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1. Introduction

Since the first time the human reason glimpse at the subatomic world, the idea that an atom
resembles the solar system appear very natural, although wrong. This idea have intrinsically
the notion of self-similarity, i. e., the matter organizes in a very similar, but not the same, way
at different scales of length. The self-similarity in nature has been considered and searched
for by many scientists from different fields of knowledge. But perhaps the most accurate
description, as usual, came from mathematics.
The middle third Cantor set C is one of the simplest examples of self-similarity and give us the
opportunity of emphasize a key feature, self-similarity exist only in sets. So, a function would
be self-similar if its image set is self-similar. Although C is self-similar it has other interesting
properties, e. g., it is a perfect set, it is totally disconnected, and a very astonishing one is that
it has the same cardinality as R.
Finally it seems appropriate to mention that the study of irregular objects has a very important
reason, the world around us is not made of lines, planes and spheres, at least not in the
human eye scale. For this reason it is crucial to consider other type of “geometries”. In
this spirit the fractal geometry was very promising and visually very spectacular, but has
some disadvantages, such as that the very definition of a fractal discard immediately every
physical object. Nonetheless, it is worth to mention it because of the relation between fractals
and self-similar sets. In the rest of this section we try to give a general overview about the
concepts mentioned here as well as the formal definitions of the more relevant ones.

1.1 Self-similar sets

As mentioned before, self-similarity is a feature of sets and is more evident in its geometrical
representation. So before giving the formal definitions, let us take a look at some illustrative
examples.
The first thing that should be notice is the scale invariance of both figures, that is, if you take
a part of the Sierpinski’s triangle and zoom in, you should see the whole figure again. In the
case of the Koch’s snowflake, you don’t get the whole snowflake when zoom in, instead you
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Fig. 1. Sierpinski’s triangle.

Fig. 2. Koch’s snowflake.

get what is called the Koch’s curve. This examples shows that the equivalence under scaling
is not exact but similar. The case of the Cantor set is more simple and less visually exiting
because it ’lives’ in (is a subset of) the real line. However we will use the Cantor set in the
coming sections so we should give a more detailed description of it, but before we translate
this ideas into formal definitions that are more convenient to work with.

Definition A map S : R
d → R

d is a similitude with ratio r > 0 if ∀x, y ∈ R
d

d(S(x), S(y)) = rd(x, y) (1)

where d : R
d → R is a distance function. If r ∈ (0, 1) S is called a contraction.

Definition A set F ⊂ R
d is called self-similar if given a family of similitudes {S1, . . . , Sn}

with the same ratio r
F = S1(F) ∪ · · · ∪ Sn(F) (2)

Now we consider the most important example for our purposes, the Cantor’s set. The
traditional construction of this amazing set can be found in several books, and is based in the
geometrical idea of removing the middle third open segment of the interval [0, 1], which give
us the first generation of the construction. Next, the process is repeated at infinitum for the
remaining segments. What is left is the so called middle third Cantor’s set C. For our purposes
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it seems more convenient to take the similitudes S1(x) := x/3 and S2(x) := x/3 + 2/3 with
ratio 1/3 , and to build from them and the segment C0 := [0, 1]. Let Ci := S1(Ci−1) ∪ S2(Ci−1)
for i = 1, 2, . . .. So, C1 := S1(C0) ∪ S2(C0) and C2 := S1(C1) ∪ S2(C1), etc. From this it is clear
that

C2 = S1(S1(C0) ∪ S2(C0)) ∪ S2(S1(C0) ∪ S2(C0)) (3)

= (S1 ◦ S1)(C0) ∪ (S1 ◦ S2)(C0) ∪ (S2 ◦ S1)(C0) ∪ (S2 ◦ S2)(C0) (4)

Now denoting Si ◦ Sj as Sij and in a natural way Si1 ◦ · · · ◦ Sin
as Si1,...,in

where il = 1, 2 we
could write

Ck =
⋃

π(i1,...,ik)

Si1,...,ik
(C0) (5)

The union runs over all the possible sequences i1, . . . , ik. So we get that

lim
k→∞

Ck = C. (6)

This is similar to take the set C = Closure(∩kCk).
Quasiperiodic or quasiregular heterostructures (henceforth QH) follow an algorithmic
sequence based on some self-replicating rule, for example the Fibonacci sequence among
others. There is a great deal of current work on QH (see for example Refs. (1; 2)) and numerous
references can be found in two recent reviews.(3; 4) In these kind of systems, the question
of self-similarity was deeply examined but found to have a very limited range of validity
in actual practice(5). In addition, the fractal character (6) of the spectrum of elementary
excitations is rigorously proved (7; 8) and confirmed in many numerical calculations (see for
example Refs. (3; 5)).
We propose the study of very different systems, inspired by QH and other self-similar systems.
In particular, we aim to study semiconductor quantum systems in which the potential is close
to a self-similar function (6) defined in a bounded interval. We hope this can be generalized
and applied to other problems.
The study of this kind of potentials is motivated by the evidences that the transmittance
reflects the self-similar property of the potential through its fractal dimension. In the other
hand Lavrinenko et al (10; 11) studied the propagation of classical waves of the optical Cantor
filter. This system is not a self-similar system, because the refractive indices are not scaled. The
authors observed that the optical spectra has shown spectral scalability. In the last few years, a
lot of experimental works concerning the worth noting properties of porous silicon in chemical
and biological sensing have been reported (12). Moretti et al have compared the sensitivities
of resonant optical biochemical sensor, based on both periodic and aperiodic porous silicon
structures, such as Bragg and the Thue-Morse multilayer. They observed that the aperiodic
multilayer is more sensitive than the periodic one. Finding other similar systems with larger
sensitiveness would be important for applications.
Agarwal et al (13) have reported experimental results on electromagnetic wave propagation in
nanostructures porous silicon multilayer where geometrical length follows the Cantor code.
For generations higher than six equidistant fringes are observed instead photonic bands.
Esaki et al (14)observed that for specific values of wave numbers, transmission coefficients
are shown to be governed by the logistic map and, in the chaotic region, they show sensitive
dependence on small changes in parameters of the system such as the index of refraction. In
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the other hand, Pilevary Salmasi (15) et al studied a fractal shaped antenna using multilayer
structure.
A significant number of papers have been also devoted to different mathematical aspects of
this problem. See, for example, Refs. (16)-(17), and references therein.
The study of properties material’s is due to the research on optimal devices with the goal to
improve the present ones. With this in mind, and for methodological purposes, scientists
look at the fundamental physical properties of such materials. One of the possibilities is
the transmission coefficient, or transmittance, of an electromagnetic wave incident upon a
quantum potential, typically barriers or wells. This topic is covered in the college courses
for a single rectangular barrier, nevertheless is very interesting to study some more complex
systems. Among these, there is the so called superlattices for which the transmittance has been
well characterized by their band structure. An even more irregular case is the Cantor-like
potential (1; 3), which is inspired in the Cantor set, in this system the height, widht and
distance of the barriers (or wells) are modified just like int the construction of the Cantor
set.

2. Topological self-similar quantum wells

In this section, first we are goint to introduce the selfsimilar quantum wells; later we show
how the selfsimilarity are reflected in terms of the solution of the SchrÃűdinger’s equation.
This is done formally in subsection 2.2 and in subsection 2.3 from the point of view of
semiclassical approximation. In subsection 2.4 we analyze numerical the properties of the
discrete spectrum.

2.1 Definition and properties of the potential

Let us define the intervals I = [0, 1] and J = [a, b], with 0 < a < b < 1. Let us consider two
differentiable functions f0 : [0, 1] → [0, a] and f1 : [0, 1] → [b, 1], such that both are onto and
0 < | f ′0(x)| < λ0 < 1, 0 < | f ′0(x)| < λ1 < 1 for any x ∈ [0, 1]. Given aN = (i1, i2, · · · , iN)
an N-couple of 0’s and 1’s, i.e. ij = 0, 1 for all j = 1, 2, · · · , N, we define the composition
functions

faN (x) = fiN
◦ · · · ◦ fi2 ◦ fi1 (x)

and the intervals

IaN = fiN
◦ · · · ◦ fi2 ◦ fi1 (I0) (7)

JaN = fiN
◦ · · · ◦ fi2 ◦ fi1 (J0). (8)

We consider the particular case that the functions f0, f1 are affine; i.e. λ0 := | f ′0| =
1
a and λ1 :=

| f ′1| =
1

1−b . Observe that the intervals IaN has length λ
a0

N
0 λ

N−a0
N

1 where a0
N is the number of 0’s

that appear in the sequence aN . In the same way, the intervals JaN has length λ
a0

N
0 λ

N−a0
N

1 (b− a).

To avoid notation, we denote λaN := λ
a0

N
0 λ

N−a0
N

1 .
An special case of the above defined affine maps are the ones associated to the classical
1/3−middle Cantor set where f0(x) = 1

3 x and f1(x) = 1
3 x + 2

3 . In this situation, the
intervals and functions just defined have a direct interpretation in terms of the standard
Cantor construction. See Fig. 3. I = [0, 1] is the starting interval and J = [1/3, 2/3] is the
central one third interval of I.
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J0

J0

J0

J(0) J(1)

J(0) J(1)J(00) J(10) J(01) J(11)

︸ ︷︷ ︸

I0

I(00) I(10) I(01) I(11)
︸ ︷︷ ︸

I(0)
︸ ︷︷ ︸

I(1)

✻
I(000)

✻
I(100)

✻
I(010)

✻
I(110)

Fig. 3. The three first generations of Cantor construction. For the sake of clarity the starting
interval I0 is only denoted in the upper panel, and intervals I(0) and I(1) are only denoted in
the middle panel.

For more general and precise construction of cantor’s map and the role that they played in
theory of dynamical systems see (18; 19).

Now, we take 0 < α0 < 1 and 0 < α1 < 1 and we denote αaN := α
a0

N
0 α

N−a0
N

1 . From that, we
define the potential equal to V0αaN in any of the intervals JaN and zero elsewhere. V0 is some
amplitude irrelevant for the following.
Observe that this potential verifies the following property that resembles the classical notion
of self-similarity:

V( f−1
aN

(x)) =
1

αaN

V(x) ∀ x ∈ faN (I0) . (9)

Indeed, this condition would be a full self-similarity if it is fulfilled for all values of the
coordinate variable x. Since it only holds for x in certain intervals, the arguments in
the spirit of Group Theory can not be pursued. However, in the following we call this
condition self-similarity, or in any case quasi-self-similarity, due to the close resemblance with
the theoretical pure situation of self-similarity.

2.2 Formal solution and self-similarity

We will now explain, in a little more rigorous and general manner, a theorem regarding
the self-similarity of the wave functions of the continuous spectrum when the potential is
a self-similar function.
Let E > 0, k > 0 (k = h̄2/(2m(x)) where m(x) is the position-dependent effective mass). In
the sequel, we will note with ΨE,k, the solution of the problem

kΨE,k(x) + (E − V(x))ΨE,k(x) = 0 (10)
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We want to study how the self-similarity of the potential V(x) -and the mass m(x)- is
reflected in the eigenfunctions and eigenvalues. More precisely we want to see if there exist
some similarity between the eigenfunction restricted to the whole interval, and the same (or
another) eigenfunction, when it is restricted to the interval faN (I0). In others words, we want
to see, if given E and k > 0, there exist E′

> 0 and k′ > 0 such that

ΨE,k( f−1
aN

(x)) = ΨE′ ,k′ (x) (11)

for any x ∈ faN (I0). In this direction, we obtain the following Theorem which is a
renormalization Theorem.

Theorem 1. Let E > 0, k > 0 and the eigenfunction ΨE,k. Given N > 0 then we get that

ΨE,k( f−1
aN

(x)) = ΨE′ ,k′ (x)

for any x ∈ faN (I), where E′ = EαaN , k′ = λ2
aN

αaN k

Before to give the proof, observe that the Theorem is showing equivalently, that given N > 0
then

ΨE,k( faN (x)) = ΨE′ ,k′ (x)

for any x ∈ I.
Now, let us give the proof.
Proof: We have that

kΨ′′
E,k(x) + (E − V(x))ΨE,k(x) = 0 (12)

with x ∈ [0, 1].
Taking the transformation f−1

aN
: faN (I) → I, we get that for any x ∈ faN (I)

kΨ′′
E,k ◦ f−1

aN
(x) + (E − V ◦ f−1

aN
(x))ΨE,k ◦ f−1

aN
(x) = 0 . (13)

Using that Ψ′′
E,k ◦ f−1

aN
= λ2

aN
(ΨE,k ◦ f−1

aN
)′′(x) and that V( f−1

aN
(x)) = 1

αaN
V(x),

λ2
aN

k(ΨE,k ◦ f−1
aN

)′′(x) + (E −
1

αaN

V(x))ΨE,k ◦ f−1
aN

(x) = 0 (14)

for any x ∈ faN (I) and equivalently,

αaN λ2
aN

k(ΨE,k ◦ f−1
aN

)′′(x) + (αaN E − V(x))ΨE,k ◦ f−1
aN

(x) = 0 (15)

for any x ∈ faN (I). This implies that ΨE,k ◦ f−1
aN

is solution of

k′Y′′(x) + (E′ − V(x))Y(x) = 0 , (16)

where k′ = λ2
aN

αaN k, and E′ = EαaN . And this means that

ΨE,k( f−1
aN

(x)) = ΨE′ ,k′ (x) (17)

for x ∈ faN (I). This finishes the proof.
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2.3 Semiclassical solution and self-similarity

Observe that in the particular case of the standard 1/3 Cantor set for the potential defined
above the following properties are satisfied.

if 0 ≤ x ≤ 1/3 then V(x) =
1
3

V(3x) (18)

if
2
3
≤ x ≤ 1 then V(x) =

1
3

V(3x − 2) . (19)

Now, let E > Max[V(x)], be a eigenvalue of the continuous spectrum of the Schrödinger
equation:

d2F(x)

dx2 +
2m

h̄
(E − V(x)) F(x) = 0 . (20)

For this eigenvalue, using semiclassical approximation, we get that the associated
eigenfunction is (20)

FE(x) = AE(x) exp
[

i

h̄
SE(x)

]

(21)

where

AE(x) =
C1

(2m (E − V(x)))1/4 (22)

SE(x) =
∫ x

0

√

2m(E − V(x)) dx . (23)

Using the properties of V(x), observe that for any x ∈ [0, 1/3]

AE(x) =
C1

(2m(E − V(x)))1/4 =
C1

(2m(E − 1
3 V(3x))1/4

= 31/4C1 A3E(3x) . (24)

This means that, up to a certain constant, the function AE (of the eigenvalue E) in the interval
0 ≤ x ≤ 1/3 is equal to the function A3E (of the eigenvalue 3E) in the interval 0 ≤ x ≤ 1.
On the other hand, for the function SE, we have that for x ∈ [0, 1/3]

SE =
1
h̄

∫ x

0

√

2m

(

E −
1
3

V (3x)

)

dx . (25)

Changing the integration variable x by x′ = 3x, we have that for x ∈ [0, 1/3]

441Self-Similarity in Semiconductors: Electronic and Optical Properties
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SE(x) =

(
1
3

)3/2 ∫ 3x

0

√

2m (3E − V (x′)) dx′

=

(
1
3

)3/2
S3E(3x) . (26)

So, for x ∈ [0, 1/3]

FE(x) = C1

(
1
3

)1/4
A3E(3x) ·

· exp

[

i

h̄

(
1
3

)3/2
S3E(3x)

]

. (27)

That is, the eigenfunction corresponding to the state E in the interval
[

0, 1
3

]

is self-similar

to the eigenfunction corresponding to the state 3E in the interval [0, 1]. Arguing in the

same way, and using the self-similarity of the potential in
[

2
3 , 1

]

we conclude also that

the eigenfunction corresponding to the state E in the interval
[

2
3 , 1

]

is self-similar to the
eigenfunction corresponding to the state 3E in the interval [0, 1]. Again, arguing in the same
way we get that for any interval faN (I0) (see previous section for definitions) the semiclassical
approximation associated to the eigenvalue E over the interval faN (I0) is self-similar over the
interval [0, 1] to the semiclassical approximation associated to the eigenvalue 3N E.
Since any value of E is an eigenvalue of the Schrödinger equation, then the self-similarity of
the wave function is fulfilled for any value of E. This implies that for a quantum well with
self-similar potential, it affects the wave functions in the whole continuous spectrum, not only
the wave functions of the eigenvalues close to the well’s limits, as would happen in a normal
quantum well. This conclusion is general for any self-similar potential.

2.4 The case of the discrete spectrum

However, our interest is focused on electronic properties. So, we have to look to the discrete
levels. For wave functions in discrete levels, it is impossible to find a general formula like
those developed in previous sections in the framework of WKB Approximation. So we focus
our attention on the resolution of a concrete problem using transfer matrix method (see for
example (21) and references therein). Due to the fact that in semiconductors it is possible
to grow potentials of different types, we propose the calculation of the discrete levels of
the potential given in figure 4, constructed in AlGaAs/GaAs. We calculate the eigenvalues
and eigenfunctions of this system in the Envelope Function Approximation (EFA)(22) with an
effective mass of 0.068 m0, where m0 is the free electron mass and the well width is 6000 Å.
Let us consider a quantum well in AlGaAs/GaAs with a 1/3 Cantor-like shape [3] with rigid
walls at the ends as shown in figure (1).
We calculate the eigenvalues and eigenfunctions of this system in the Envelope Function
Approximation (EFA) with a effective mass of 0.068m0, where m0 is the mass of the free
electron,the dielectric constant being ǫr = 12.5 and the well width of 6000 Å.
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Let Ψ(z) be a column vector with two components,

Ψ(z) =

(
F(z)

F
′
(z)

)

and the matrix P(z),

P(z) =

(
0 1

− 2m∗ / h̄2 [E − V(z)] 0

)

Thus
P(z) Ψ(z) = 0

Let g1(z) and g2(z) be two linearly independent solutions of the Schrödinger equation, then,
from the transfer matrix formalism let us take

M(z, z0) =
1
∆
(

g′2(z0)g1(z)− g′1(z0)g2(z) g1(z0)g2(z)− g2(z0)g1(z)
g′2(z0)g′1(z)− g′1(z0)g′2(z) g1(z0)g′2(z)− g2(z0)g′1(z)

)

where
∆ = g1(z0)g′2(z0)− g′1(z0)g2(z0)

and
Ψ(z) = M(z, z0)Ψ(z0)

Our potential is sectionally constant in all intervals. If we use the trigonometric functions,
we obtain the exact result. For the calculation of the eigenvalues we use the boundary
conditions, i.e., our potential is infinite in z = lqw and z = −lqw , the transcendental equation
by calculation of eigenvalues is M12(0,−lqw) = 0, for odd states and M22(0,−lqw) = 0 for
even states, where Mij are the elements ij of the matrix M(lqw,−lqw). Once we have the
eigenvalues, the eigenfunctions are calculated in the usual manner, using the transference
matrix method [5].
This system is actually a set of coupled quantum wells, therefore, we expect to observe
self-similarity for basic states corresponding different wells as for excited states. Even if
we did not observe the same structure of self-similarity as the one obtained for continuous
spectrum, we do observe some interesting properties in the states of the discrete spectrum. For
example, the states E1 = 1.104 meV, E46 = 361.9 meV, and E58 = 490.7 meV are self-similar
among themselves. In fact, the three states correspond to the basic levels of the different
wells. The same thing happens with the first and second excited levels. In figure 5 (top
panel) and 5 (bottom panel) the states E17 = 135.4 meV and E49 = 397.0 meV are observed,
which are self-similar and this self-similarity does not respond to the simple coupling between
wells. In figure 6 we present the state E62 = 510.0 meV, which is self-similar to itself. This
occurs whether they are either self-similar or some kind of renormalization property between
different states hold. On the other hand, we have observed that the density of the localized
charge (the product of the eigenvalue with the eigenfunction) presents self-similarity (9).

2.5 Intersubband optical absorption

In Fig. 7 we depict the absorption coefficient due to intersubband transitions as a function
of photon energy. The calculation method can be found in many textbooks. See, for example
Ref. (22). As expected, the graphics is a sectionally constant function, and consequently,
its derivative is a set of delta function peaks. Theoretical and numerical methods tend to
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Fig. 4. Self-similar potential profile constructed as a fifth order Cantor function. This
potential is scaled by three.

smooth this kind of graphics; this indicates the convenience of using the derivatives instead
the original function in order to find the shoulders of the absorption coefficient as a function
of energy. The calculation of fractal dimensions D(q) of this set produces a value of 1 for q
negative or about zero and a value neatly below 0.6 for q greater than 5. Then, the fractality of
the spectrum has been transferred to the absorption coefficient.

3. GaAs-AlGaAs like heterostructure

To perform the calculations we used the parameters of the GaAs already mentioned.
Assuming parabolic bands, in the low temperature limit, the charge density of the ith level, is
given by:

ρi(z) =
i

∑
j=1

∣
∣
∣Fj(z)

∣
∣
∣

2
Ej

where the Fj(z) and Ej are the eigenfunctions and eigenvalues of the potential presented in
Fig.1
In Fig.2 the charge density of the ith level of the proposed system is presented for the first 100
energy levels. The self-similarity is evident. Then as it can be seen, self-similarity is not an
exclusive property of infinite systems. Here we have shown that a self-similar finite quantum
system may also exhibit self-similarity. In this case, self-similarity is evident in the charge
density and this is a physically clear result. Other physically relevant parameters could in
principle exhibit fractal characteristics in finite systems.
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Fig. 5. Top panel: Eigenfunction corresponding to the eigenvalue E17 = 135.4 meV. Bottom
panel: Eigenfunction corresponding to the eigenvalue E49 = 397.0 meV.

4. Self-similar barrier systems

4.1 Introduction

In this section we present the important case of strict self-similar potentials and their electronic
transmission coefficient. This potentials are constructed based on the the construction of the
Cantor set, i. e., are based on an iterated replacement of the zero potential zones by scaled
copies of the main barrier, figure 10.
The set of parameters of this kind of systems are the follows: the value of the main barrier H0,
the total length of the multibarrier system and the generation of the potential. Let us take a
look at the transmission coefficient corresponding to the eighth generation of the self-similar
potential with H0 = 500meV and length from Lt = 75Åto Lt = 750Å, figure 11.
This shows that the total length determine the oscillatory behavior of the transmission
coefficient, so, if we take this potential isolated, we must focus in lengths grater than 200Åin
order to obtain some oscillations in our transmission curves.

445Self-Similarity in Semiconductors: Electronic and Optical Properties
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Fig. 6. Eigenfunction corresponding to the eigenvalue E62 = 510.0 meV.

Fig. 7. Intersubband optical absorption coefficient.

It is also important to see what happens when we move from one generation of the potential
to the next, in order to determine the effect, if any, of the self-similarity on the transmission
coefficient. So in figure 12, we see the transmission coefficient curves for the first four
generations of the self-similar potential.
Those curves could suggest that the self-similarity does not make much difference in the
transmission coefficient, nevertheless, in the following subsection we will see that it’s real
contribution is really clear when is “mixed” with another type of structures.
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Fig. 8. Charge density.

4.2 Mixed multibarrier potentials

Now we consider a multibarrier system that mix the self-similar potential (henceforth ssp),
and a multibarrier periodic potential (henceforth mbpp).

4.2.1 Methodology

An mixed multibarrier potential is built using two mbpp and one ssp. The mixing process is
quite simple, in fact it is just an arrangement of the two systems in the following order, first a
mbpp, next the ssp and then the other mbpp, see figure 13. It is important to notice that when
the generation of the self-similar potential is increased the number of layers in the mbpp is
increased linearly. The transfer matrix method is used to calculate the transmittance of the
previous systems. These calculations are made in the framework of effective mass theory. In
this system a given generation comprehend the same generation for the component systems,
i. e., consider the generation three of the mixed multibarrier potential , it has two mbpp of
three barriers each and one ssp of the third generation.
It is clear that the generation one corresponds to an mbpp of generation 3 (three layers), which
most have the characteristic band structure. The parameters involved in this system are the
height and width of the barriers and the distance between them. The parameters that are
changed to study its effect on the transmittance are the width and distance. This parameter
variation is applied to the mbpp systems. The key parameter for the ssp is the length of the
whole structure, in this case 750Å. In figure 14 we present the transmittance for the mixed
system. The first thing that one can note is the appearance of transmission peaks in the region
between 250 and 350 meV, that seems to correspond to quasibound states for energies above
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Fig. 9. Potential, energy levels and wave functions with scaling factor for the potential 3/2.

the value of V for the barriers. Those peaks are placed in the region corresponding to a
gap in the mbpp. Finally it is worth to remark the following: it seems that those peaks are
equidistant; the addition of the ssp to de mbpp rules out the tunneling region and the gaps in
the transmittance are better defined.
Figure 15 shows that the inclusion of the ssp effectively made the tunneling band to disappear.
Also, it shows quasibound states in energetic regions corresponding to gaps in the mbpp. Last
but not least, it seems that the perfect reflection is obtained for the minimums of the gaps.

5. Optical case

5.1 Electromagnetic waves in self-similar multilayer systems

First we generalize the theorem 1 to the case of electromagnetic waves, so in the following we
will use the construction of the potential given in section 2.1.

Theorem 2. Let N > 0, ω > 0 and E(x) the frequency and the electric field respectively. Then if
E(x) is solution of then equation

E′′(x)−
ω2

v(x)2 E(x) = 0 (28)

we get that Eω( f−1
aN

(x)) = Eω
′ (x)
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Fig. 10. Strict self-similar potential.

Fig. 11. Comparison of the transmission for the eighth generation of the GP-potential variyng
the total length of the system.

Proof: First we take E(x, t) = E(x)eiωt, which give us the time-independent electric field
equation Following the procedure for the quantum case, we consider the effect of the
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Fig. 12. Comparison of the first four generations of the GP-potential with H0 = 800 meV and
Lt = 1000Å (total length).

Fig. 13. Mixed Cantor-like potential, generation 3.

transformation f−1
aN

for the preceding equation

E′′ ◦ f−1
aN

(x)−
ω2

v(x)2 E ◦ f−1
aN

= 0 (29)
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Fig. 14. Transmittance for an width/distance of 23Å, generation 10.

Fig. 15. Transmittance for an width/distance of 75Å, generation 10.

Once again using that E′′ ◦ f−1
aN

= λ−2
aN

(E ◦ f−1
aN

)′′ we get

(E ◦ f−1
aN

)′′(x)− λ2
aN

α2
aN

ω2

v(x)2 E ◦ f−1
aN

= 0 (30)
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which implies that E ◦ f−1
aN

is solution of the equation

Y′′(x)−
ω̃2

v(x)2 Y(x) = 0 (31)

where ω̃2 = λ2
aN

α2
aN

ω2, i. e., if we take the electric field for whole system ET and we compares
this with the corresponding to a rescaled copy EβT , β ∈ (0, 1), then ωEβT

= λaN αaN ωET
. This

implies that Eω( f−1
aN

(x)) = Eω
′ (x).

Finally we consider the case in which λaN αaN = 1, in this case the electric field is self-similar
in the space for a given energy, i. e. Eω( f−1

aN
(x)) = Eω(x).

5.2 Reflectance

For this case Lavrinenko et al (11) give an excellent analysis and presentation of this kind of
systems. And the two main features that they distinguish are the scalability and the sequential
splitting of the spectra.

Fig. 16. Two types of fourth Cantor generation structures in which was applied the Cantor
rule to a) the optical thickness and b) both the optical thickness as well as the refractive index.

According to the equation 31, it does not exist a limiting condition to find self-similar behavior
of the electric field in the whole interval with respect to the restricted interval faN (I0) of the
system. So we generated two types of Cantor structures shown in figure 16 which satisfy the
ternary Cantor rule. In the first case we applied the Cantor rule only to the optical thickness
(nd) (type-I) while in the second case we applied it to the optical thickness as well as to the
refractive index (type-II); both structures retain the same total optical thickness equal to 30
Îijm. Since the physical thickness is defined as the rate of the optical thickness divided by
refractive index, the physical thickness of the second type Cantor structure is expected to be
narrower than the first type in each generation.

452 Optoelectronics - Materials and Techniques

www.intechopen.com



Self-Similarity in Semiconductors:

Electronic and Optical Properties 19

Theoretical simulation of transmission spectra of the Cantor structures was performed using
transfer formalism (29) (21), in which we assumed that the layers that constitute the Cantor
structure are homogeneous, isotropic and infinite in two transverse directions. Figure 17
shows the results obtained for transmission spectra of different type-I Cantor generations.
It can be observed that increasing the order of Cantor generation the transmission spectra
becomes more complex, exhibiting very pronounced resonance peaks and shifts to short
wavelengths due to a finest inner structure of Cantor multilayer, retaining the same total
optical thickness in each generation. In order to compare the transmission spectra of each one,
we normalize the spectra with respect to the smallest optical thickness (Λ0) in each generation
as shown in figure 18.

Fig. 17. Theoretical transmittance calculation of the type-I Cantor structures at different
orders of generation: a) first, b) second, c) third, d) fourth and e) fifth. The calculation was
realized using refractive indices of 2.3 and 1.2 remaining the same optical thickness equal to
30μm for all generations.

The normalized results display interesting optical properties of the Cantor structures. First, we
observe that the transmittance spectra of the ith Cantor generation contains the previous i − 1
Cantor generation. For example, the second Cantor generation spectra (Fig. 5.3 b) is present
in each one of the following generations (Fig. 18 c, d y e, represented by the shadow area)
which indicates that transmittance spectra exhibit self-similarity. Furthermore, the scaling
factor required to scale the i − 1 Cantor generation and reproduce the ith Cantor generation is
the same used to scale the spatial thickness, i.e. equal to 3. These facts have been observed in
other systems with high refractive index contrast (nB/nA=2.3)(11). However, the amplitude
of the transmittance does not have a unique scale factor.
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Fig. 18. Theoretical transmittance of the type-I Cantor structures normalized with respect to
the optical thickness (Λ0) of the smallest layer in each structure. The refractive indices and
the whole optical thickness are the same used in the figure 17.

In figure 19 is shown the normalized transmittance spectra of the type-II Cantor structures
for various Cantor generations. It is observed that the optical spectra are qualitatively similar
to the obtained in type-I Cantor’s. However, in this case, more transmission and reflection
modes appear due to the multiple splitting of the optical thickness as well as the refractive
index. Once more, the ith spectra is contained in the following generations and it is scaled by
a factor of 3. But in this case it is possible to find a scaling factor to rescale the transmission
amplitude of the i+ 1 Cantor spectra to reproduce the i Cantor spectra, and so on. This scaling
factor was found to be approximately equal to 0.41.

5.2.1 Electric field

The distribution of electric field intensity along the structure for each type-I Cantor generation
is shown in figure 20. The EF was calculated for a wavelength of 1650.70164 nm which
corresponds to a very well defined transmission mode. Increasing the generation order, it
follows that the intensity as well as the confinement of the electric field increases drastically
reaching a maximum value of |E|2 = 477 in the fourth generation. A subsequent increment
the confinement of EF starts to decrease. Another interesting thing is the fact the confinement
occur preferably in the central part of the Cantor structures and can be tuned to a particular
wavelength by only scaling the whole Cantor structure, i.e. either increasing or reducing
the total optical thickness. This can be exploited to the development of active nucleus in the
heating, emitting and lasing applications such as LED’s, lasers, etc.
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Fig. 19. Theoretical transmittance of the type-II Cantor structures normalized with respect to
the optical thickness (Λ0) of the smallest layer in each structure. The refractive indices and
the whole optical thickness are the same used in the type-I Cantor structures.

Fig. 20. Electric field intensity calculated at a wavelength of 1650.70164 nm for different
type-I Cantor structures.
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6. Conclusions

First, we have demonstrated that the wave functions exhibit a self-similar property induced
by the self-similarity condition (9) on the potential. We have given a proof in the framework of
quasiclassical approximation. This is true for energy values, no matter how large it could be.
This behavior of the self-similar quantum well is radically different from that known from a
standard quantum well, which only affects the eigenfunctions of the levels closest to the well
top. On the other hand, we have observed some interesting properties for the discrete levels.
At first sight, it could be supposed that the system proposed is not different from those that
appeared before in the literature. However, the system that we have considered are extremely
different from a topological point of view, since the quantum well proposed is self-similar.
This property, allows us to show that for any eigenvalues the associated eigenfunction “feels"
the presence of the quantum well, despite how large is the eigenvalue. This is a main
difference to the standard quantum well, where the eigenfunctions show the presence of the
quantum well only for eigenvalues close to the well top.
At this stage of the study, it is more than likely acceptable to suggest that there are other
bounded potentials defined in finite intervals also having self-similar wavefunctions. Indeed
the standard Cantor construction can be changed in a variety of ways, as can be seen in Ref.
(24), all of them having the same analytical properties. In a given Cantor construction one
may study non-constant potentials, and the main steps of our analysis are valid as long as the
self-similar condition (9) remains legitimate.
Other isomorphic problems possess the same properties. Among them we can mention the
transversal horizontal elastic modes, the TE or TM electromagnetic modes, both of them in
a multilayered system,(21) etc. It is not so evident, on the other hand, that non-isomorphic
problems, like those discussed in Ref. (26), share the fractal property of the self-similarity of
the corresponding states. But it is worth to mention that in quasiregular heterostructures,
elementary excitations exhibit fractality as well as self-similarity of the zero state, despite
being isomorphic with onedimensional Schrödinger-like equations.
The properties of the spectrum of different Hamiltonians is a problem of current interest
for mathematicians as well as for physicists. A significant number of progresses have been
obtained in the last decennials. As a survey the reader can be addressed to Refs. (1; 27; 28)
and references therein. However, there remains a number of intriguing questions; one of
them is the character of the spectrum for strange potentials as the one we have analyzed in
this paper.
Apparently this strange potential could be described as nothing but a curiosity; however, this
is not entirely true. In the present days the experimentalists can construct, and in fact they do,
finite realizations of these bizarre systems obtaining interesting and applicative properties.
We hope the present theoretical lucubration encourages some experimental works.
Furthermore, we have calculated the coefficient of intersubband optical absorption (in the
region of the discrete spectrum of energies), but we have found no self-similarity, at least
none evident.
We present a formal definition of topological self-similar potentials. These, not only have
to show scaling properties in the length but also in the values of V. In this situation, the
eigenfunctions of the discrete spectrum are self-similar by pairs. In this type of systems the
eigenfunctions seems to be strongly localized at the small wells. This behavior suggest that
the electronic mobility will be greater than the corresponding to traditional quantum wells.
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On the other hand, the optical absorption coefficient does not present a remarkable behavior.
The electronic transmittance for self-similar barriers shows certain interesting oscillations for
high energies. Particularly interesting came to be the case of mixed systems. First, the ssp
filters the tunneling transmittance of the mbpp. Also, it shows a gap in a permitted region
of the corresponding mbpp. In this gap, it could be observed three quasibound levels. This
behavior seems to be particular of these kind of mixing, as it can not be obtained with mbpp
or multibarrier quasiregular potentials. The proof of theorem 2, shows that distinct types of
selfsimilarity is obtained depending on the similar ratios that is taken for the construction of
the potential.
The mixed systems modify the general behavior of the transmittance corresponding to the
potential component systems. Also, the transmittance in function of the width of the barriers
shows that the contribution of smaller barriers in the ssp is reflected on the whole structure
of maximum and minimum. Finally, in the optical reflectance spectrum for a self-similar
structure based on porous silicon, the more interesting property is the nesting from one
generation to next. Which gives the possibility of characterize this kind of spectrum.
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