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Electron Microscopy in the Diagnosis  
of Amyloidosis 

Tosoni A., Barbiano di Belgiojoso G. and Nebuloni M. 
Pathology Unit and *Nephrology Unit, L.Sacco Dept. Clinical Sciences,  

University of Milan, Milan, 
 Italy 

1. Introduction 

Amyloidosis defines a pathological condition in which organ and tissue damage is related to 
the extracellular deposition of amyloid fibrils, deriving from specific proteins, the amyloid 
precursor proteins. More than 25 different precursor proteins are associated with different 
forms of amyloidosis, which are summarized in Tables 1 and 2. The modern nomenclature is 
based on the type of amyloid protein involved (Sipe et al., 2010). A subdivision into systemic 
and localized amyloidosis is also frequently adopted and is relevant in clinical practice and 
histopathology (Picken, 2010). However, although certain amyloid forms are exclusively 
localized (e.g. neurodegenerative Aǃ), others (e.g. AL) can be either systemic or localized. 
Prions are usually considered a distinct clinico-pathological entity in connection with their 
peculiar infectious nature.  

2. Structural and morphological aspects of amyloid 

2.1 Amyloid fibrils structure  
Structural definition of amyloid differs from those used for diagnostic purpose (Fandrich,  
2007; Greenwald & Riek, 2010). Pathologists define amyloid on the basis of its presentation in 
pathological tissues, namely: extracellular deposition of protein with characteristic fibrils 
appearance in electron microscopy –EM-, typical X-ray diffraction pattern and affinity for 
Congo red with concomitant green birefringence. Secondary components such as serum 
amyloid P integrate definition of amyloid deposits. By contrast, in molecular structural 
studies, tissue depositions are less important than structural similarities. In this context 
amyloid is defined on the basis of the characteristic conformational arrangement of the 
proteins, consisting in highly ordered cross-beta sheet aggregates. This definition of amyloid 
includes pathologic amyloid proteins, synthetic peptides or proteins that form amyloid fibrils 
in vitro but are not associated to clinical symptoms, such as glucagon (Pedersen et al., 2010), 
certain intra-cellular physiological and pathological proteins (e.g. pituitary peptide hormones, 
tau neurofibrillary tangles in Alzheimer’s disease, ǂ-synuclein in Lewy bodies of Parkinson’s 
diseases), and peculiar natural functional proteins such as curli, an E. coli biofilm protein 
(Greenwald & Riek 2010; Pedersen et al., 2010). Most common high resolution structural 
methods for proteins, such as Nuclear Magnetic Resonance –NMR- in aqueous solution and 
crystals X-ray diffraction, are not feasible or limited by the intrinsic nature of the fibrils, which  
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Precursor  
Amyloid 
protein 

Disease  Mainly involved organs 

Ig k or λ  chain AL 
Primary Myeloma 

associated SA 

Kidney, heart, liver, GI, 

peripheral nerve, soft 

tissues 

Ig heavy chain AH  
Primary Myeloma 

associated SA 
Kidney, heart 

Serum apolipoproten A  AA Secondary reactive SA 
Kidney, GI, liver, spleen, 

soft tissues 

ǃ2-microglobulin Aǃ2M Hemodialysis related SA
Osteoarticular tissue, heart, 

GI, lung, soft tissue 

Apolipoprotein AIV 
AApo 

AIV 

SA  associated with 

aging 
Rare forms of SA 

Transthyretin ATTR  Senile SA. Heart, vessels, soft tissues 

Leukocyte chemotactic 

factor2 

ALect2 

rare 
SA Kidney, liver 

Mutant fibrinogen ǂ-chain ΑFib FSA Kidney, liver, spleen 

Mutant transthyretin  ATTR 
FSA familial amyloid 

polyneuropathy I 

Peripheral nerve, heart, GI, 

kidney 

Mutant lysozyme ALys 
Hereditary non 
neuropathic SA, 

Kidney, liver, spleen, GI 

Mutant apolipoprotein AI AApoAI 
FSA familial amyloid 
polyneuropathy II 

Liver, kidney, heart, 
spleen, peripheral nerve, 
GI, skin, larynx 

Mutant apolipoprotein 
AII 

AApoAII FSA Kidney, heart 

Mutant gelsolin AGel Finnish hereditary SA Cornea, cranial nerves 

Mutant cystatin C ACys 
FSA Hereditary cerebral 
amyloid angiopathy 

Cerebral vessels 

Mutant protein of ABri ABri rare British Familial dementia CNS 

Table 1. Types of amyloid proteins associated with systemic diseases and different organ 
involvement. (SA=systemic amyloidosis, A=amyloidosis, FSA=familial systemic amyloidosis 
GI=gastrointestinal tract, NS= nervous system. Pettersoon 2010, Sipe 2010, Dember 2006) 
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 Precursor   
Amyloid 
protein

Disease Organ involved 

Localized 
presentation of 
systemic form 

 AL Localized primary A
Various (kidney, skin, 
bladder, lymph node, GI) 

 AH Localized primary A Kidney

  AApoAI LA 
Aortic atherosclerotic 
plaques, meniscus 

Neurodegenerati
ve form with 
amyloid plaques 

Aǃ protein 
precursor AAP

Aǃ 

Alzheimer’s disease 
(sporadic and 
familial), 
hereditary cerebral 
amyloid angiopathy, 
senile dementia

CNS 

 

Prions 
(transmissible 
amyloid 
proteins)

APrP 

Sporadic (Kuru), 
new variant 
(alimentary) and 
familial CJD, GSSD 

CNS 

Other forms of 
LA  

Pro-calcitonina ACal Tumor associated A C-cell thyroid tumors 

 
Amylin - Islet 
amyloid 
polypeptide

AIAPP Tumor associated A Insulinoma 

 Prolactin APro Tumor associated A Prolactinoma

 
Mutant protein 
of ABri and 
ADan 

ADan  Familial dementia CNS 

 
Mutant 
Keratoepithelin

AKer 
Familial corneal 
amyloidosis

Cornea 

 
Mutant 
corneodesmosi
na

ACDSN 
New ^ 

A in hypotrichosis 
simplex of the scalp 

Hair follicle, papillary 
dermis 

 Lactoferrin ALac Corneal amyloidosis Cornea

 Keratins AK 
Likenoid and 
macular A

Skin 

 
Lactadherin -
Medin

AMed Senile Aortic A Aorta 

 
Atrial 
natriuretic 
factor

AANF Atrial A Cardiac atria 

 Seminogelin ASemI LA Vescicula seminalis 

 
Amylin - Islet 
amyloid 
polypeptide

AIAPP Diabetes type II Islets of Langerhans 

 Prolactin APro Aging pituitary Pituitary gland 
 Insulin AIns Injection-localized A Injection-localized 

Table 2. Types of amyloid protein associated with localized diseases. (LA=localized 
amyloidosis, A=amyloidosis, CJD=Creutzfeldt-Jakob Disease, GSSD=Gerstmann-
Straussler-Scheinker Disease. Sipe 2010, Merlini 2003, Furnier 2000, ^Caubet 2010, 
Sikorska 2009) 
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are insoluble in water and represent one-dimensional forms, with single translational and 
rotational symmetry elements. The various other technologies employed include: NMR in 
solid-state, circular dichroism, Fourier transform infrared spectroscopy, atomic force and 
EM. Currently, high resolution structural data regarding the fibrils of the different types of 
amyloid remain fragmentary, and frequently they depend on used technical approach 
(Fandrich, 2007; Sachse et al., 2006; Jimenez et al., 2001; Stromer & Serpel 2005). Most of the 
current structural data on amyloid fibrils derive from EM such as transmission EM –TEM- 
techniques, electron-diffraction microscopy, and, more recently, scanning TEM and cryo 
TEM, using single particle image analysis (Jimenez et al., 2001; Stromer & Serpel 2005). 
Reports giving models for structure of amyloid fibrils are based mainly on TEM and atomic 
force diffraction studies of amyloid extracted from tissue and purified (ex vivo studies), or 
synthetic short peptides from amyloid protein sequences (in vitro studies). Non fibrillar 
components of amyloid present in vivo are lost during extraction processes or normally 
absent in in vitro experiments. Globally, the data obtained so far outline the following 
general characteristics of amyloid fibrils (Fandrich, 2007; Jimenez et al., 2001; Makin & 
Serpell 2005): 

• Different protein sequences form fibrils with high structural similarities. 

• Amyloid fibrils extracted from tissues or assembled in vitro, when observed at medium 
magnifications, are similar in diameter and general morphology to those observed in 
vivo. 

• Fibrils are long, undetermined in length, straight or moderately curved (Aǃ2M), and 
generally not branched.  

• Amyloid fibrils can appear as wavy filaments, road shaped or twisted, with a diameter 
ranging from 5 to 25 nm.  

• Most types of amyloid fibrils are formed by assembling of fibrillar subunits named 
“protofilaments”. In mature fibrils, protofilaments can vary in number (2-6) and can 
twist one another forming an hollow fibril core. Discernible periodicity can arise from 
twisted and ribbon-like structures of the fibrils. 

• Metastable fibrils precursors include protofibrils and non fibrillar aggregate-soluble 
oligomers. 

• Protofibrils are 2-5 nm in diameter, shorter than fibrils, curl and irregular (worm-
like) in their overall structure. They contain one or more linear row of the amyloid 
protein molecules. Some authors use the term protofibrils also for non fibrillar 
aggregates. 

• Mature fibrils and metastable forms of amyloid are all characterized by cross-beta-sheet 
conformation.  

• Observed with high resolution techniques oligomers, protofibrils, protofilaments and 
fibrils of the amyloid are structurally heterogeneous.  

• Structural characters of oligomers, protofibrils, protofilament and fibrils are influenced 
by: sequence of the protein, concentration, and various other fibrils growth conditions. 

The most distinctive structural feature of amyloid is the structural polymorphism of their 

aggregates and fibrils in in vitro and in ex vivo experiments. This is found also within the 

tissue extracted, and even more in experiments in vitro under the same conditions of 

incubation (Pedersen et al., 2010; Fandrich, 2007, 2009). TEM images can demonstrate the 

variations of degree of twisting, number of protofilaments forming a fibril, and mature 

fibrils diameter (Fandrich et al., 2009;  Greenwald & Riek 2010).  
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Amyloid may be considered a characteristic structural status of a protein in certain 

conditions. For this reason amyloidosis is defined a conformational protein disease. In 

amyloidosis, an amyloid precursor protein, with or without post-transcriptional 

modifications, sometimes favored by mutations (hereditary amyloidosis), and in particular 

experimental conditions in vitro, can lead to beta-sheet peculiar aggregation, forming 

insoluble fibrils. Moreover, in prion diseases, an infective prion protein can induce cross 

beta-sheet conformation and amyloid deposition of the constitutive protein (Pan et al, 1993; 

Prusiner, 1998). Understanding the structure of amyloid and their formation is the 

prerequisite for developing methods to rationally interfere in the mechanism of pathologic 

aggregation responsible for important human diseases. 

2.2 Ultrastructural morphology of amyloid fibrils in tissues 
In 1959 Cohen and Calkins demonstrated, for the first time, that different forms of amyloid 

exhibit a comparable fibrillar ultrastructure in fixed tissue sections (Sipe & Choen, 2000). 

This has been amply confirmed by successive studies, which evidenced that all types of 

amyloid deposits seen in different tissues, and regardless of the clinical/biochemical form, 

are mainly composed of bundle of not branched, straight fibrils, ranging from 6nm to 13nm 

in diameter (average 7,5-10 nm) and 100-1600 nm in length (Sipe & Choen, 2000). 

Ultrastructural demonstration of this peculiar fibrillar morphology was adopted as one of 

the criteria for the definition of amyloid. Subsequently, studies on amyloid extracted from 

tissues, and in vitro studies on amyloid proteins synthetic derivates, are the basis of the most 

of high-resolution structural data regarding amyloid, which are described in the previous 

paragraph. It must be stressed that these structural data refer to pure, purified or partially 

purified amyloid proteins. High resolution –HR- structural studies of amyloid in tissues (in 

situ studies) are few and consist mainly in TEM analyses at high magnification (x500000 or 

more) of thin sections of plastic embedded fixed tissues. Immunolabeling procedures for 

TEM are applied to distinguish amyloid proteins from other tissue constituents (Inoue et al., 

1997, 1998, 1999). Image reconstruction techniques are used for the formulation of the 

structural models. Structural models deriving from in vitro and ex vivo experiments are only 

partially confirmed by in situ HR TEM analyses. In fact: amyloid fibrils in tissue appear not 

branched, rigid, about 10 nm in diameters, but – for example- the substructural organization 

in protofilaments is rarely described and can be different from that observed in in vitro 

experiments. However, immuno-labeling techniques –including immuno-electron 

transmission microscopy –ITEM- demonstrated that other various components are present 

in tissue amyloid deposits (Inoue et al., 1997, 1998, 1999; Sipe & Choen, 2000). These do not 

form fibrils in vitro, but are implicated in amyloid deposition and stability. Non fibrillar 

components, commonly present in various types of amyloid deposits, include: proteins 

(serum amyloid P component SAP, apolipoprotein E), proteoglycans –PG- (condroitinsulfate 

PG, heparansulfate PG) and lipids (Pettersson & Konttinen, 2010; Merlini et al., 2003; 

Gellermann et al.,  2005). These are mostly or partially lost during extraction procedures, 

and they are not present in in vitro experiments. This fact could justify the structural 

differences of amyloid analyzed in situ (Sipe & Cohen, 2000; Inoue et al., 1998). At present, 

review of morphological studies in situ of amyloid deposits (Sipe & Cohen, 2000; Sikorska et 

al., 2009; Inoue et al., 1997, 1998, 1999; Bely et al.,  2005) outlines the following general 

characteristics: 
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• In systemic and most of localized forms of amyloidosis, amyloid deposits contain not 
branched fibrils, from 6nm to 13nm in diameter (average 7,5-10 nm), and variable 
length. 

• In neurodegenerative prion forms, amyloid fibrils diameters range form 7-8 nm –in 
Kuro plaques- to 17-24 nm –in variant Creutzfeldt-Jakob disease plaques- depending on 
the sequence mutations of amyloid precursor proteins. 

• Diameters of the fibrils depend also on fixation procedure used to prepare the tissues. 

• The fibrils are more frequently straight, but curved shapes were also described, 
especially for Aǃ2M type. 

• At high magnification the fibrils did not appear to be formed by protofilament sub-
units. They show frequently cross bands along the axis, and a tubular appearance due 
to an empty core (Fig. 1), a central dense dot is described by Inoue et al. (Inoue et al., 
1997, 1998, 1999). 

• ITEM analyses with antibodies specific for amyloid proteins identify: non fibrillar-
amorphous aggregates, filaments about 0,5-1 nm in diameter, and protofibrils 3-5 nm in 
diameter, which can be observed close to the fibrils or in their proximity. 

• ITEM analyses show that specific antibodies to non fibrillar component of amyloid 
appear tight to fibrils. This fact is at the basis of Inoue models, in which SAP and PG 
play a structural role in the construction of the fibrils. 

 

 

Fig. 1. Amyloid fribrils in a case with AL amyloidosis. At high magnification the fibrils 
appear straight and non branched.  Cross band along their axis and a clear hollow centre can 
be seen  focally. Original magnification –OM- : x50000.   
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Overall, the morphological definition of amyloid remains the one described by Cohen and 
colleagues in their first ultrastructural studies. Atypical ultrastructural presentation 
corresponding to Congo red stained-birefringence tissue deposits must be confirmed as 
amyloid using ITEM techniques. Additional studies in tissue, using new techniques, are 
needed to confirm the actual molecular structure of amyloid fibrils in vivo. 

2.3 Ultrastructural morphology of amyloid deposit in tissue 
Ultrastructural analyses of amyloid in situ provide additional information regarding 
arrangement and distribution of amyloid fibrils in vivo and their structural interaction with 
extracellular matrix elements and cells.  
The amyloid fibrils tissues aggregates may be in sparse or dense pattern (Fig. 2).  
 

 

Fig. 2. Dense and few scattered aggregates of amyloid fibrils between pericytes, from a renal 
biopsy in a case of AL amyloidosis. OM: x7000. 

Haphazard arrangement represents the more frequent and specific array of amyloid fibrils 
in tissues. However, star-like, parallel, and curving arrays are also frequently documented. 
In vivo, amyloid deposit morphology can also change after deposition. In advanced 
amyloidosis, older amyloid deposits, can appear as dense ovoid-globular aggregates, or 
inhomogeneous deposits with multifocal accumulation of densely packed short fibrils and 
filaments. Centre of the dense deposits may be lacking of immunoreactivity for anti-amyloid 
protein antibodies (Bely et al.,  2005). Frequently, distinction of fibrils in dense aggregates is 
easier at their marginal zone (Nishi et al., 2008). Particular aggregation patterns include 
glomerular “spikes” and cerebral amyloid plaques. 
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2.3.1 Glomerular sub-epithelial “spikes” 
“Spikes” are a peculiar amyloid fibrils aggregation described in glomerular AA and AL 
amyloidosis. They consist in fibrils in parallel spicular array, crossing the glomerular 
basement membrane at the right angle and pointing to the foot processes of podocytes 
(Fig. 3) (Dickman et al., 1981; Nishi et al., 2008).  
 

 

Fig. 3. Spicular  array of amyloid fibrils. Under a wide foot process of a podocyte, in a case 
of AA amyloidosis. OM: x4400. 

2.3.2 Cerebral amyloid plaques 
Peculiar star-like aggregation of the fibrils are the cerebral amyloid plaques in 
neurodegenerative diseases due to Aǃ and APr including: Alzheimer’s disease (sporadic 
and familial), age-related or senile dementia, Sporadic (Kuru), new variant (alimentary) and 
familial Creutzfeldt-Jakob Disease -CJD-, Gerstmann-Straussler-Scheinker disease –GSSD-. 
Despite in all these forms neurotoxicity is linked mainly to oligomers of amyloid proteins, 
presence of amyloid plaque correlate to progression of the disease (Sikorska et al., 2009; 
Fiedrich et al., 2010; Merlini & Bellotti, 2003). Morphological characters and distribution of 
amyloid plaques, determined by light microscopy-LM-, differ in the various clinical-
pathological forms, and can help the diagnosis. TEM and ITEM studies of amyloid plaques 
demonstrated that they are ordered aggregates with bundles of fibrils departing radially 
from a central core. The plaques are located at the neuropil, between glial and neural 
processes.  The different ultrastructural characters described in the different clinical-
pathological form (Serpell, 2000; Sikorska et al., 2009; Fournier et al.,  2000) are summarized 
below:  
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• Classical senile plaques, present also in Alzheimer’s disease, are star-like closely packed 
bundles of Aǃ fibrils forming a generally dense fibrillar core, which is surrounded by 
dystrophic neuritis, activated microglia, and reactive astrocytes. In Alzheimer’s diseases 
typically plaques are numerous, and present several dystrophic neurites and microglial 
cells. Senile plaques can be observed also in prion diseases, in addition to prion plaques. 
In Alzheimer and senile dementia another form of amyloid is present. It is the 
intracellular cross-beta sheet tau fibrillar aggregates forming neurofibrillary tangles. 

•  “Kuro” star-like plaques are relatively small, formed by bundles of fibrils mixed to 
electron dense material and cellular element. Dystrophic neurites are rarely identified. 
The plaques are surrounded by glial cells (Fig. 4). Jatrogenic CJD plaques are typically 
enclosed by numerous astrocytes. “Kuro” plaques are present in all forms of CJD. They 
are more numerous and smaller in jatrogenic CJD. Small Kuro plaques, distributed in 
clusters, are observed in new variant CJD (alimentary). 

• Florid plaques of new variant CJD: amyloid plaques contain and are surrounded by 
vacuoles deriving from swelled cell processes. The radially arranged bundles of fibrils 
are very thick. They are loosely mixed to non fibrillar prion proteins, swollen glial and 
neural cell processes, and numerous dystrophic neurites with synaptic elements. 
Numerous microglial cells, sometimes with intracellular fibrils in vacuoles, are present 
around and within the plaques.  

• GSSD multicentric plaques: bundles of fibrils depart radially from more than one 
central dense core, dystrophic neurites are mixed to fibrillar amyloid bundles. 
Microglial cells are also observed. 

 

 

Fig. 4. A small Kuru-like PrP plaque, with bundles of filaments in a star-like array. Amyloid 
bundles are mixed with scattered elettrondense material. OM: x3000. 
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Aǃ and APr fibrils are also present in haphazard arrangement in the “diffuse plaques” more 

frequently observed in Alzheimer’s diseases associated to Down syndrome and in 

hereditary cerebral amyloid angiopathy (Allsop et al., 1986; Rozemulleret al., 1993; 

Yamaguchi et al., 1989). Diffuse plaques are not associated to neuritic alterations. They 

contain a scanty amount of fibrils, and can be negative at Congo red stain and birefringence. 

These amyloid deposits are evidenced mainly by immune-labeling, and using methenamine 

silver staining methods. TEM studies in Alzheimer’s diseases describe also the presence of 

small clusters of randomly arranged fibrils associated to neurite degeneration. These are 

retained primitive Aǃ classical plaque forms. Perivascular non ordered amyloid fibrils are 

frequently identified in neurodegenerative amyloidosis but they are the prevalent amyloid 

deposition in prion associated hereditary cerebral amyloid angiopathy. The described 

morphological differences of cerebral amyloid deposits in neurodegenerative amyloidosis 

demonstrate a different fibril distribution and different cells injury and reaction, depending 

from amyloid protein sequence and mutations. 

2.4 Intracellular amyloid fibrils in amyloidosis 
Amyloid fibrils are frequently reported within lysosomes of reticuloendothelial or 

macrophage system cells (including microglia and glomerular mesangial cells), in proximity 

to amyloid deposits (Sikorska et al.,  2009; Bely et al., 2005; Santostefano et al., 2005; Keeling 

et al.,  2004; Kluve-Beckerman et al., 1999; Morten et al.,  2007). The presence of amyloid 

within phagocytes in vivo remains controversial. It can derive from the capture of 

extracellular amyloid by phagocytosis for degradation. This may indicate a protective role of 

macrophages activity. However, resistance to lysosomal proteases has been observed for 

Aǃ2m, AAmylin, Aǃ, prions, and it may be a generic feature of amyloid. Amyloid could be 

produced within macrophages. Phagocytes could promote fibrils self-assembling within 

their endosome or lysosome compartments, favoring protein precursor concentration or 

modifying protein conformation within acidic endolysosomal compartments. They also 

could be involved in proteolytic cleavages, producing protein fragments with increased 

amyloid propensity. Phagocytic cell lines cultured in vitro have been shown to promote the 

fibrillar aggregation of Ig light chains proteins and serum apolipoprotein A (Kluve-

Beckerman et al., 1999; Keeling et al.,  2004; Santostefano et a., l 2005; Friedrich et al.,  2010; 

Teng et al.,  2004; Yazawa et al., 2001). At present, data regarding amyloid and their 

biogenesis in vivo remain limited, especially those referred to the structural aspects in 

extracellular spaces and distribution within the cell compartments. Most of the data 

regarding fibrillogenesis derive from studies of cell lines cultured in vitro, which frequently 

include ITEM approach (Leonhardt et al., 2010). An increase in the knowledge on 

endosomal and lysosomal system involvement in amyloid genesis can guide drug discovery 

of new therapeutic agents. 

3. Diagnostic TEM in amyloidosis 

The importance of an early diagnosis of amyloid and the correct typing of fibrils have been 
realized in order to recent advances in the treatment of systemic amyloidosis (Picken, 2010; 
Pettersson & Konttinen, 2010). No diagnostic biochemical markers in body fluids are known 
to date. APr and Aǃ neurodegenerative amyloid forms are mainly clinically diagnosed. 
When autopsy confirmation is required, it is relied on histochemical characterization, and 
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immunohistochemical and biochemical typing. For the other forms of amyloidosis, the 
diagnosis consists in the detection and typing of deposits in tissue biopsies or needle 
aspirates. In the latter context, the ultrastructural analyses are used in first steps of detection 
of amyloid, together with polarized LM on Congo red stained sections. Congo red staining 
and birefringence detection are considered to be the gold standard techniques for the 
demonstration of amyloid deposits. However, specificity and sensitivity of this technique 
may depend on the experience of the observer, fixation procedure, section thickness, proper 
staining protocol, and appropriate optics (Picken, 2010). Ultrastructural analysis is 
particularly useful in early amyloid deposition. In these cases amyloidosis might not be 
evident at LM because fibrils deposition is minimal and Congo red staining is negative. 
Moreover, ultrastructural appearance of amyloid may be important in the differential 
diagnosis of various organized immunedeposits responsible for various forms of 
glomerulopathies (see upcoming paragraph) and neuropathies (Vallat et al.,  2007). 
However, we should remember some limits of TEM analyses. These are frequently 
performed on a very small piece of tissue, resulting in a limitation in sensitivity when 
amyloid deposits are focal and irregularly distributed. The second limit of TEM is that all 
types of amyloid fibrils have similar morphology. A correct typing of amyloid requires the 
use of immunolabeling techniques. Unfortunately, the procedures used to preserve 
morphology at high resolution generally reduce antigens preservation, therefore, amyloid 
typing is preferably carried out on frozen sections or on formalin fixed paraffin embedded 
sections. On the other hand, some easy pretreatment of thin sections (e.g. incubation of 
epon-embedded sections with hydrogen peroxide or periodate solution, or embedding in 
hydrophilic resins) can ameliorate ITEM results (Inoue et al., 1997, 1998). Ultrastructural 
localization of amyloid -when possible- increases the sensitivity of the detection, and, above 
all, ITEM can add important informations for unusual types of amyloidosis (Arbustini et al.,  
2002; Inoue et al., 1997, 1998, 1999, Caubet et al., 2010). TEM techniques, in tissues and in 
vitro, are frequently included in studies defining new varieties of amyloid (Caubet et al., 
2010).  

3.1 Systemic amyloidosis 
Systemic amyloidosis -SA- represents the most important form of amyloidosis (Pettersson 

& Konttinen, 2010; Picken, 2010). They comprise a biochemically heterogeneous group of 

potentially lethal disorders. The main types of SA include, in order of their prevalence: 

AL, AA, and familial forms. A more recently described form includes dialysis related 

Aǃ2m (Jadoul et al., 2001; Bely et al., 2005). An early and specific diagnosis is crucial for 

the treatment and prognosis. Amyloid deposition can occur in any organ and tissue. For 

the detection of amyloid, the biopsy of a clinically affected organ is the most sensitive 

method and may also detect concomitant diseases. The most frequently involved organs 

correspond to the most frequent diagnostic localization of amyloid. These include kidney, 

gastrointestinal tract, heart and liver (Pettersson & Konttinen, 2010). Amyloid is 

frequently reported also in skin in systemic or localized form (Schreml et al., 2010), and in 

nerve biopsy in cases with neuropathies (Vallat et al., 2007). Certain symptoms in the 

context of chronic inflammation diseases, plasma cell dyscrasia or familial history, arouse 

a clinical suspicion of “amyloid syndrome”( Pettersson & Konttinen, 2010). These include 

mainly proteinuria or renal failure, enteropathy with malabsorption and bleeding, 

restrictive cardiomiopathy with thromboembolism due to neuropathy, hepatomegalia and 
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splenomegalia. Some clinical manifestations are more common in certain types of 

amyloid, but a large variability of presentation is common. In the past, diagnosis of SA in 

clinically suspected cases was based on rectal and gingival or salivary gland biopsies 

examination. Currently, abdominal fat needle aspiration or, better, biopsy, are retained 

the gold standard to confirm the clinical suspicion of systemic amyloidosis. In most cases 

the samples are completely designed for histopathological analyses and typing (Picken,  

2010). However, when a fragment for ultrastructural analyses is disposable, amyloid 

deposit can be observed in semithin blue stained sections examined by LM as 

extracellular accumulation of weakly stained material, more frequently in perivascular 

localization, similar to sclerotic changes. At TEM analysis, amyloid fibrils can be 

demonstrated in perivascular deposits (Fig. 5A, 5B) and in extracellular matrix deposits, 

with high sensitivity. It must be stressed that even in cases with a single symptomatic 

organ involvement with locally demonstrated amyloid deposits, a systemic form must be 

carefully excluded. In fact, at present the management of localized amyloidosis is mainly 

conservative where SA involves more radical approaches, including chemotherapy (in 

AL) and liver transplantation (in familial amyloidosis) (Westermark et al., 2006; Arbustini 

et al., 2002; Picken, 2010). 

 
 
 

   
 
 

Fig. 5. A-B. Perivascular deposits (A) consisting in amyloid fibrils in haphazard arrangement 
(B). OM: A. x3000, B. x7000. 
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3.2 Renal amyloidosis 
Among various involved organs in SA, kidney is the most frequently affected (Picken, 2010, 

Pettersson & Konttinen 2010). In the differential diagnosis of the glomerulopathies, TEM 

analyses are normally included. Therefore, renal amyloidosis is frequently documented by 

ultrastrastructural evidence of fibril deposits.  

3.2.1 Clinical presentation 
Proteinuria is the clinical manifestation that is present in the majority of patients with 

renal amyloidosis (Dember, 2006). Ranges of proteinuria are from subnephrotic to 

massive, with urinary protein excretion rates up to 20-30 g/day. Hypoalbuminemia can 

be profound, edema is often severe. The level of protein excretion in AL type has been 

referred to be higher than in AA type, whereas the count of red cells in the sediment 

significantly higher in AA type, compared to AL type. When amyloid is confined to 

tubulo-interstitium or vessels, proteinuria can be minimal and reduced renal function is 

the main clinical manifestation. Renal impairment tends to progress more rapidly when 

glomerular deposition predominates over tubular and interstitium involvement. 

Hypertension is an uncommon feature, except when amyloid deposition is relevant in 

vessels. An unusual manifestation of renal amyloidosis is nephrogenic diabetes insipidus, 

caused by amyloid deposition in the peri-collecting ducts tissue. Fanconi’s syndrome is 

another extraglomerular manifestation, due to injury to proximal tubular cells by filtered 

light chains. Amyloid deposits that are isolated to renal medulla is a feature in most 

patients with ApoAI familial amyloidosis, and has been described in some patients with 

AA amyloidosis (Nishi et al., 2008; Picken & Linke, 2009). Medullary-limited disease can 

elude pathologic diagnosis if the biopsy specimen is limited to renal cortex. In synthesis, 

proteinuria, renal insufficiency, large echogenic kidneys are clinical manifestations that 

can suggest the suspicion for a renal amyloidosis, which prompts a kidney biopsy 

(Dember, 2006).  

3.2.2 Diagnosis of renal amyloidosis 
Amyloid can be found anywhere in the kidney, but glomerular deposition predominates. 

However, in a small number of cases glomerular deposits are scanty or absent and the 

amyloid is confined to tubuli and interstitium or vessels (Dember, 2006; Picken & Linke, 

2009; Sen & Sarsik, 2010). Glomerular amyloid appears at LM eosinophilic amorphous 

material in the mesangium and along capillary walls. Periodic acid-Schiff –PAS- staining 

is weak over nodules, which can be observed in mesangial areas and represent amyloid 

deposition. Immunofluorescence –IF- on frozen tissue, normally used for diagnosis of 

immunecomplex glomerulopathy, can be positive for a single light chain isotype, more 

often lambda chain, in AL amyloidosis, and it can be positive for fibrinogen in cases with 

AFib. Nevertheless, negative kappa or lambda chain does not exclude AL disease, and a 

positive immunolabeling does not prove amylod deposition. The histological diagnosis 

of renal amyloidosis can be established using Congo red staining, and TEM. 

Ultrastructural analyses are very useful to identify scanty amyloid deposition in early 

stages of the disease. Ultrastructural main characters of renal amyloidosis are reported as 

follows:  
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• Glomerular amyloid: in the majority of amyloid forms, fibrils are localized 
preferentially within glomeruli, in mesangial matrix, and basal membranes. The 
progression of amyloid deposition is associated to mesangial matrix and basal 
membrane degradation and replacement by amyloid fibrils (Teng et al., 2004). Peculiar 
spicular aggregates under podocytes foot process, named “spikes” or “spicules” 
(Dickman et al., 1981; Nishi et al., 2008), are frequently associated to detachments of 
visceral epithelial cells (Fig. 6). Sub-epitelial “spikes”, when prominent, are visualized 
also by LM using PAS or methenamine silver stains, which are unusual stains for 
amyloid. The spikes are generally considered a sign of active fibrils deposition and a 
bad prognostic parameter (Dickman et al., 1981). 

• Extraglomerular amyloid: tubulo-interstitial and vascular deposition can accompany 
glomerular amyloidosis or characterize certain forms without glomerular involvement. 
Fibrils can be localized within tubular basal membrane (Fig. 7), in interstitial spaces, 
and within arteriolar walls.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 6. Massive amyloid deposition and spicular aggregates associated with detachment of 
visceral epithelial cells. OM: x3000 
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Fig. 7. Amyloid fibrils within tubular basal membrane and in extracellular matrix. OM: 
x12000 

3.2.3 Histopathological classification and clinicopathological correlations  
Though recent reports demonstrated a toxic role of amyloid precursor proteins in AL and 
AA, amyloid progressive accumulation play an important role in mechanism of renal 
dysfunction, causing glomerular disruption and also whole renal architecture alterations 
(Sen & Sarsik, 2010). Most patients with AA or AL disease have predominantly 
glomerular deposition, and therefore pathologists tried to classify different patterns of 
glomerular amyloid deposition, in an attempt to quantify the renal damage and to predict 
patient outcome, depending on severity of glomerular involvement. Dikman et al 
(Dikman et al., 1981) identified 4 different patterns of glomerular deposition: segmental, 
diffuse, nodular and mixed, nodular and diffuse. In fact, early glomerular amyloid 
deposits tend to be spotty and segmental, and late amyloid deposits become more 
uniform and diffuse. Six patterns or classes of renal amyloidosis were recently proposed 
by Sen and Sarsik (Sen & Sarsik, 2010), similarly to the systemic lupus erythematosus 
glomerulonephritis classification. Similarly, this classification of renal amyloidosis is 
based exclusively on glomerular pathology. Class I, is defined as minimal amyloidosis, 
with less than 10% extension of glomerular amyloid deposition. The minimal deposition is 
focal and segmental, within the vascular pole or mensangium. Congo red may not clearly 
identify the small amyloid deposits. TEM might be necessary for a definitive diagnosis. 
Definition of the classes, II, III, IV and VI, is based on extension of amyloid deposition 
within the glomeruli and on the total percentage of involved glomeruli. Class V, or 
membranous amyloid deposition, i.e. diffuse membranous pattern define a fibril 
deposition in glomerular basal membranes without prominent mesangial amyloid 
deposition. This last pattern is mostly associated with AL or non-AA amyloidosis. 
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Starting from class II, tubulointerstitial and vessels alteration may accompany glomerular 
lesions. A score of severity, or renal amyloidosis prognostic score–RAPR-, has been 
proposed by the same authors, taking into account the sum of above described amyloid 
histological classes, plus global glomerular sclerosis, inflammatory interstitial infiltration, 
interstitial fibrosis, and tubular atrophy. This severity score is divided into 3 grades: early, 
late, advanced amyloidosis. The authors applied the new classification and grading 
system on renal biopsy from patients with AA associated to familial Mediterranean fever, 
demonstrating a positive correlation between severity of glomerular amyloid deposition, 
interstitial fibrosis, and inflammation. However, demonstration of a correlation between 
RAPR and clinical presentation and prognosis are not demonstrated by the authors, and 
require further studies (Sen & Sarsik, 2010; Dember, 2006). In various classification 
systems, TEM is fundamental in the definition of class defining minimal amyloid 
deposition. Sen and Sarsik classification takes into account, and reviews, specific 
differences in fibrils distribution, depending on the amyloid form, based also on 
ultrastructural analysis especially for class I definition. These are briefly reported as 
follows: 

• In early AA amyloidosis glomerular fibrils deposition are focal or segmental, within 
the vascular pole or mesangium. At this stage, in most cases there are no 
extraglomerular amyloid deposits, except rare cases with only interstitial and 
vascular deposition. 

• In AL, glomerulopathy amyloid tends more frequently to involve capillary basal 
membrane, also in early stage, frequently with sub-epithelial spikes. Extraglomerular 
amyloid is of later onset, it is more frequently observed in medulla, and generally it is 
less important than glomerular deposition.  

• Familial renal amyloidosis due to mutant fibrinogen ǂ-chain -AFib – , involve strongly 
and exclusively the glomeruli. Tendency to amyloid deposition within the basal 
membrane of the capillary loops is similar to that described in AL.  

• In familial renal amyloidosis due to mutant apolipoprotein AI –AApoAI-, amyloid is 
present only in medulla. 

• In transplanted patients with recurrence, and at the same time in patients with AA 
and rheumatoid arthritis, amyloid may be found only in vascular wall, without 
glomerular involvement, causing hypertension, which is unusual in amyloidosis 
presentation. 

It must be stressed that a negative detection of amyloid in glomeruli does not exclude a 
renal amyloidosis: fibrils must be searched carefully also in interstitium, in peritubular basal 
membranes, and arteriolar walls. Moreover, medulla should be included in the biopsy to 
identify AApoAI, and some cases of AA. 

3.2.4 Renal amyloid typing 
The difference in renal distribution of the fibrils may explain different clinical presentation 

(Dember, 2006), but it is not sufficiently specific to distinguish the amyloid type. IF normally 

used for diagnosis of glomerulopathy can identify AL light chains or AFib fibrinogen. Other 

amyloid forms are specifically determined mainly by immunolabeling techniques on 

paraffin sections and by IF on frozen sections. ITEM is a high sensitive approach to identify 

and typing the fibrils (Fig.8). However, in a part of cases with AL, commercially available 

reagents do not always detect the amyloid, because of conformational change or 
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fragmentation of amyloidogenic light chains, which masks or deletes significant epitopes 

(Dember, 2006). In cases with negative immunostainimg for AL, AA, and more common 

familial amyloid forms (AFib, ATTR), TEM amyloid deposits demonstration can diagnose 

amyloidosis or confirm a positive Congo red stain and birefringence analyses. These data, 

including TEM, justify the demand of additional specific typing tests in specialized 

institutions. Molecular identification of amyloid protein using proteomic methods such as 

microextraction and sequencing or tandem mass spectrometry are currently being testing 

(Picken, 2010). 

 
 

  

Fig. 8. A-B. Amyloid deposits in the vascular wall of a renal arteriolar vessel (A, OM: x3000). 

AA amyloid is demonstrated by immuno-gold technique for electron microscopy (B, OM: 

x12000) (mouse anti human amyloid A monoclonal antibody, DakoCytomation, 1:100 

dilution; biotinated rabbit anti mouse as secondary antibody, Dako; immunogold 20nm  

conjugate streptavidine, British Biocell Int.) 

4. Differential diagnosis by TEM analyses  

4.1 Non amyloid tissue fibrils in normal and pathologic condition 
Specificity and sensitivity of the TEM analyses for amyloid diagnosis are influenced by the 

presence of the fibrillar components of the extracellular matrix –ECM- in interstitium and 

basal membranes. Fibrillar ECM comprises fibrils or microfibrils, not branched, straight and 

with a diameter about 10 nm. These components of ECM similar to amyloid include 

collagen microfibrils, fibrillin, and fibronectin (Inoue et al., 1999; Kronz et al., 1998; Sherratt  

et al., 2001; Weber et al., 2002; Dzamba & Peters, 1991). In our experience, basically, amyloid 

fibrils are more frequently in haphazard arrangement, generally they appear more straight, 
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better defined, and more electrondense than extracellular matrix fibrils (Fig. 9). The 

distinction of the different fibrils can be difficult in presence of fibrotic changes in various 

pathological conditions (e.g. trasplant glomerulopathy, focal glomerulosclerosis, 

hypertension, mesangiocapillary glomerulonephritis) and particularly in patients with 

diabetes (Inoue et al., 1999; Kronz et al., 1998). In these latter, the amount of fibrillar ECM 

increases, and connective fibrils appear more distinct and electrondense. However, ECM 

fibrils remain mostly in bundle arrays, even if random orientation is focally observed. In 

uncertain cases with negative Congo red and immunohistochemical staining, ITEM 

techniques may help a specific distinction. Glomerular normal ECM fibrils include not 

branched fibrils about 10 nm in diameters in mesangium and, in lesser amount, within basal 

membrane (Inoue et al., 1999; King et al., 2000). Congo red negative mesangial fibrils about 

5-20 nm may commonly be seen in sclerosing glomerular diseases and represent a non 

specific reaction to glomerular injury (Kronz et al., 1998). These fibrils localize usually in a 

segmental fashion and are more bundle-like than random arranged. Non-amyloid fibrillar 

deposit has been frequently described associated to diabetic condition, phenomenon called 

diabetic fibrillosis. This is characterized by a large amount of not branched mesangial fibrils, 

and bundles of subendothelial and intramembrane fibrils, with reported diameters ranging 

from 7 to 16, but they are in average generally wider than amyloid fibrils (King et al., 2000; 

Korbet et al., 1994; Inoue et al., 1999; Kronz et al., 1998).  
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Fig. 9. A.-H. Amyloid (panels A and B) and non amyloid extracellular fibrils (panels C-H). 

Amyloid deposition in basal membrane of a glomerular capillary is compared with the more 

ordered array of fibrillin forming endothelial anchoring and stromal fibrils (panels C and 

D), interstitial fibrillar ECM associated with sclerotic changes (panels E and F) and 

glomerular sudendothelial fibrils  in a case of diabetes. (Panels A, C OM: x12000; Panel E 

OM: x3000; Panel G OM: x20000; Panels B, D, F, H OM: 50000) 

4.2 Disease with structured immunecomplex deposits 
Ultrastructural demonstration of amyloid may be important in the differential diagnosis of 

various organized immunedeposits, responsible for various forms of glomerulopathies and 

neuropathies (Joh, 2007; Vallat et al., 2007). Fibrils of a wide variety of size and patterns can be 

seen in the kidney of patient with monoclonal immunoglobulin diseases, lupus nephritis, 

cryoglobulinemia, collagen III deposition glomerulophaty, hereditary fibronectin nephropaties 

and immunotactoid glomerulopathy. Structured immunecomplex deposits include: 

cryoglobulins, finger prints, and fibrillary-immunotactoid deposits (Joh, 2007; Vallat et al., 2007; 

King et al., 2000). Their main characters and ultrastructural morphology are summarized below: 

• Cryoglobulin deposits consist in peculiar monoclonal or polyclonal immunoglobulin 
responsible of cryoglobulinemia. In tissue, their various morphological shapes include: 
anular, fingerprint-like, microtubular, and microfibrillar shape, with a diameter ranging 

www.intechopen.com



  
Amyloidosis – Mechanisms and Prospects for Therapy 

 

140 

from 8 to more than 60 nm. Generally, the structure appears almost indistinct and 
frequently associated with non-structured deposition. The more typical morphology 
consist in short tubules, curved and often coupled, about 25 nm in diameters (Fig. 10). 
These are more frequently observed in cases with mixed (IgM-IgG) essential 
cryoglobulinemia or type II cryoglobulinemia. They are associated to glomerulopathy 
(Joh, 2007) and polyneuropathy (Vallat et al., 2007). Glomerular cryoglobulin deposits 
localize mainly in sub-endothelial lamina rara, with a tendency to form pseudothrombi. 
They are frequently associated to endocapillary mononuclear infiltrates. 

• Finger-print: are structured immunecomplex deposits consisting in curved lamelled 
aggregates with a finger print-like aspect (Fig. 11). They are considered highly 
suggestive of lupus nephritis and are present in cases with monoclonal 
dysglobulinemia and polyneuropathy (Joh, 2007; Vallat et al., 2007). 

• Fibrillar and microtubular immunotactoid: immunecomplex deposition consisting in 
fibrillar/microtubular aggregation, containing mainly immunoglobulin IgG and 
complement C3, are respectively associated to fibrillary glomerulonephrites –FGN- and 
immunotactoid glomeulophaty –ITG- (King et al., 2000; Schwartz et al., 2002; Alpers & 
Kowalewska, 2008). Immunotactoid fibrillar/tubular structures have a variable diameter 
ranging from 9 to 60 nm or more, depending on single case (Fig.12). A lucent center, the 
lumen, is easily identified in microtubules with diameters of 30 nm or more, but higher 
magnification can demonstrate a lucent centre in all immunotactoid structures 
independently by their diameters. In ITG, immunotactoid is conventionally defined as 
deposits of microtubular structures with a diameter greater than 30 nm (mean range 30-60 
nm). A larger diameter is associated to the tendency at a parallel arrangement that 
contribute to define tubular immunotactoid. In FGN, fibrillary form is conventionally 
defined by presence of Congo red negative deposits of not branched elongated fibrils, 
more frequently without evidence of a clear centre at median magnification, with a 
diameter smaller than 30nm and, in some cases, overlapping the amyloid fibrils diameter. 
Fibrils of FGN, as well as amyloid, typically present a random array of the fibrils. 

 

  

Fig. 10. A glomerular pseudo thrombus (A, OM: x3000) due to cryoglobulin deposition. At 
high magnification (B, OM: x30000) , the  typical structure consisting  in curved and often 
coupled short tubules is shown.  
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Fig. 11. Subendothelial  concentric lamellae forming  “finger prints”, in a case  of  lupus 
nephritis.  OM: x12000. 

 
 

   
 

Fig. 12. A-B. Glomerular fibrillarry (A, OM: x12000; Nebuloni, 2009)  and immunotactoid (B, 
OM: x12000) immunedeposits in subepithelial position. Fibrillarry deposits are composed by 
fibrils with a diameter less wide than 30nm, and they present a less ordered array than 
immunotactoid. The latter consist of  microtubules, showing an hollow centre also at 
medium  magnification.  
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Whereas most of structured deposits are easily distinguished from amyloid, fibrillar array in 

FGN may present various similarities with amyloid. FGN and ITG represent pathological 

entities characterized by the glomerular deposition of fibrillary/microtubular structures, 

whose identification is possible only by TEM. Rare cases of extraglomerular and extrarenal 

localization are also reported (Calls Ginestra et al., 1995; Adeyi et al., 2001; Sabatine et al., 

2002). Pathologists generally maintain a conventional sub-structural distinction of FGN and 

ITG, based on diameters and random, or more ordered, arrangement of the fibrils. However, 

difference in clinicopathological correlation remain controversial (Alpers & Kowalewska, 

2008; Schwartz et al., 2002). Clinical presentation in both varieties is nephrotic syndrome, 

with a tendency to early renal insufficiency. Because of the fact that cryoglobulins may 

present a similar morphology, definitive diagnosis generally include the exclusion of 

cryoglobulinemia by clinical analyses.  In FGN, fibrils are Congo red negative, but present 

sub-structural similarities with amyloid fibrils. These include: a random arrangement, and, 

in rare cases, a wide range diameter, overlapping those of amyloid fibrils. Moreover, Yang 

et al. reported a case of Congo-red negative FGN with amyloid P associated to the fibrils, 

demonstrated by ITEM (Yang et al., 1992). However, in the majority of the cases of FGN, 

fibrils show a wider diameter than amyloid (range: 15-30). Amyloid fibrils have a more 

defined profile and generally a diameter smaller than 12nm. Amyloid ultrastructural 

appearance is sufficiently characteristic, so that the diagnosis of amyloidosis should 

continue to be considered even when Congo red staining is negative (Dember, 2006). 

4.3 Glomerular immunecomplex diseases 
The IF pattern of renal amyloidosis frequently shows glomerular deposition, including IgG, 

C3, IgA and IgM., the latter mainly in secondary AA. In fact, most cases of AA are 

associated to rheumatoid arthritis, which frequently presents an IgA and IgM glomerular 

deposition. In about one third of patient with AA, electron-dense IgA deposition in 

paramesangial areas may suggest a diagnosis of IgA nephropathy. TEM can easily prove the 

presence of unspecific immunecomplex in a context of amyloid deposition (Nishi et al., 2008; 

Yang & Gallo, 1990). 

5. Ultrastructural detection of amyloid fibrils in non-conventional tissue 
preparations 

In diagnostic practice, it happens that the need for ultrastructural analyses emerges after the 
results of histological examination on paraffin embedded tissue sections. In these cases, if 
there is no specific sample prepared for TEM, the residual formalin-fixed paraffin-
embedded tissue can be recovered for ultrastruttural analysis. Briefly, the retrieving of 
tissues from paraffin consists on various changes in paraffin solvent (i.e. xylene, or rather, its 
less toxic substitutes), followed by rehydratation, using descendent scale of ethanol, prior to 
the specific preparation procedures for TEM (i.e. fixation and resin embedding). 
Ultrastructural diagnoses on tissues retrieved from paraffin have been often used in various 
diagnostic fields (Tosoni et al., 2002). In our experience, in kidney diseases, it allows the 
identification of immunecomplex deposits with good maintenance of sensitivity. This latter 
depends mainly by a good primary fixation in buffered formalin. Small tissues fragments, 
prepared without mechanical stress, immediately immersed in fixative, have a good 
preservation of the sub-structural detail. It should be noted that, contrary to the setting of 
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glutaraldehyde fixation, formalin fixation for morphological studies is best carried out at 
room temperature. Ultrastructural general morphology of amyloid deposits of tissues 
retrieved from paraffin is conserved (Fig. 13).  
 

  

Fig. 13. A-B. Amyloid deposit in liver tissue  retrieved from paraffin. Perisinusoidal space 
(A, OM x3000) is filled with a  large amount of  amyloid fibrils (B, x30000). The hepatocyte, 
on the left of panel A shows the relatively good sub-structural preservation after formalin 
fixation/paraffin embedding, and retrieving procedure.  

 Some authors report the possibility of change in fibrils diameter depending on formalin 
fixation (Sikorska et al., 2009), but fibrillar structure and aggregation patterns are 
maintained. Otherwise, sensitivity of TEM analysis may be reduced because of reduction in 
specificity. In fact, fibrillar ECM can appear more electrondense and can be difficult to 
distinguish from amyloid fibrils. Moreover, in the presence of poor preservation of cell’s 
plasmalemma, intracytoplasmic intermediated filaments can mimic amyloid dense 
aggregates. Nevertheless, the presence of groups of randomly oriented non branched 10 nm 
fibrils is generally highly suspicious for amyloidosis. Our experience concerns mainly renal 
amyloidosis. TEM on renal biopsy retrieved from paraffin may be indicated in the following 
cases:  

• Congo red positive /immunolabeling negative: TEM to confirm amyloidosis 

• Clinical suspicion of renal amyloidosis, Congo red/immunolabeling with doubtful 
results: TEM to confirm amyloidosis  

• Congo red positive, no glomeruli in frozen sections: TEM to evaluate concomitant 
immunecomplex glomerulopathy 

Amyloid can also be detected in frozen tissues residues retrieved for TEM after 
immunofluorescence. However, frozen tissues should be preferably stored, to devote to any 
successive typing analyses, if necessary (Picken, 2010).  

6. Conclusion 

Amyloid is a characteristic conformational status of various proteins in specific conditions, 
frequently associated with disease. Morphology of amyloid fibrils is distinctive and useful 
in the diagnosis of amyloidosis, also in the early stage of disease. ITEM can provide a high 
sensitive typing approach, specially in unusual or new amyloid forms. 
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