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1. Introduction 

Silicon is the desired material, because silicon optoelectronics will open the door to faster 
data transfer and higher integration densities at very low cost. Silicon microphotonics has 
boomed these last years. In addition, silicon, the most important elemental semiconductor, 
crystallizes in the diamond structure. The diamond lattice consists of two interpenetrating 
face centered cubic Bravais lattices displaced along the body diagonal of the cubic cell by 
one quarter of the length of the diagonal.  
Nowadays, hydrogenated nanostructured silicon with grains in nanometer size has 
attracted more attention in optoelectronic and microelectronic devices for its superior 
properties (Kanicki, 1991, 1992; Canham , 1990 ;  Lin  et al.,  2006, Funde et al.,  2008,  Cheng 
et al., 2008). Moreover, great efforts have been devoted to photoluminescence of silicon-
based materials for developing integrated optoelectronics with the standard silicon very-
large-scale integration technology (Canham, 1990). For example, to embed the nanometer-
sized silicon within an insulating host will enhance the quantum confinement effect, which 
spreads the band gap of silicon for photoluminescence emission (Brongersma et al., 1998). 
During the last few years, various methods were proposed to embed nanometersized 
silicon, such as implantation of silicon into silicon dioxide (Brongersma et al., 1998), Si/SiO2 
superlattice structure (Photopoulos et al., 2000; Benyoucef, & Kuball, 2001), thermal-
oxidized nanocrystalline silicon (Jeon et al., 2005). At the same time, these techniques suffer 
from complicated and high temperature process, thus unsuitable for developing low cost 
array or flexible optoelectronic nanocrystalline silicon devices. 
Nanocrystalline silicon has been synthesized by several techniques such as microwave or 
laser induced decomposition of silane (SiH4) like precursors (Takagi et al. 1990; Ehbrecht et 
al., 1995), pulsed-laser deposition of silicon (Werwa et al., 1994), low pressure chemical 
vapor deposition (Nakajima et al., 1996), electrochemical etching of silicon wafers (Canham , 
1990; Belomoin et al., 2002), ion implantation of Si+ (Iwayama et al., 1994), cosputtering of 
silicon and silicon dioxide (Zhang et al., 1995), and plasma-enhanced chemical vapor 
deposition (Inokuma et al., 1998).  
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On the other hand, for the visible luminescence properties of nanocrystalline silicon, control 
of the size distribution and surface condition of nanocrystalline silicon with reproducibility 
is critical to the sensitive light emitting properties. The photoluminescence is highly 
dependent on the discrete size of silicon  nanocrystals and also changes with different 
surface passivation. For the decomposition, pulsed-laser deposition, and low pressure 
chemical vapor deposition methods, both surface passivation and deposition of 
nanocrystalline silicon thin films without agglomeration need further investigations. For the 
electrochemical etching method, preparation condition dependence and degradation of the 
photoluminescence are major concerns. For the ion implantation method, multiple 
implantation at different energies is required to create a thick layer of nanocrystalline 
silicon. Compared with other fabrication methods, plasma-enhanced chemical vapor 
deposition has been extensively utilized in the industry and is compatible with ultra-large 
scale integration technology. Nanocrystalline silicon thin films formed by plasma-enhanced 
chemical vapor deposition have shown strong and stable photoluminescence, robust 
structure, and good surface passivation. The characteristics of nanocrystalline silicon films 
deposited by plasma-enhanced chemical vapor deposition can be finely tuned through 
silicon concentration in the films as well as post-deposition annealing and oxidation. 
Study of the influence of the different deposition parameters on the growth of the material is 
therefore important both for newer device applications and also for understanding the basic 
physics of the growth process of thin films. Several deposition parameters, such as plasma 
energy and density, substrate temperature, rf power, gas flow rate, deposition pressure and 
dilution of the source gas (silane) with other gases (argon, hydrogen, or helium) will strongly 
influence the structure and properties of the grown nanocrystalline silicon thin films. The 
effect of Argon dilution on the structure of hydrogenated amorphous and microcrystalline 
silicon films deposited by rf glow discharge decomposition of silane has been demonstrated 
(Das et al. 1996; Chaudhuri & Das, 1995 ; Wang et al., 2003). A detailed experimental study has 
been reported on the effect of the dilution of silane with hydrogen on optical properties of 
hydrogenated amorphous silicon prepared by plasma deposition as function of the gas-
volume ratio and the substrate temperature (Yamaguchi & Moigaki, 1999). However, most 
features of the hydrogenated amorphous silicon network structure are defined at the time of 
growth and therefore the optical and electric properties depend on the details of the deposition 
process. In the present work, we report the growth and characterization of hydrogenated 
nanostructured silicon thin films deposited by plasma-enhanced chemical vapor deposition 
technique. The large numbers of atomic hydrogen are necessary for passivitation of dangling 
bonds and reconstruction of Si–Si bonds to improve film quality. Also, it has been known that 
the deposition of nanocrystalline silicon is due to the selective etching activity of hydrogen 
atoms towards the amorphous phase with respect to the crystalline structure. Thus, the role of 
hydrogen is to promote the nucleation and the crystallization of hydrogenated amorphous 
silicon at low temperature with desired grain size (Solomon et al., 1993). The use of SiF4 has 
also been successfully employed to obtain more orderly materials since fluorine atoms, 
produced in SiF4 plasma decomposition, are effective etchant species (Mohri et al., 1991). These 
facts were considered in choosing the feed gases.  In the study of Lim et al. (Lim et al., 1996), 
the deposition temperature was decreased until 220 oC. Thus, the grain size decreased until 20 
nm. In the present contribution, the deposition temperature was further decreased up to 60 oC 
with high H2 dilution to further decrease the grain size. The aim of this work is to get more 
insight into the effect of deposition temperature, air exposure and hydrogen flow rate ([H2]) on 
the optical and structural properties of hydrogenated nanostructured silicon thin films, and 
also the possibility to enhance the optical properties of hydrogenated nanostructured silicon 

www.intechopen.com



Air Exposure  Improvement of Optical Properties of Hydrogenated 
Nanostructured Silicon Thin Films for Optoelectronic Application  

 

377 

thin film. To our knowledge, the effect of air exposure on the optical and structural properties 
of hydrogenated nanostructured silicon thin films is not studied before. 

2. Experimental method 

The hydrogenated nanostructured silicon films were deposited by radio frequency (rf) glow-
discharge (at 13.56 MHz) decomposition of a SiH4/SiF4 (+He)/H2 mixtures in a hot-wall 
type fused quartz reactor with 50 mm in diameter, employing the inductive coupling of rf 
power, which were inserted into an electric furnace. The substrates were loaded horizontally 
on a quartz boat with its surface parallel to the axis of the reactor. The remarkable feature of 
this deposition system is that the samples are exposed to the plasma (the growing surface is 
bombarded with ions). When plasma-enhanced chemical vapor deposition hydrogenated 
nanostructured silicon films were deposited using this deposition system, it has been 
reported that the resultant hydrogenated nanostructured silicon films have the following 
two essential effects as the rf power is increased: An enhancement in the degree of 
preferential orientation of grains in the films an improvement in the flatness on the film 
surface (Hasegawa et al. 1990). Such results should be caused by an effect of ion 
bombardments on the film surface during growth (Hasegawa et al. 1990), and such an effect 
may also act to lower deposition temperature for preparing high-quality hydrogenated 
nanostructured silicon films as well as an effect due to fluorine chemistry. The deposition 
pressure was adjusted by throttling the cross section in the inlet of the pump, and was 
measured using an absolute pressure meter. The details of the plasma-enhanced chemical 
vapor deposition system used have been described elsewhere (Hasegawa et al. 1983). Just 
prior to the deposition of hydrogenated nanostructured silicon films, the substrates were 
sequentially cleaned by rinsing them for 30 min in acetone and then in ethyl alcohol using 
an ultrasonic syringe. The samples were more cleaned by exposing them to the N2 and then 
H2 plasma at 90 W for 20 min. Then hydrogenated nanostructured silicon films were 
deposited at the different deposition temperature with the dynamic pressure of 0.3 Torr for 
every deposition. The rf power supply of 20 W was used. The gas flow rates were [SiH4] = 
0.6 sccm, [SiF4] = 0.38 sccm, which was diluted with 95 % helium (He: 95 %, SiF4: 5 %), and 
[H2] = 20, 30 and 46 sccm. The deposition temperature was varied from 60 oC to 300 oC. 
The structural properties of the nanocrystalline silicon films were investigated by means of 
X-ray diffraction (SHIMADZU XD-D1) employing a diffractometer with the slit width of 0.1 
mm, set at the front of the detector. The average grain size, <ǅ>, in the depth direction was 
estimated from the half- width value of the X-ray spectrum by means of the Scherrer 
formula (Cohen, 1978).  
The crystallinity was also characterized by Raman scattering measurements. The Raman 
spectra consisted of a narrow line at 520 cm-1 due to a crystalline phase and a broad line 
around 480 cm-1 due to an amorphous phase. Since the third component between 480 and 
520 cm-1 due to very small crystallites was relatively weak. Further, the surface morphology 
of the films was investigated by means of atomic force microscopy (Park scientific 
instruments, AUTOPROBE GP/M5). 
Photoluminescence was analyzed using a Jobin Yvon RAMANOR HG 2S spectrometer 
coupled with a cold photo-multiplier tube (Hamamatsu Photonics R649S). The 488 nm Ar-
ion laser with power ranging from 30 to 50 mW was used as the photoluminescence 
excitation source. The infrared vibration spectra, using a Fourier-transform spectrometer 
(JASCO FT/IR-610), were measured at a normal light incident and under vacuum, using a 
bare silicon wafer as reference in the range of 400 – 4000 cm-1. The optical transmission 
spectra were measured using an UV/VIS/NIR spectrophotometer (JASCO V-570). 
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3. Film structure and morphology 

In order to further improve properties of hydrogenated nanostructured silicon thin films and 
performances of related devices, it is necessary to understand microstructure features of the 
films in detail. As a powerful technique, Raman spectroscopy has been extensively adopted to 
investigate the low-dimension structure materials because it is convenient and inexpensive 
and dose not damage samples (Wei et al., 2007). Fig. 1 shows a typical Raman spectra from 
hydrogenated nanostructured silicon thin films deposited with different deposition 
temperature, which can be identified as two regions corresponding to two kinds of phonon 
modes, i.e., a transverse optical (TO1) branch with a peak at 480 cm-1 from the amorphous 
silicon contribution and another transverse optical (TO2) mode at around        520 cm-1 from the 
contribution of silicon nanocrystals. As revealed in this diagram, the films with deposition 
temperature higher than 60 oC exhibit a narrow peak at around 520 cm-1, which is due to the 
crystalline phase. In addition, for the film deposited at a low deposition temperature of 60 oC 
exhibits the broad peak at 480 cm-1 due to an amorphous phase. Thus, no crystallization was 
observed at deposition temperature = 60 oC, which may be caused by a decrease in the rate of 
the surface migration of the adsorbates caused by elimination of hydrogen atoms on the 
growing surface of the film. In addition, the peak position of TO2 increases with increasing the 
deposition temperature. Such Raman peak shifts would be related to a change in the stress of 
the films. In other words, the redshift of TO2 mode peak should be considered as the total 
contribution from tensile strain effect of silicon nanocrystals embedded in hydrogenated 
nanostructured silicon thin films. Where, a positive Raman-peak shift can be interpreted as 
indicating an increase in the compressive stress or a decrease in the tensile stress. 
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Fig. 1. Raman spectra for hydrogenated nanostructured silicon thin films deposited at 
different temperature, Td 
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Fig. 2 shows the (110) average grain size obtained from the <110> x-ray diffraction 

spectra, for as deposited films (closed triangles) and exposed to air for two months films 

(closed circles), respectively, as a function of deposition temperature. As shown in Fig. 2, 

with decreasing deposition temperature the average grain size, <ǅ>, decreases. We can 

also see the effect of air exposure. When the time of air exposure increases, as shown in 

this diagram, it is found that the <ǅ> values decrease. It is clear that the positive shift of 

Raman-peak with deposition temperature is in good agreement with the increase of grain 

size with deposition temperature. In other words, according to a phonon confinement 

effect, the upshift of phonon peak is due to the increase of the hydrogenated 

nanostructured silicon grains size. 
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Fig. 2. Average grain size, <ǅ(110)> obtained from <110> X-ray diffraction spectra as a 
function of deposition temperature, for as deposited films (closed triangles) and exposed 
films to air for two months (closed circles) 

For growth of crystallites in hydrogenated nanostructured silicon thin films, SiH-related 

adsorbates responsible for the film growth must move on the growing surface until the 

adsorbates find the lattice sites for forming the crystallites with a given texture. According 

to the model proposed by Matsuda (Matsuda, 1983), high deposition temperature 

conditions should decrease the surface migration rate for eliminating the crystalline 

phases from films. However, as seen in Fig. 2, small grains grown in the films with 

deposition temperature higher than 60 °C. Furthermore, the density of SiH-related bonds 

monotonically decreases with deposition temperature, as shown later. These results 

suggest that an increase in deposition temperature causes an increase in the surface 

migration rate, in contrast with the model proposed by Matsuda (Matsuda, 1983). Thus, 
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we can obtain silicon films including nanometer-sized crystallites by decreasing 

deposition temperature, as seen in Fig. 2, which have attracted increased interested as 

optoelectronic materials. This is because the decrease in the deposition temperature will 

suppress the surface migration of the adsorbates as precursors for creating a crystalline 

phase as stated above. 

The surface morphology of the thin films prepared with different deposition temperature 

(Figs. 3a and 3b) and the time of air exposure (Figs. 3b and 3c) has been measured by atomic 

force microscopy, as shown in Fig. 3. It can be seen clearly from Fig. 3a that the surface is 

almost flat corresponds to the amorphous tissue in good agreement with the result from 

Raman data (Fig. 1). On the other hand, it can be seen from Fig. 3b and 3c that the ship of the 

grains on the surface is spherical. In addition, the nanocrystallites of the silicon are 

distributed nearly uniform over the surface and hence suitable for integration in device 

structure. It is therefore expected that grown thin films could be used as protective coatings 

in device. The average grain size values estimated from atomic force microscopy data in  

Fig. 3b are larger than that in Fig. 3c, in good agreement with that calculated from the 

Scherrer’s formula (Fig. 2). 
 

 

c b
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a 

 

Fig. 3. The atomic force microscopy (AFM) pictures of deposited silicon thin films at        [H2] 

= 20 sccm. (a) The AFM of sample deposited at deposition temperature (Td) of 60 oC. (b) The 

AFM of sample deposited at Td of 150 oC before air exposure (as-deposited). (c) The AFM of 

sample deposited at Td of 150 oC after two months air exposure 

It is well known that when polycrystalline silicon or hydrogenated nanostructured silicon is 

used as a gate electrode or an interconnection material in integrated circuits, the undesirable 

oxidation results in a limitation of its conductivity and finally can degrade circuit 

performance. Furthermore, the grain boundaries in the polycrystalline silicon or 

hydrogenated nanostructured silicon, which has disordered structures including weak 

bonds, are expected to oxidize more rapidly than the inside of the grains with stable 

structure. By using Fourier-transform infrared spectroscopy measurement, we investigated 

the stability and the oxidation rates of some selected samples with different structures. To 

investigate the oxidation rates of these films we measured them again after two months.  

Fig. 4 reports the Fourier-transform infrared transmission spectra of the hydrogenated 

nanostructured silicon films deposited at different deposition temperature, Fig. 4a for as 

deposited films and Fig. 4b as the results after air exposure for two months. Firstly, 

considering the virgin (as deposited) samples (Fig. 4a), the spectra observed at around      

650 cm-1 and 950-980 cm-1 are assigned to the rocking/wagging and bending vibration 
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modes of (Si3)-SiH bonds, respectively (Kroll et al., 1996).  The stretching mode of Si-F 

vibration is also located at 800-900 cm-1. 
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Fig. 4. Infrared transmittance spectra for hydrogenated nanostructured silicon thin films 
with different deposition temperature (Td) values. (a) As-deposited and (b) After two 
months air exposure 
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The peak at 2100 cm-1 is assigned to the dihydride, ((Si2)–SiH2) (Itoh et al., 2000), chain 
structure in the grain boundaries, or gathered (Si3)–SiH bonds on the surface of a large void 
(Street, 1991), in which silicon dangling bonds are included and makes a porous structure. 
The intensity of the spectra at around 2100 cm-1 is likely to decreases with increasing 
deposition temperature. So, the hydrogen content decreases with increasing deposition 
temperature. The hydrogen atoms in the hydrogenated nanostructured silicon thin films are 
suggested to reside mostly in the grain boundary region. On the other hand, we can see the 
films after two months air exposure exhibit a more oxidation (see Fig. 4b). The spectra 
observed at around 1100 cm-1 and 2700-3000 cm-1 are assigned to the stretching mode of     
Si-O-Si vibration and (CH) stretching, respectively (San Andre´s et al., 2003). The oxygen 
absorption peak increases abruptly (see Fig. 4b). The presence of oxygen in the 
hydrogenated nanostructured silicon thin films is probably due to the oxidation at the grain 
boundaries, that is why <ǅ> values decrease in the films exposed to air for two months, as 
seen in Fig. 2 (closed circles). 
A comparison between the virgin (as deposited) samples, corresponding to Fig. 4a, and 
those measured after two months, corresponding to 4b, shows a reduction in the (Si3)–SiH-
related peaks at 2100 and 630 cm-1 and leads to an increase in the Si–O–Si vibration at      
1064 cm-1 after two months. For interpreting an increase in Si–O–Si peaks for samples 
measured after air exposure, we could consider the following assumption: The oxygen 
atoms can be replaced with hydrogen atoms on the surface of void structure in the grain 
boundaries or those in amorphous-like regions between the grains. Then, we assume that 
some of the oxygen atoms, supplied from O2 in the air, react with the SiH bonds and leaving 
H2O or H2 behind.  

4. Optical properties 

4.1 Photoluminescence 

The photoluminescence spectra are plotted in Fig. 5, 5a as deposited and 5b exposed to air 
for two months, respectively, as a function of photon energy for various films. They exhibit 
two separated photoluminescence bands: One is a relatively strong photoluminescence band 
with peak energy at around 1.75-1.78 eV (708-696 nm) and the other is a weak band at 
around 2.1-2.3 eV (590-539 nm).  Both of these peaks are at energies above the band gap 
energy for crystalline silicon (1.12 eV at room temperature) which has an indirect band gap 
and is also not expected to luminescence in the visible range. In addition, Fig. 5 shows the 
dependence of photoluminescence spectrum on the deposition temperature and the time of 
air exposure. As the deposition temperature decreases and the time of air exposure increases 
the photoluminescence intensity and photoluminescence peak energy values increase, i.e., 
photoluminescence improved with air exposure. It is noted that the photoluminescence 
spectra from this nanocrystalline silicon were very broad, and that as the nanocrystal size 
was reduced, photoluminescence broadening accompanied photoluminescence blue shift. 
The width of the observed photoluminescence could be explained by the distributions of 
sizes in our hydrogenated nanostructured silicon, and therefore of energy gaps. As seen in 
Figs. 2, 4 and 5, the increase in the photoluminescence intensity and the peak energy with 
decreasing deposition temperature and increase the time of air exposure is found to 
correspond well with a decrease in <ǅ> (see Fig. 2 and an increase in the intensities of the 
2100-cm-1-infrared-absorption bands (see Fig. 4a and 1100-cm-1-infrared-absorption bands 
(see Fig.4b).  
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Fig. 5. Photluminescence (PL) spectra for hydrogenated nanostructured silicon thin films 
with different deposition temperature values. (a) As-deposited and (b) After two months air 
exposure 

In addition, no photoluminescence is observed for the film as deposited at 60 oC, which was 

amorphous as seen in Fig. 1. Therefore, it is considered that an amorphous silicon phase is 

not responsible for the observed luminescence in the present work. The origin of the first 
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peak (1.75-1.78 eV) may be ascribed to nanometersized grains, that is, the 

photoluminescence peak energy value for this band increases with a decrease in the <ǅ> 

value (Fig. 1b). And the origin of second peak (2.1-2.3 eV) may be due to defect related 

oxygen (Fig. 2). On the other hand, it has been suggested that the exciton localization at the 

Si/SiO2 interface is important in determining the photoluminescence process for both 1.65 

and 2.1 eV bands (Kanemitsu et al., 2000). In addition, the photoluminescence bands for H-

passivated nanocrystalline silicon films show red shifts after passivation, in contrast to the 

cause of O-passivated films that show blue shifts after passivation (Dinh et al., 1996) in good 

agreement with the present work. Moreover, It has been widely established that the origins 

of photoluminescence from amorphous silicon dioxide are oxygen-vacancies (E' center, 

normally denoted by O≡Si–Si≡O) (Kenyon et al., 1994; Zhu et al., 1996) and nonbridging 

oxygen hole (NBOH) center, denoted by ≡Si–O) (Munekuni  et al., 1990; Nishikawa et al., 

1996). Photoluminescence from E' center peaks at 2.0–2.2 eV and from nonbridging oxygen 

hole peaks at 1.9 eV, covering the range from 1.55-2.25 eV. Oxygen–vacancies in fact joint 

two Si3+, and nonbridging oxygen hole, Si4+ with a dangling bond at one oxygen atom. So 

the intensity of photoluminescence from E' centers should be in proportion to the amount of 

Si3+, and the photoluminescence intensity from nonbridging oxygen hole should be in 

proportion to the amount of defect Si4+, which is in fact Si4+ containing a dangling bond, and 

will diminish if this dangling bond combines with other silicon atom (Fang et al., 2007). 
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Fig. 6. Absorption coefficient as a function of photon energy for hydrogenated 
nanostructured silicon thin films deposited at various deposition temperature (Td). (a) As-
deposited and (b) After two months air exposure 
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4.2 Absorption spectroscopy 

Fig. 6 shows the absorption coefficient of the hydrogenated nanostructured silicon thin films 

deposited at various deposition temperatures, as a function of photon energy. As seen in 

Fig. 6, the curves are shifted to higher energy as deposition temperature decreases and after 

two months air exposure, which implies that for a given photon energy, the films became 

increasingly transparent with decreased deposition temperature and after two months air 

exposure. Fig. 7 illustrates the values of (αhυ)1/2 versus photon energy for hydrogenated 

nanostructured silicon thin films deposited at different deposition temperature. From these 

curves, the optical band gaps can be obtained from the Tauc equation. The optical band gap 

decreases as the deposition temperature increases. This expected behavior could be 

explained by the change of size and the number of the formed particles with the variation of 

deposition temperature. In addition, the present materials have a wide optical band gap. 

Thus, the increase in optical band gap (Fig. 7) corresponds with a decrease in the grain size 

as shown in Fig. 2. Other theoretical and experimental researches attribute this phenomenon 

at the quantum confinement effect, e.g. the gap energy is conditioned on the size of the 

nanocrystals.  
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Fig. 7. Curves of (αhυ)1/2 vs. photon energy for hydrogenated nanostructured silicon thin 
films (a) As-deposited and (b) After two months air exposure 
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4.3 Band gap based on simple theory 

Fig. 8 shows (a) the optical band gap, Egopt, and (b) photoluminescence peak energy, EPL, of 

the 1.7–1.75-eV band observed for hydrogenated nanostructured silicon films deposited at 

different [H2], as a function of deposition temperature. The Egopt values were determined by 

drawing the Tauc plots, (αhυ)1/2 versus (hυ – Egopt), using the optical absorption coefficient, α, 
observed at photon energy of hυ. As revealed in Fig. 8, an increase in EPL corresponds well 

with an increase in Egopt with varying deposition temperature or [H2], though the rates in the 

increase of EPL is considerably smaller than that of Egopt. This result suggest that the radiative 

recombination between excited electron and hole pair, may be caused by states other than 

those at both the band edges. 
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Fig. 8. (a) Optical band gap, Egopt, and (b) the peak energy, EPL, of the 1.7-1.75-eV 

photoluminescence band observed for hydrogenated nanostructured silicon films deposited 

at different [H2], as a function of deposition temperature. 

In this section, we will discuss the band gap estimated using the shifts of the Raman spectra 

that will reflect the characteristics of the whole grains with different size as well as the 

photoluminescence and the optical absorption measurements. As shown in Fig. 1, the 

Raman peak arising from crystalline phases shifts toward a low frequency side with 
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decreasing deposition temperature. Supposing that the peak shift is due only to the 

confinement of optical phonons in spherical nanocrystals, we can estimate the crystallite size 

in diameter, DR, as (Edelberg et al., 1997): 

 1 / 2
R D = 2π(B / Δυ)  (1) 

where B is 2.24 cm-1 nm2, and Δυ the frequency shift in unit of cm-1, which was defined as 

the difference between the observed peak-frequency value and 522 cm-1. The latter value 

was observed for single crystal silicon. Fig. 9 shows a relationship between <δ(111)> and 

<δ(110)>, and DR.  
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Fig. 9. Relationship between the average grain size, <δ(111)> and <δ(110)>, as a function of 
the diameter of grains, DR, calculated using equation (1). The solid lines were drawn, using a 
method of the least square 

When we compared the results obtained under a given crystal direction and a given [H2], 

we can find a close correlation between the <δ> and DR values. However, it is found that the 

absolute values of <δ> observed are considerably larger than DR values and the rate in the 

increase of <δ> are faster than that of DR, Furthermore, based on the results shown in Fig. 9, 

we find a relationship of <δ> = 3.69 DR – 7.28 (nm) for the films with [H2] = 30 sccm and of 

<δ> = 3.56 DR – 11.89 for the films with [H2] = 46 sccm, in the measurements under a 
direction of the <110> axis that is the dominant texture in the films. On the other hand, for 

the <111> texture, we find a relationship of <δ> = 2.61 DR + 4.48 for [H2] = 30 sccm and. <δ> 
= 2.64 DR + 0.05 for [H2] = 46 sccm. These formulas were obtained by fitting the values of 

<δ> vs. DR to a linear relationship, using a method of the least square. As seen in these 

results, the linear relationships of <δ> as a function of DR appear to be characterized by the 
crystal axis of grains, that is, the slope (3.63 ±  0.07) for the <110> texture is steeper than that 
(2.63 ±  0.02) for the <111> texture. 
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Fig. 10. Lowest excitation energy, E,  as a function of R (a solid curve), obtained based on 
equation 2. In this diagram, the experimental values of Egopt values (closed symbols) and EPL 
(open symbols) values, which were shown in Figs. 8a and 8b, respectively, are also shown 
for comparison, as a function of R(=DR/2) through the DR values obtained using the 
experimental Δυ values along with equation 2 

Using the values of DR for the individual samples, we can evaluate the lowest excitation 
energy, E, under a simple confinement theory for electron and hole (Efros et al., 1982; 
Kayanuma, 1988; Edelberg et al., 1997) as follows: 

 2 2 2 2
g r R r R RyE = E + 2π h / m D – 3.572e / ǆ D + 0.284E  (2) 

where Eg is the energy gap of crystalline silicon (1.12 eV at room temperature), R(=DR/2) is 
the radius of crystals, mr is the reduced effective mass of an electron-hole pair, ǆr is the 
dielectric constant, and ERy is the Rydberg energy for the bulk semiconductor. The value of E 
correspond to the band gap of the films .In the later two terms, 3.572e2/ǆrDR corresponds to 
the coulomb term and 0.284ERy gives the spatial correlation energy. The later two terms are 
minor corrections, so we neglected them in the calculation used in this work, because the 
contribution of these two terms to the total energy will be less than 5%(Edelberg et al., 1997). 
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Fig. 10 shows the E values (a solid curve) obtained based on equation 2, as a function of R. 
In Fig. 10, the experimental values of Egopt (closed symbols) and EPL (open symbols) shown in 
Figs. 9a and 9b, respectively, are also shown for comparison, as a function of R through the 
values of DR obtained using the experimental Δυ values along with equation 1. 
As shown in Fig. 10, we can find a qualitative agreement between the observed Egopt values 
(closed triangles and closed circles) and a solid curve calculated using equation 2, though 
the former values are considerably larger than the latter. Furukawa and Miyasato 
(Furukawa & Miyasato, 1988) have found also similar discrepancy between the theoretical 
and experimental results, and interpreted the discrepancy in terms of a difference in the 
surface shape of grains as boundary conditions in both the theoretical and experimental 
process. On the other hand, the change of EPL as a function of R is considerably smaller than 
those of E and Egopt though the trend of the changes for EPL agreed with that for Egopt. This 
result indicates that the photoluminescence process of the 1.7–1.75-eV band can not be 
connected with the transition between both the band edges, related to formation of 
nanocrystals. 

5. Conclusion 

Hydrogenated nanostructured silicoin thin films were deposited by plasma-enhanced 
chemical vapor deposition. The luminescent characteristics of nc-Si and oxidized 
Hydrogenated nanostructured silicoin thin films were studied in detail by means of the 
photoluminescence, optical absorption, X-ray diffraction, atomic force microscopy and 
Raman scattering analyses. After oxidation the size of crystallites is reduced thus enhancing 
the quantum confinement to increase the luminescent intensity. The presence of 
nanocrystals induces a widening of energy gap. The widening of the optical band gap can be 
explained by a quantum size effect.  
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