-

N
N

H

R = H, 94% yield
R = Me, 96% yield

 

Fig. 13. Synthesis of 6-(meth)acryloyloxy-4-thiahexanoate N-methylimidazolium salts 

3. Synthetic methods resulting from aM addition: Way 2 

3.1 Synthesis of (N-(2-carboxyethyl)methylimidazolium salts by Michael addition of 
NMI on acrylic acid 

In literature, the high cost of ILs preparation is repeatedly reported. This is mainly due to 
multi-step syntheses and special counter-ions introduction (NTf2-, OSO2CF3-…). We 
developed a “one-pot” reaction, between acrylic acid (AA), N-methylimidazole (NMI) and 
an fluorinated acid (HBF4, HPF6, HNTf2) (FA), to obtain a fluorine anion. The same reaction 
was performed several times by switching everytime the introduction order of reactants to 
see if that parameter has an impact on the result of the reaction. In all cases, two reagents 
were stirred together and the third one was added after to the mixture. The whole was then 
stirred (24h) at 50°C (Fig. 14).  
 

N
N

N
N OH

O

X
OH

O

+ + HX

 

Fig. 14. General scheme of one pot synthesis of carboxylic acid functionalized imidazolium 
salts by Michael addition 

We observed that whatever reactants addition order is, we only obtained the expected 
product, with a yield of 85% when we use bis(trifluoromethanesulfone)imide acid (HNTf2). 
With HBF4 and HPF6, when NMI and acrylic acid react first, acrylic acid plays the role of an 
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acid and the imidazolium salt is obtained. According to the work of Wasserscheid 
(Wasserscheid et al., 2003), it seems important, first, to mix NMI and the fluorinated acid, 
then to add acrylic acid and heat at 70°C. Following those conditions, we obtained the 
expected product, respectively with 38 and 33% yield. 
The difference of reactivity of these two acids and HNTf2 can be explained by the fact that 
HBF4 and HPF6 are diluted in water, while HNTf2 is pure. As water can be a limiting factor, 
we added a drying step, carried out by microwave heating, before the addition of acrylic 
acid. Thus, performance can be improved and yields are respectively 83% and 77% for HBF4 

and HPF6 (Fig. 15): 
 

N
N

1) HX 3) 

OH

O
/ 70°C, 24h

2) MW, Pmax=150W, 100°C, 5min
N

N H

X

N
N OH

O

X

X = BF4, 83% yield
X = PF6, 77% yield  

Fig. 15. Preparation of carboxylic acid functionalized imidazolium salts using HBF4 and HPF6 

However, even if those two acids are highly reactive, they have the disadvantage of being 
very corrosive. Under certain conditions (high temperature of heating in the presence of 
water) they decompose in particularly dangerous HF. During a reaction we observed the 
attack of inner walls of the glass reactor by a small amount of acid formed. To avoid such 
inconvenience, we developed another path to synthesize these ionic liquids, which does not 
require the use of HBF4 and HPF6, but the one of corresponding ammonium salt. In the first 
step of this method we used bromohydric acid in order to realize the quaternization of NMI. 
The bromide anion is replaced by a fluorinated one in a second step (Fig. 16):  
 

N
N OH

O

+ HBr+
N

N OH

O

Br
NH4X

Acetone N
N OH

O

X

X = BF4, 80% yield

X = PF6, 82 % yield

10 min. RT

 

Fig. 16. Preparation of carboxylic acid functionalized imidazolium salts using NH4BF4 and 
NH4PF6 

The first step can be realized both by reaction of AA with HBr or with NMI (the reaction of 
NMI with HBr leads to the stable methyl ammonium bromide salt which doesn’t react with 
AA), followed by elimination of water using microwave technical. The exchange of anion 
using ammonium salt is rapid (10 min in acetone). The ammonium bromide resulting from 
the counter-anion exchange is insoluble in acetone and, as a consequence, is easily removed 
from reaction mixture by a simple filtration. 

3.2 Synthesis of IL by Michael addition on esters 

In order to broaden the series of product available, Michael addition can be realized on 
acrylic esters, using imidazole (Fig. 17). Quaternization of intermediate products by 
nucleophilic substitution of the halogen leads to the corresponding ILs. The use of 
ultrasound is very effective in the 2 steps of this synthetic path since it reduces impressively 
reaction times. 
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N
N

H

OR

O

+ N
N OR

O
R'

X

N
N OR

O

R'X

Fig. 17. Synthesis of ester functionalized imidazolium salts 

Depending of R substituent (methyl, ethyl, CH2CH2Cl, Butyl, t-butyl, octyl), this reaction 
can take between 30 min. and 3 h. under ultrasonic activation instead of 24h. by eating at 
50°C. The N-alkylation is easy with bromide derivatives but far less with chlorides ones. So 
far, we realized nucleophilic substitution with 3-bromopropanol, and other radicals are 
under study.  

4. Thermodynamics data  

Interactions between IL cations and anions are the consequence of energetic and geometric 
factors leading to a variety of strongly organized and oriented structures. These features 
confer to ILs numerous applications in organic synthesis, separation processes, and 
electrochemistry (Seddon, 1997; Sheldon, 1993; Cull et al, 2000; Wilkes, 2004; Wasserscheid 

& Keim, 2000; Welton, 1999; Brennecke & Maginn, 2001; Fredlake et al., 2004; Henderson & 
Passerini, 2004). The aim of this work is to determine the influence of the (meth)acrylic 
moiety on the thermodynamic properties of the ionic liquid. For this purpose, the study of 
(N-methacryloyloxyhexyl-N-methylimidazolium bromide [MHMim][Br] and N-
acryloyloxypropyl-N-methylimidazolium bromide [APMim][Br] permitted to determine its 
selectivity toward a hexane/benzene mixture and its interactions toward other compounds 
using the Linear solvation Energy Relationship (LSER) descriptor. 
All of these measurements were performed using the inverse gas chromatography 

technique. Column packing of 1 m length containing from 7 to 26% of stationary phases 

(RTIL) on Chromosorb W-AW (60-80 mesh) were prepared using the rotary evaporator 

technique. After evaporation of the dichloromethane under vacuum, the support was 

equilibrated at 323 K over 6 h.  

LSER characterization: Ionic liquids can easily adsorb onto solid surfaces and may form a 

strongly structured interface at the support surface. This interface may induce the 

adsorption of polar solutes. For this reason, it was decided to use the above-described 

experimental procedure that allows the separation of the adsorption contribution. To 

quantify intermolecular solute-IL interactions, we used the LSER equation developed by 

Abraham et al. (Abraham et al., 1987, 1990, 1991, Abraham, 1993). This method allows one to 

correlate thermodynamic properties of phase transfer processes. The most recent 

representation of the LSER model is given by (Mutelet, 2008):  

 log SP  eE  sS  aA  bB  lL c= + + + + +   (1) 

Both ionic liquids studied in this work were analyzed using the above-described (eq 1) LSER 
approach. Coefficients c, e, s, a, b, and l of the ILs were obtained by multiple linear 
regression of the gas-liquid partition coefficients logarithm log KL of 30 solutes (Mutelet et 
al., 2008). The system constants for the two ionic liquids studied in this work at 313.15 K and 
other ionic liquid stationary phases are summarized in Table 2.  
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Ionic liquid System constant 

 e s a b l c 

n-acryloylpropyl-N-
methylimidazolium bromide 

0 2.88 5.5 0 0.48 -1.03 

n-methacryloylhexyl-N-
methylimidazolium bromide 

0 2.46 5.36 0 0.57 -0.87 

1-propenyl-3-methylimidazolium 
bromide 

0 2.16 5.19 0 0.53 -1.86 

1-propenyl-3-octylimidazolium 
bromide 

0 1.72 4.96 0 0.57 -1.60 

1-propenyl-3-decylimidazolium 
bromide 

0 1.73 4.89 0 0.66 -1.58 

1-propenyl-3-dodecylimidazolium 
bromide 

0 1.44 4.87 0 0.7 -1.51 

1-butyl-3-methylimidazolium octyl 
sulfate 

0 1.47 4.05 0 0.68 -0.237 

1-ethyl-3-methylimidazolium 
tosylate 

0.54 2.40 4.81 0.17 0.48 -0.84 

n-butylammonium thiocyanate 0.14 1.65 2.76 1.32 0.45 -0.75 

di-n-propylammonium thiocyanate 0.3 1.73 2.66 0.68 0.47 -0.6 

Ethylammonium nitrate 0.27 2.21 3.38 1.03 0.21 -0.87 

n-propylammonium nitrate 0.25 2.02 3.50 0.9 0.36 -0.97 

Table 2. LSER descriptors of ionic liquids imidazolium type, determined at 313.5K 

LSER coefficients of both ILs studied in this work are slightly different from those obtained 
with other ionic liquids of the imidazolium bromide type.  
- The (c + lL) term gives information on the effect of the cohesion of the ionic liquids on 

solute transfer from the gas phase. In general, the ionic liquids are cohesive solvents 
(Poole, 2004). 

- The ionic liquid interacts weakly via nonbonding and π-electrons (e system constant is 
zero) and is not much different from other polar nonionic liquids. 

- Dipolarity/ polarizability of ionic liquids is slightly higher than most of  
dipolar/polarizable nonionic stationary phases ones. The polarizability decreases 
slightly when the alkyl chain length is increased on the imidazolium ring. But 
introducing a (meth)acryloyloxyalkyl chain in imidazolium bromide-based ionic liquids 
considerably increases its dipolarity/polarizability (s system constants).  

The hydrogen-bond basicity of the ionic liquid (a system constants) is considerably larger 
than values obtained for nonionic phases (0 to 2.1) (Poole, 2004), wheras it hydrogen-bond 
acidity is inexistant (b=0). Ionic liquids have structural features that would facilitate 
hydrogen-bond acceptor basicity interactions (electron-rich oxygen, nitrogen, and fluorine 
atoms). Imidazolium bromide based ionic liquids containing a (meth)acryloyloxyalkyl chain 
have the highest hydrogen-bond basicity, with an a constant of  5,36 and 5,50. This is great 
support for the idea that the interactions between the -OH group and ionic liquids I and II 
are very strong.  
Selectivity determination: Ionic liquids are solvents that may have great potential in 
chemical analysis. Specifically, the applications of RTILs are found in chromatography or 
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extraction chemistry. These compounds, thermally stable, non-toxic with low vapor 
pressure, can act as stationary phases in inverse gas chromatography (Pacholec, 1982, 1983).  
Numbers of organic molten salts were evaluated as stationary phases for gas 
chromatography. Nevertheless only ionic liquids containing imidazolium cation lead to 
high selectivity toward polar and non-polar solutes.  

The selectivity, 12S∞ , which indicates the suitability of a solvent for separating mixtures of 

components 1 and 2 by extractive distillation is given by Tiegs (Tiegs et al., 1986) 

 
1/LI

12
1/LI

γ
S

γ

∞
∞

∞
=   

1/LIγ∞ is the activity coefficient at infinite dilution of compound 1 (hexane) relative to the IL 

1/LIγ∞  is the activity coefficient at infinite dilution of compound 2 (benzene) relative to the 

IL The selectivity values, 12S∞ , relative either to the IL studied in this work and other  

liquid solvents used in industry for the separation of benzene and n-hexane, are reported 

in Table 3. 
 

Entry Solvent 12S∞  Reference 

1 [MAHMIm][Br] 50,4 Mutelet et al., 2008 

2 [APMIm][Br] 27,6 Mutelet et al., 2008 

3 Dichloroacetic acid 6,1 Tiegs et al., 1986 

4 sulfolane 30,5 Tiegs et al., 1986 

5 1-propenyl-3-methylimidazolium bromide 6,96 Mutelet et al., 2006 

6 
1-propylboronic acid-3-octylimidazolium 
bromide 

9,91 Mutelet et al., 2006 

7 
1-ethyl-3-methylimidazolium 
tetrafluoroborate 

61,6 Foco et al., 2006 

Table 3. Selectivity value for the solute Hexane (1) and benzene (2) in solvents 

The selectivity of both ionic liquids studied in this work at 313.15 K is very large as 

compared to the value for classical solvents (entry 1,2). These values are largely higher than 

those of usual industrial compounds (entry 3,4).Compared to similar IL containing bromide 

ion we can suspected than (meth)acrylic alkyl chain is of some importance because usually 

the selectivity increases with decreasing length of the alkyl chain (entry 1,2,4,6). In the same 

way the proximity of (meth)acrylic function decreases the selectivity (enter 1,2). Only 1-

ethyl-3-methylimidazolium tetrafluoroborate has a higher selectivity (entry 7) but it is 

obvious that the chemical nature of the cation and the anion play an important role in 

separation of mixtures of aromatic and aliphatic compounds 

Through this work, we demonstrated that interfacial adsorption could play a significant role 

in the retention mechanism of organic compounds. Results indicate that the introduction of 

(meth)acryloyle substituents on the IL imidazolium cation affects strongly the behavior of 

organic compounds in mixtures with this IL. For instance, the IL used in the separation of 

aliphatic hydrocarbons from aromatic hydrocarbons, shows a higher selectivity than the one 

found by previous workers using classical organic solvents 
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5. Catalytic properties of IL adsorbed on nanoparticles 

One of the recent developments of IL is their use in catalysis (Olivier-Bourbigou et al., 2010). 
Their catalytic properties are well known, and a broad range of reactions have already been 
studied (oxidation, polymerization, enantioselective reactions…).  Moreover, the capability 
to support these catalytic species is an attractive alternative to classic use of ionic liquids, 
because these latter can be recycled. These SILCAs (Supported Ionic Liquids CAtalystS) are 
formed of different IL immobilized on several supports: active carbon cloth (Mikkola et al. 
2007; Virtanen et al. 2007; Maki-Arvela et al. 2006) or silica gel (Riisager et al. 2003; Mehnert 
et al. 2002). They may also contain metal species like rhodium (Riisager et al. 2003; Mehnert 
et al. 2002) or palladium (Mikkola et al. 2007; Virtanen et al. 2007; Maki-Arvela et al. 2006). 
In our case, we realized the adsorption of our monomers on aluminum oxide nanopowder. 
The use of nanoparticules is really interesting since they are more likely to provide a wide 
and homogeneous dispersion of the catalyst in the reaction medium. The preparation of 
these SILCAs is usually based on alumina saturation. After dilution of IL in an organic 
solvent (Komulski et al. 2005; Zilkova et al. 2006; Li et al. 2007), it is then adsorbed on 
alumina nanoparticles surface. This procedure is easy to carry out and does not involve the 
use of metal species in opposition to other methods found in literature (Mikkola et al. 2007; 
Virtanen et al. 2007; Maki-Arvela et al. 2006; Riisager et al. 2003; Mehnert et al. 2002).  
In order to evaluate the catalytic properties of our SILCAs, we chose to test them on a classic 
and simple reaction. As our laboratory has a great interest in heteroatomic compounds 
especially sulfurs (Robert et al. 1996; Pees et al. 2001; Thomas et al. 2006), we chose a 
thioéther synthesis, and benzyl phenyl thioéther in particular (Harmand, 2009). Conversion 
rates of reaction between thiols and halides depend on reaction conditions which are in 
most cases not really environment friendly (extraction difficulties, catalysts loss and so on) 
To prepare SILCAs, three steps are necessary; first the solubilization of IL in chloroform, 
then the addition of the alumina nanoparticules in the solution and finally the solvent 
removal evaporation. This method allows the obtention of a supporting material coated 
with a thin and uniform IL layer. We first compare the reaction between phenyl bromide 

and thiophenol in a basic aqueous solution in methylene chloride, with (table 4, entry 2–21) 
or without (table 4, entry 1) prepared SILCAs (Fig. 18).  
 

SH

+
Br

S
IL/Alumina

Water/NaOH/CH2Cl2

Fig. 18. Synthesis of benzylphenyl thioether, using SILCA as catalysts. 

The principal advantage of this method is the simplified working up: after 4h reflux, the 
solution is filtered to recover the supported catalyst, and then the filtrate is decanted to 
allow organic layer recovery. Without catalyst the conversion rate is very low as predicted 
in a heterogeneous system (table 4, entry 1). Rates are improved in the presence of SILCA 
and results of this preliminary study are satisfactory. Nevertheless depending on the 
molecular structure, results are different. Generally, conversion rates are best when n is 
equal to 6 whenever R is H or Me. For similar chain length, rates are higher when R is a 
methyl. We are currently studying this phenomenon, which could be due to polymerization 
of monomers on the alumina area during SILCAs preparation. Finally, we can note that the 
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highest conversion rates are reached with n = 6 and are quantitative when R = Me (table 4, 
entry 12–16). 
 

Entry IL Conversion (%) 

1 none 25 

2 [MPMim][Cl] 96 

3 [MPMim][Br] 96 

4 [MPMim][PF6] 100 

5 [MPMim][BF4] 73 

6 [MPMim][NTf2] 75 

7 [APMim][Cl] 90 

8 [APMim][Br] 68 

9 [APMim][PF6] 65 

10 [APMim][BF4] 73 

11 [APMim][NTf2] 53 

12 [MHMim][Cl] 100 

13 [MHMim][Br] 100 

14 [MHMim][PF6] 100 

15 [MHMim][BF4] 100 

16 [MHMim][NTf2] 100 

17 [AHMim][Cl] 90 

18 [AHMim][Br] 99 

19 [AHMim][PF6] 92 

20 [AHMim][BF4] 100 

21 [AHMim][NTf2] 84 

Table 4. Results of the synthesis of benzylphenylsulfide using SILCA 

In conclusion, after adsorption on alumina nanoparticles surface, these new polymerisable 
compounds, presented in this work, are used as a new kind of catalysts in the synthesis of 
benzyl phenyl thioether. These SILCAs give better results than a traditional phase transfer 
agent. Moreover, they are totally recoverable at the end of the reaction. As a consequence 
they can be considered as environmentally friendly catalysts. 

6. Conclusion and perspectives  

We described here the synthesis of several new molecules deriving from acrylates, common 
industrial compounds which are really reactive and available in large quantities. These 
molecules exhibit characteristics of ILs like their melting points which are below 100°C and 
others, such as viscosity and conductivity are being investigated. Moreover they have 
demonstrated some physical chemical applications such as in catalysis or in separation 
process. 
In the future our laboratory will develop the work described herein, in three directions. 
First, our attention will be focused on new heteroatomics IL synthesis. We already 
synthesized some sulfurated IL and we wish to develop this class of compounds and 
incorporate some novel heteroatom (P, Si…).  
Many IL synthesized have a polymerizable double bound, so as a second way of action, we  
planned to polymerize these molecules, in order to obtain electrolytes polymers type. These 
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highly ion-conducting electrolytes could have potential applications in a wide range of areas 
such as in lithium battery and dye-sensitized solar cell (Choi N.S. et al., 2004; Shibata Y. et 
al., 2003). ILs have good chemical and thermal stability, low vapor-pressure and high 
conductivity. These properties could be used to product new polymer with particularly 
good properties as some described by Ohno (Washiro S. et al., 2004).  
In a third way we would like to use our work to develop some potential applications in 
green chemistry. We already began to synthesize some compounds using glycerol as 
starting material (Fig. 19). Glycerol is a cheap industrial product which is, for example, 
currently used in acrylic acid synthesis. From glycerol we intend to build dendritic 
structures presenting terminal groups functionalized with the type of function described in 
this work, in order to obtain new green ion-conducting electrolytes. 
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Fig. 19. Dendritic structure starting from glycerol and (meth)acrylic compounds. 
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