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1. Introduction

Owing to its unique crystal and coupled electronic structures, a dipole-forbidden direct-gap

semiconductor cuprous oxide (Cu2O) has gained considerable attention for studying
fundamental exciton physics and relevant coherent phenomena, ultimately aiming at excitonic

Bose-Einstein condensation (BEC) [Wolfe et al. (1995)]. Despite tremendous experimental

efforts, however, excitons in Cu2O undergo mysterious collisional loss at high densities,

resulting in a loss rate given by τ−1
A = An, where A is an empirical coefficient for

collisional Auger-type loss and n is the exciton gas density [Hulin et al. (1980); O’Hara et al.

(1999a;b); O’Hara & Wolfe (2000)]. Detailed analysis based on time- and space-resolved

photoluminescence (PL) studies suggested formation of optically inactive excitonic molecules

(biexcitons) [Jang & Wolfe (2005; 2006a;c)]. The existence of such “dark matter” seems to

explain the long-standing difficulties in achieving BEC of excitons in Cu2O, which severely

limits the experimental gas density far below the critical BEC density (nc ≃ 1017 cm−3 at 2 K)

and the goal remains still elusive.

An exciton polariton (hereafter polariton) has emerged as a new candidate and condensation

of polaritons in two-dimensional (2D) quantum-well microcavity structures was recently

reported where multilayer Bragg mirrors confined the optical components [Balili et al. (2007);

Christopoulos et al. (2007); Deng et al. (2003; 2010); Kasprzak et al. (2006); Lagoudakis et al.

(2008); Lai et al. (2007); Utsunomiya et al. (2008)]. Even under strong cavity confinement,

however, this “nonequilibrium” polariton BEC lasts only for several picoseconds, basically

due to the short-lived excitonic component undergoing efficient dipole transitions in host

semiconducting materials. The polariton lifetimes of this time scale is difficult to utilize for

future optoelectronic applications.

Quadrupole polaritons in Cu2O may offer an alternative route to “long-lived” BEC. Unlike

well-studied excitons in this semiconductor, a quadrupole polariton is relatively unexplored

since its first discovery using coherent quantum beat spectroscopy [Frohlich et al. (1991);

Langer et al. (1995)]. The measured lifetime of quadrupole polaritons is about 2 ns and

this much longer lifetime arises from the above noted dipole-forbidden nature of Cu2O.

Being a coherent quantum superposition of a quadrupole exciton and a photon, this
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quasiparticle can be selectively created via resonant excitation. We have recently shown

its unique half-matter/half-light characteristics such as scattering by atomic-scale impurities

[Jang & Ketterson (2007)], significantly reduced Auger-type collisional loss [Jang & Ketterson

(2008); Mani et al. (2010)], and resonantly enhanced reflection [Jang et al. (2008b)] at the
crystal boundary, as demonstrated by the series of low-temperature PL experiments under

resonant two-photon excitation. Together with dephasing times of several nanoseconds,

these findings suggest that high-density quadrupole polaritons can be effectively confined

to achieve polariton lasing and possibly “thermodynamic” BEC of polaritons.

Renewed interest in Cu2O has been generated with thermal-oxidation-based fabrication

of high-quality synthetic crystals with various morphologies [Mani et al. (2009a)] and

observation of a very strong third-order optical nonlinearity supported by both Z-scan and

third harmonic generation (THG) at room temperature [Mani et al. (2009b)]. Considering

that the first-leading nonlinear term is the third order due to the centrosymmetric crystal

structure of Cu2O, this semiconductor, when engineered into unconventional structures,

can be a very attractive system for optoelectronic applications involving various third-order

nonlinear optical processes especially in the mid-IR range. Emerging practical examples

involving coherent mid-IR applications are sensing for organic and inorganic molecules for

environmental issues [Pestov et al. (2008); Pushkarsky et al. (2006)], minimal invasive medical

surgery [Serebryakov et al. (2010)], and direct imaging of biological structures [Zipfel et al.

(2003a)]. Also, Cu2O has been considered an active material for solar cell applications

[Olsen et al. (1982)].

This chapter is organized as follows: In Sec. 2 we describe fundamental properties of

excitonic matter in Cu2O. In Sec. 3 we describe the preparation method for high-quality

synthetic Cu2O crystals and the experimental setup for the measurements. In Sec. 4 typical

two-photon generation of quadrupole polaritons is examined based on the relevant selection

rules. In Sec. 5 we report on unique properties of quadrupole polaritons arising from their

half-matter/half-light characters. In Sec. 6 we discuss quadrupole polariton generation under

external mechanical stress and separate two-beam techniques. In Sec. 7 various nonlinear

optical processes in Cu2O are investigated and we propose a new direction for polariton-based

BEC in this semiconductor. Section 8 gives our summary and conclusions.

2. Properties of excitonic matter in Cu2O

The “cuprite” crystal structure of Cu2O consists of interpenetrating bcc (O) and fcc (Cu)

sublattices [see Fig. 1(a)]. The Bravais lattice is simple cubic with a lattice constant of 0.43 nm

[Dahl & Switendick (1966)]. Due to the center of inversion around each copper atom site, both

the lowest conduction band (2
Γ
+
6 ) built from Cu 4s levels and the highest valence band (2

Γ
+
7 )

from Cu 3d levels have a positive parity at zone center, causing a dipole-forbidden energy gap of

Eg = 2.17 eV [Grun et al. (1961)]. The next highest valence band (4
Γ
+
8 ) lies 130 meV lower due to

the spin-orbit interaction. The second lowest conduction band (4
Γ
−
8 ), lying 450 meV above the

lowest conduction band, serves as an intermediate state for various optical-phonon-assisted

recombination processes. Figure 1(b) schematically illustrates the band structure of Cu2O

at zone center when considering only two conduction and two valence bands that form the

visible exciton series. Therefore, there are four possible exciton series referred to as “yellow”

(2
Γ
+
6

⊗ 2
Γ
+
7 ), “green” (2

Γ
+
6

⊗ 4
Γ
+
8 ), “blue” (4

Γ
−
8

⊗ 2
Γ
+
7 ), and “indigo” (4

Γ
−
8

⊗ 4
Γ
+
8 ). Our

primary concern is dipole-forbidden yellow exciton (2
Γ
+
6

⊗2
Γ
+
7 ), which is the bound state of an
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Cuprous Oxide (Cu2O): A Unique System Hosting Various Excitonic Matter and Exhibiting Large Third-Order Nonlinear Optical Responses 3

Fig. 1. (a) Crystal structure of Cu2O. Inset: natural-growth bulk Cu2O crystal. (b) Schematic
of the Cu2O band structure near zone center. The red arrow denotes quadrupole transition.

electron in the lowest conduction band (2
Γ
+
6 ) and a hole in the highest valence band (2

Γ
+
7 ), and

shows a hydrogenic Rydberg series in the optical absorption spectrum [Hayashi & Katsuki

(1952)]. Including so-called central cell corrections [Kavoulakis et al. (1997)], a spectroscopic

fit to the observed Rydberg series reveals a tightly bound 1s excitonic state with a binding

energy of 153 meV, corresponding to Bohr radius of 0.7 nm. The measured translational mass

of the exciton is about 2.7me, where me is the electron mass [Yu & Shen (1975)].

Since both the conduction and valence bands each have a simple spin-up/spin-down

degeneracy, an exciton has a four-fold degeneracy, which is split into a triply-degenerate

“J = 1” orthoexciton (3
Γ
+
25) and a nondegenerate “J = 0” paraexciton (1

Γ
+
2 ) by the electron-hole

exchange interaction. The measured exchange splitting energy is 12 meV, the paraexciton

level lying lowest [Kuwabara et al. (1977)]. Direct transition to the orthoexciton state is

quadrupole allowed, but strictly forbidden for the paraexciton state because the process

requires spin flip. Spin exchange between these two exciton states is possible via emission

or absorption of a single transverse acoustic (TA) phonon [Jang et al. (2004); Wolfe & Jang

(2005)]. Recently, Dasbach et al. (2004) performed high-resolution spectroscopy and observed

the fine splitting of the triplet orthoexciton levels into the so-called "dark" and "bright" states

depending on the wavevector direction inside the crystal. Although the relevant splitting is

very small (several μeV), this fine structure of orthoexciton states crucially affects both one-

and two-photon selection rules [Dasbach et al. (2004); Inoue & Toyozawa (1965); Jang et al.

(2008a); Yoshioka & Kuwata-Gonokami (2006)].

Near the light cone (k ≃ 2.63 × 105 cm−1), only a bright orthoexciton quadrupole couples

to the electromagnetic field, resulting in a quadrupole polariton. This is a coherent quantum

superposition of a bright orthoexciton (matter) and a photon (light) field. The corresponding

modes involve two branches which, depending on the wavevector, are either exciton-like or

photon-like. This quasiparticle can be most simply described by coupled exciton-photon wave

equations in momentum-energy (k, ω) space [Hopfield (1958)]:

h̄ω âk = h̄vkâk + η∗ b̂k, (1)

h̄ωb̂k =

(

h̄2k2

2m
+ Eo − iΓ

)

b̂k + η âk, (2)

where âk and b̂k (∝ e−iωt) are the photon and exciton annihilation operators, v is the velocity

of light in the medium, m is the exciton mass, Eo is the internal energy of an exciton, and

139Cuprous Oxide (Cu2O): A Unique System Hosting 
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Γ is a phenomenological damping rate. Equations (1) and (2) denote the photonic and

excitonic parts of a polariton wave, where the coupling coefficient η is proportional to k for

a quadrupole exciton. The solution to the above equations yields the quadrupole polariton

dispersion [see Fig. 12(b)]. The propagating nature of the quadrupole polariton was first
observed in the variation of the beat period using coherent quantum beat spectroscopy under

resonant one-photon excitation [Frohlich et al. (1991); Langer et al. (1995)]. By contrast, a dark

orthoexciton does not directly couple to the radiation field. When both excitonic matter

species are generated under resonant excitation, the initial coherence of the laser light is

essentially carried by them. These resonantly created dark orthoexcitons and quadrupole

polaritons are potentially important in semiconductor-based coherent quantum information

science [Yoshioka & Kuwata-Gonokami (2006)].

Excitons in Cu2O can be created by conventional one-photon over-the-gap excitation. Under

this excitation condition, electron-hole (e-h) pairs are initially generated which subsequently

combine to form excitons via a screened Coulomb interaction. This “nonresonant” excitation

results in excitons that initially have an excess kinetic energy and the exciton gas temperature

can be much higher than the lattice temperature. Both orthoexcitons and paraexcitons can

recombine via indirect phonon-assisted processes [Elliot (1961); Petroff et al. (1975)], but only

the bright orthoexciton states can radiatively recombine by direct quadrupole transition,

displaying a sharp Lorentzian peak.1 Due to the flat dispersion relation of optical phonons,

the phonon-assisted PL line can sample excitons having all possible kinetic energies, yielding

a kinetic energy distribution of excitons [Beg & Shapiro (1976)]. At temperatures lower

than about 20 K, the lifetime of orthoexcitons is basically limited by down-conversion

into lower-lying paraexcitons, which is on the order of several nanoseconds [Jang et al.

(2004); Wolfe & Jang (2005)]. Paraexcitons can have a lifetime up to several milliseconds in

high-purity natural-growth samples but is extrinsically limited by the impurity concentration,

i.e., the sample quality [Jang et al. (2006)]. Most of the previous experiments directed at

excitonic BEC in Cu2O were carried out using one-photon excitation [Fortin et al. (1993);

Hulin et al. (1980); Snoke et al. (1987; 1990); Snoke & Negoita (2000); Wolfe et al. (1995)].

In contrast, quadrupole polaritons can be generated using resonant excitation involving

either one or two photons [Frohlich et al. (1991); Goto et al. (1997); Ideguchi et al. (2008);

Jang & Ketterson (2007); Jang et al. (2008a); Langer et al. (1995); Sun et al. (2001); Tayagaki et al.

(2006)]. Rather than trying to cool the highly nonequilibrium state which follows nonresonant

excitation, thermalization of the system under resonant excitation involves a subsequent

heating induced by acoustic phonon absorption. Once resonantly generated, the lifetime (total

coherence time) of quadrupole polaritons is basically limited by various elastic and inelastic

dephasing processes [Takagahara (1985)]. Inelastic energy relaxation processes include

irreversible damping arising from radiative recombination, thermalization to orthoexcitons,

down-conversion to paraexcitons, and capture by ambient impurities, whereas elastic

processes are caused by pure transverse dephasing mechanisms, affecting the phase only. All

excitons and quadrupole polaritons undergo a density-dependent Auger-type decay process at

high densities [Jang & Ketterson (2008); Tayagaki et al. (2006)]. According to the recent model

[Jang & Wolfe (2005; 2006a;c)], it seems to arise due to formation of optically inactive biexcitons

though their existence has not been confirmed spectroscopically yet.

1 Details on various relaxation processes of excitons in Cu2O are discussed in Jang (2005).
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Fig. 2. High-quality synthetic crystals of Cu2O grown by thermal oxidation with various
structures: (a) Platelet with macroscopic grain boundaries, (b) hollow cylinder (inset: cross
section), and (c) spheroid.

3. Experimental methods

In order to obtain shiny, ruby-red colored, large-area single crystals of Cu2O, we utilize

conventional thermal oxidation of metallic Cu with platelet, wire, and shot structures

followed by a high-temperature annealing protocol. The oxidation parameters and annealing

procedure are obtained from Toth et al. (1960) and carefully adjusted to refine the Cu2O

crystal quality. During the growth process, we carefully maintain O2 pressure and

temperature to lie within the middle of the Cu2O phase in the Cu−Cu2O−CuO phase

diagram [Schmidt-Whitley et al. (1974)]. It is noted that elevated annealing temperatures near

the melting temperature of Cu2O and slower rates of oxidation, annealing, and cooling of

the samples play key roles in diminishing the concentration of macroscopic defects such as

voids and CuO precipitates.2 Figure 2 shows as prepared, (a) platelet, (b) hollow tube, and

(c) spherical structures of Cu2O, respectively. It is interesting that the oxidation of Cu wire at
high temperatures leads to the formation of hollow tubules of Cu2O. Together with a spheroid

form, such unconventional structures could be utilized to confine propagating quadrupole

polaritons within a whispering gallery mode [Vollmer & Arnold (2008)]. Our natural-growth

samples used in the experiments were donated by the Smithsonian Institute.

Our one- and two-photon experiments are performed on both natural-growth and synthetic

Cu2O crystals. For resonant two-photon excitation, the samples are properly oriented

relative to the laser polarization (E-field direction) to maximize optical transition. The

cryogenic temperatures are produced with a Janis variable-gas-flow optical cryostat and an

accompanying temperature controller. We use the frequency-tripled output of a mode-locked

Nd:YAG laser (EKSPLA PL 2143 series) with a pulse width of about 30 ps and a repetition

rate of 10 Hz in order to synchronously pump an optical parametric amplifier (OPA). The

OPA generates vertically polarized pulses in the range of 400 - 2000 nm. At the two-photon

resonance energy ǫ2p = 1016.5 meV (1219.4 nm), the spectral bandwidth of the laser light

from the OPA is rather broad, about 8 meV full width at half maximum. However, the phase

space compression phenomena [Kuwata-Gonokami et al. (2002)] ensure an effective creation

of quadrupole polaritons or dark orthoexcitons since the lower energy portions (ǫ2p − δǫ2p)
are exactly compensated by higher parts (ǫ2p + δǫ2p), thereby satisfying both energy and

2 See Mani et al. (2009a) for detailed growth procedures and X-ray and optical characterizations.
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Fig. 3. Time-integrated PL spectrum at 2 K under resonant two-photon excitation along a
(100) direction that initially generates dark orthoexcitons. The bound exciton PL is ×10
magnified.

momentum conservations. In order to verify the one- and two-photon selection rules, a pair of

polarization analyzers is placed in front of and behind the samples. The incident laser pulse is

focused onto a spot 500 μm in diameter using a 15 cm focal-length lens. The PL from excitonic

matter is collected and focused onto a fiber optic bundle mounted on a goniometer, thereby

allowing us to measure the angular dependence (φ) of the PL. The output of the fiber optic

bundle is coupled to the entrance slit of a Spex Spec-One 500 M spectrometer and detected

using a nitrogen-cooled CCD camera. The collection efficiency of our optical system as a

function of the collection angle φ is explained in Jang & Ketterson (2007).

The Z-scan technique is traditionally employed to probe the third-order nonlinearity χ(3)

by translating a test sample through the beam waist of a focused Gaussian-laser profile

and measuring the corresponding variation of the transmitted beam intensity in the far

field [Sheik-Bahae et al. (1990; 1991)]. For our Z-scan experiments [Mani et al. (2009b; 2010)],

the laser pulses from the OPA is first spatially filtered using a 100 μm pinhole, insuring

transmission of only the TEM00 Gaussian mode. This Gaussian beam is focused on Cu2O

using a converging lens with a 7.5 cm focal length, which is mounted on a computer-controlled

stage that is translated relative to the window of the optical cryostat. This allows us to

continuously change the input irradiance I as a function of the lens position Z; I can be varied

more than a factor of 400 simply by translating Z in our 1-inch scan range. The change in

the far-field image of the transmitted beam with Z is minimized by using a combination of

collection lenses prior to entering a photomultiplier tube (PMT). The output of the PMT is fed

into a boxcar integrator and read out using a data acquisition system.

4. Resonant two-photon excitation and selection rules

According to k-dependent exchange interactions [Dasbach et al. (2004)], two-photon

excitation along highly symmetric crystal orientations does not generate quadrupole

polaritons but dark orthoexcitons. For example, Table 1 shows the selection rules for a

(100) direction, ensuring that two-photon excitation along this direction initially creates dark

orthoexcitons, the Oyz state, whose one-photon transition is not allowed. This can be a crucial
issue for achieving a polariton-based whispering gallery mode, where the direction of the
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Fig. 4. (a) Dots (circles) correspond to the observed polarization dependence of the Xo line
obtained using analyzers in front of (behind) the sample. Superimposed solid curve (line) is
the two-photon (one-photon) selection rules. Inset: schematic of the excitation geometry.
(b) Time-integrated PL spectra at 2 K as a function of the collection angle φ = 0, 5, 10, and 15o.

polariton propagation is arbitrarily reflected and guided by curved interfaces. However,

quadrupole polaritons can be indirectly generated although dark states are initially created.

Figure 3 shows a typical time-integrated PL spectrum under resonant two-photon excitation
at 2 K along a (100) direction. Considering that optically inactive “singlet” Oyz dark

orthoexcitons are initially generated in this excitation geometry, it seems rather surprising

to observe several PL lines. Once created, however, these excitons undergo various relaxation

processes and can recombine accompanied with the emission of a single photon. For example,

they can: (i) inelastically scatter from optical phonons, causing the phonon replica (Xo − Γ
−
12),

(ii) be captured by ambient impurities, where the symmetry of an exciton is broken and

the parent selection rules do not apply, resulting in the broad bound exciton PL, and (iii)

convert into the bright orthoexciton states that directly recombine, yielding a sharp Xo line.

They also can either nonradiatively decay due to phonon cascade or down-convert into the

lower-lying paraexcitons. Compared with other inelastic energy relaxation processes that

cause irreversible damping of dark orthoexcitons, we find that the conversion into the bright

state is the most dominant mechanism based on the observed strong Xo line.

In order to verify that the direct Xo line arises from two bright “doublet” Oxy and Ozx states,

which are subsequently converted from the dark “singlet” state, we examine the one- and

two-photon selection rules using two analyzers. The dots in Fig. 4(a) correspond to the

observed two-photon selection rules for dark orthoexcitons inferred from the bright-state PL

(Xo line) obtained with the analyzer in front of the sample. Considering that the sample

orientation is 45o as shown in the inset of Fig. 4(a), the overall two-photon polarization

dependence is shown as the solid curve and is given by P2p ∝ sin2[2(θ − 45o)] cos4 θ,

where the extra cos4 θ term accounts for two-photon excitation of the incident laser intensity

that decreases with cos2 θ, as the analyzer rotates from θ = 0o. The circles correspond

to the observed one-photon selection rules for bright orthoexcitons, converted from dark

orthoexcitons, obtained with the analyzer behind the sample. Note that the measured Xo

intensity barely depends on the analyzer angle. Considering the total polarization of the two

bright states, Oxy ∝ cos2 θ and Ozx ∝ sin2 θ, this implies that the two-fold degenerate bright

states are equally populated: P1p ∝ cos2 θ + sin2 θ = constant [solid line in Fig. 4(a)]. Clearly,

143Cuprous Oxide (Cu2O): A Unique System Hosting 
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the observed polarization dependencies support that the strong direct PL line arises from

dark-to-bright conversion.

This dark-to-bright conversion was first observed by Yoshioka & Kuwata-Gonokami (2006)

using two-photon absorption along the (110) direction, and the measured conversion rate
was about 5 ns−1. The contribution to this conversion rate due to phonon scattering can be

estimated by the deformation potential theory [Trebin et al. (1981); Waters et al. (1980)]:3

γ(T) =
Ξ

2
xym2δ

3πρvT h̄4

(

1 +
2kBT

vT

√
2mδ

)

, (3)

where Ξxy = 0.18 eV is the shear deformation potential, m = 2.7me is the exciton mass,

ρ = 6.1 g/cm3 is the mass density of Cu2O, and vT = 1.3 km/s is the TA-phonon velocity.

With the measured splitting δ = 2 μeV along this direction [Dasbach et al. (2004)], Eq. (3) yields

a conversion rate γ ≃ 0.7 × 10−4 ns−1 at 2 K. This implies that dark-to-bright conversion via

phonon scattering is negligible. Therefore, it most likely arises from state mixing caused by

the so-called cross relaxation, where two dark states elastically scatter to equally populate two

bright states by satisfying angular momentum conservation. Although the dark orthoexcitons

may lose their initial coherence, this implies that their phase information can be partially

carried by subsequently generated bright states, because elastic scattering only induces

a phase shift in the total ensemble coherence [Takagahara (1985)]. This cross relaxation

mechanism is currently under investigation using two-photon quantum beat spectroscopy

as a function of the incident laser intensity.

Figure 4(b) shows the PL spectra under the same conditions for several collection angles

φ in the range of 0 − 15o, where φ is the angle between the laser beam direction and the

PL collection direction. Note that the direct PL intensity sharply depends on φ and is well

correlated with the laser-propagation direction, whereas the indirect phonon line does not;

i.e. it is essentially isotropic. This clearly indicates that the initial momentum of a dark

orthoexciton inherited from the laser is nearly conserved after the conversion. This leads the

momentum of a subsequently generated bright orthoexciton being near the light cone to form

a quadrupole polariton, which propagates along the initial laser direction. Based on highly

directional PL properties, this strongly indicates that propagating quadrupole polaritons are

indirectly generated. This implies that two-photon excitation in Cu2O eventually generates

quadrupole polaritons regardless of the crystal orientation.

5. Half-matter/half-light characteristics of quadrupole polaritons

Near the quadrupole resonance in Cu2O, light propagating through the medium is

accompanied by quadrupolar polarization through the excitonic component. Ideally, the

angular distribution of the quadrupole polariton PL should be same as the angular divergence

for the incident laser because its propagation direction is inherently determined by the

incident laser direction. However, these quadrupole polaritons can lose their initial coherence

because the excitonic component of the mode, a tightly bound e-h pair, is subject to

wide-angle scattering by atomic-scale imperfections within the crystal. Therefore, we employ

angle-resolved spectroscopy to examine scattering by ambient impurities, which results

in decoherence, and monitor the angular divergence of quadrupole polaritons generated

3 See, for example, Jang & Wolfe (2006b) for the derivation of the rate due to off-diagonal shear scattering.
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Cuprous Oxide (Cu2O): A Unique System Hosting Various Excitonic Matter and Exhibiting Large Third-Order Nonlinear Optical Responses 9

Fig. 5. (a) Time-integrated PL spectra at 2 K as a function of φ = 0, 5, 10, and 15o obtained
from the (111) oriented sample. (b) Angular distributions of the Xo intensities from the
(100)-cut (dots) and (111)-cut (circles) samples, respectively. The solid red and blue curves
correspond to our simplified model for ka = 14 and 6. The dashed curve denotes the angular
distribution of the transmitted laser measured just below the quadrupole resonance.

by resonant two-photon transition. In fact, Fig. 4(b) displays such angle-resolved spectra

obtained from a (100)-cut sample for several collection angles. This angle dependence can

differ from sample to sample.

Figure 5(a) plots time-integrated spectra obtained from a (111)-cut sample4 under the same

conditions as Fig. 4(b). For this direction, the observed Xo line is caused by quadrupole

polaritons both directly and indirectly generated by two-photon absorption. The series of

peaks in a range from 1980 to 2015 meV arise from excitons bound to ambient impurities

that are essentially isotropic (no φ dependence). Considering much enhanced bound exciton

PL intensity, this sample apparently contains more impurities and the Xo intensity from

quadrupole polaritons remaining after transmission through the sample is strongly attenuated

due to ambient impurity scattering. This is clearly indicated by much more gradual drop in

the Xo intensity as φ changes from 0o, compared with that in Fig. 4(b). This implies that

the photonic character (straight propagation with a definite k) of a quadrupole polariton is

obstructed by impurities, significantly affecting its excitonic component and thus deflecting

its initial path which, in turn, affects the photonic component by the exciton-photon coupling

terms in Eqs. (1) and (2).

From the fact that this wide-angle impurity scattering originates from the particle nature of a

quadrupole polariton, our problem reduces to a “propagating” (not diffusive5) exciton that

is most likely scattered by ambient charged impurities. The 1s exciton is uncharged and has

no higher multipole moments. However, a charged impurity can induce a dipole moment in

the excitonic part of a quadrupole polariton. The potential between an induced dipole and an

ion has the form V(r) = −αe2/2r4 for large r, where α is the polarizability [Landau & Lifshitz

(1977)]. But the scattering amplitude calculated with this potential is divergent due to the

behavior of V(r) at small r. To avoid this problem we assume the interaction approaches a

4 This sample contains high impurity levels and was used for studying bound excitons [Jang et al. (2006)].
5 Highly diffusive nature of excitons in Cu2O are described in Trauernicht & Wolfe (1986).
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constant at small r. Including a phenomenological “cutoff radius” a, the model potential is

V(r) = − αe2

2r4
(r > a) and Vo ≡ − αe2

2a4
(r < a). (4)

Since the observed angular divergence depends on the impurity concentration, the trajectory

of a quadrupole polariton is mainly determined by successive small-angle scattering, leading

to a Gaussian-like distribution. In order to obtain the angular distribution due to multiple

scattering, one needs to numerically add each stochastic process considering many parameters

[Amsel et al. (2003)]. In the absence of information on the nature and distribution of the

scattering centers we model the behavior as arising from single scattering events which are

parameterized by a cutoff radius a. By neglecting the long-range contribution, which is

very small compared with the one for r < a, the quantum mechanical scattering amplitude

produced by Eq. (4) is given in the first-order Born approximation by

f (Ω) = − 2m′

h̄2

Vo

q

∫ a

0
r sin (qr)dr = − 2m′

h̄2

Vo

q3
{sin (qa)− qa cos (qa)}, (5)

where we take m′ to be the effective mass of a quadrupole polariton and q = |k − k′| =
2k sin(θ/2) is the associated momentum transfer with the incident wavevector k. Since the

interaction potential is spherically symmetric, the scattering amplitude f (Ω) = f (θ) does

not contain any azimuthal-angle dependence. The corresponding differential cross section is

analytic and given by the absolute square of the scattering amplitude. The observed angular

distribution is then proportional to this differential cross section.

In Fig. 5(b), we plot the angular distributions of the quadrupole polariton PL intensities

from Figs. 4(b) (dots) and 5(a) (circles), where these intensity distributions are normalized

at φ = 0o for comparison. The superimposed fits are generated using our model potential

with ka = 14 (red) and 6 (blue), respectively. The dashed curve is the angular divergence of

the incident laser. Note that the only adjustable parameter is the effective screening radius

a since the wavevector of a quadrupole polariton is given by k ≃ 2.63 × 105 cm−1 with a

minor spreading ∆k, which is a measure of the polariton bottleneck. Although our model

might oversimplify the light character of a quadrupole polariton that actually undergoes

multiple scattering, therefore affecting macroscopic ensemble coherence in a complicated

way, we believe that it captures the essence of the dominant polariton-impurity scattering

mechanism, where the charged-impurity concentration is parameterized by a cutoff radius

a. Obviously, a stronger Xo signal with a narrower angular distribution would occur for

samples containing lower impurity level. This also implies that the total coherence time can

be extrinsically limited by scattering from impurities. Minimizing such extrinsic effects is

crucial for preserving coherence. This angle-resolved technique can also be used as a sensitive

path-averaged (and by some deconvolution perhaps a local) impurity detector allowing some

degree of optimization for the coherence time of propagating quadrupole polaritons.

Another striking effect6 arising from the dual character of quadrupole polaritons is anomalous

Fresnel coefficients at the quadrupole resonance, resulting in resonantly enhanced reflection of

quadrupole polaritons at crystal boundaries [Jang et al. (2008b)]. As originally suggested by

6 Unlike polaritonic effects discussed in this section, which result from the half-matter character,
suppressed collisional loss of quadrupole polaritons arises basically due to their half-light character
and this is discussed in Sec. 7.
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Fig. 6. (a) Schematic diagram of the PL collection geometry for two different boundary
conditions. The incident IR beam (solid arrows) excites Cu2O to create a traveling
quadrupole polariton wave (red dashed arrows) inside the medium via two-photon
absorption. As this wave leaves Cu2O, it converts into photons (red solid arrows), yielding
PL signals that we detect. The time-integrated PL measured from the incoming surface R
(blue trace) and the opposite surface T (red trace) under (b) condition 1 and (c) condition 2,
respectively.

Hopfield & Thomas (1963), polariton propagation in a dielectric medium is rather different

from classical light propagation. The complexity basically arises from the fact that there are

two propagating modes in the crystal associated with upper- and lower-branch polaritons.

Therefore, the usual Maxwell boundary conditions are not enough to determine the field

amplitudes for these two modes, requiring so-called additional boundary conditions. The

special case of quadrupole polaritons was theoretically studied by Pekar et al. (1981) assuming

a Frenkel-type excitation that vanishes at the vacuum-crystal boundary. However, the

correction to the “effective” index of refraction at the quadrupole resonance is predicted to be

negligible due to relatively small quadrupole coupling. In order to check this resonance effect,

we experimentally investigate the “total” reflectance (R) and transmittance (T) of traveling

quadrupole polaritons arising from multiple internal reflections at the sample surfaces. In

our excitation geometry, we define R and T as the Xo intensities collected from the incoming

and the opposing (outgoing) surfaces, respectively [see Fig. 6(a)]. Surprisingly, our principal

finding indicates that the experimental value of T/R at the quadrupole resonance differs

significantly from the prediction of Pekar et al. (1981).

Figure 6(a) shows a schematic diagram for measuring R and T for the two boundary

conditions using (100)- and (111)-oriented natural-growth samples, respectively. Since we use

resonant two-photon excitation in which the excitation energy is the half of the quadrupole

polariton energy, the measured PL is decoupled from the incident laser. In order to measure

R we use a dichroic mirror, which is an efficient IR filter transmitting the excitation light

but reflecting visible light. The measured reflectivity in our observation range (1980 −
2040 meV) is about 0.485. Two-photon generated quadrupole polaritons propagate through

the crystal along the incident laser direction. Therefore, the opposite sur f ace is the first

boundary encountered. For condition 2, the sample is attached to a glass slide to impose

a different boundary condition. In this case, there is one more interface formed by the
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glass and the superfluid He bath. When the quadrupole polariton wave leaves Cu2O, it is

converted into transmitted light and a portion of that is reflected from this extra boundary

by satisfying usual Fresnel relations. These reflected photons will resonantly excite Cu2O via

one-photon excitation at the glass and Cu2O interface, thereby producing a counterpropagating
quadrupole polariton wave in Cu2O.

In Fig. 6(b) we plot the observed PL spectrum (red trace) for condition 1 as collected from

the opposite surface, corresponding to T. The blue trace shows the light transmitted at the

incoming surface (corrected for the reflectivity of the IR filter), corresponding to R. The

measured T/R is about 2.75 ± 0.05. Considering multiple internal reflections, this ratio can be

analytically calculated and is given by

T

R
=

(te−γ)[1 + (re−γ)2 + . . .]

(re−γ)(te−γ)[1 + (re−γ)2 + . . .]
=

1

re−γ
, (6)

where e−γ is a phenomenological damping factor which includes all irreversible losses during

a “one-way trip”, and r and t are the reflection and transmission coefficients at the Cu2O and

superfluid He interface, which are approximately given by

r =

(

n − 1

n + 1

)2

and t =
4n

(n + 1)2
. (7)

Note that R in Eq. (6) contains t because of transmission at the incoming surface. Also,

Eq. (6) shows that the measured T/R is only affected by a single damping factor because the

accumulative damping due to multiple internal reflections exactly cancels out in this ratio. In

fact, e−γ is negligible for our relatively thin samples (d < 1 mm) considering a much longer

decoherence length l = vgτ ≃ 2− 20 mm, where vg is the quadrupole polariton group velocity

(on the order of 106 − 107 m/s) and τ ≃ 2 ns is the measured decoherence time [Frohlich et al.

(1991)]. Assuming e−γ = 1 and using n = 2.65 for Cu2O, the simple Fresnel prediction yields

T/R = 4.89, which does not agree with our measurement. Note that this damping factor, if

significant, induces a larger discrepancy between the theoretical and measured T/R.

Figure 6(c) plots the measured R and T for condition 2 in which the sample attached to

the glass contains a higher impurity concentration as indicated by the bound exciton PL.

The isotropic bound exciton PL from two different collections overlap each other, verifying

the scaling factor introduced by the IR filter. Because of an extra boundary formed by
the glass and superfluid He, there are numerous combinations of multiple reflections and

transmissions. In our analysis, we consider up to the 4th order, involving 8 combined

reflections and transmissions at the boundaries. Using the measured index of refraction for

the glass, ng = 1.48, the calculation yields T/R = 9.77. However, the measured T/R for

the condition 2 is about 5.46 ± 0.15, again significantly different from the classical Fresnel

prediction.

The present theory [Pekar et al. (1981)] based on the additional boundary conditions predicts

a slight modification in the effective index of refraction ne f f for a propagating quadrupole

polariton wave depending on the wavevector direction. For example, ne f f for normal

incidence is given by

ne f f =

√

ε +
2m′

h̄2

4πq2

Ω
≡

√

ε +
1

ζ
, (8)
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where ε = 7 is the background dielectric constant, m′ is the effective mass for a quadrupole

polariton that depends on the wavevector direction, q is the exciton quadrupole moment,

and Ω is the unit-cell volume. The microscopic calculation yields 1/ζ ≃ −0.46 and −0.17

for (100) and (111) directions, respectively. Therefore, the predicted index of refraction
at the quadrupole resonance is about ne f f =

√
7 − 0.46 ≃ 2.56 for the (100) direction.

This negligible correction apparently does not explain our measurements and ne f f must be

significantly larger than n = 2.65. Based on the series of experiments, we have confirmed

that our experimental results can be explained by introducing the effective index of refraction

ne f f = 4.0 ± 0.1 for the boundary conditions we employed. This increased index of refraction

in turn implies a significantly enhanced reflection of quadrupole polaritons at the crystal

boundary.

The failure of the present theory might result from assuming localized Frenkel excitons,

whereas Cu2O is well known for hosting weakly bound Mott-Wannier excitons. Alternatively,

the amplitude of the orthoexciton may not vanish at the boundary as discussed below.

This significantly enhanced reflection arises most likely from the behavior of the matter

component (exciton). Although thermal excitons may break down at the crystal boundary,

the quasi-ballistic excitonic component of moving quadrupole polaritons will most likely

be reflected at the surface with minimal surface recombination, presumably hindering

quadrupole polaritons from exiting Cu2O and thus causing enhanced reflection. In the

absence of a proper theory, we propose that the phase shift associated with this reflection be

regarded as a free parameter. It may be that the behavior can be Fresnel-like, however with a

modified index of refraction. We believe that this anomalous reflection is universal, arising

from the half-matter/half-light property of polaritons, regardless of host materials. Our

results have implications for the optoelectronic design of polariton waveguides and resonators

in which a larger (effective) index of refraction implies a larger angle of total internal reflection

which in turn affects the cutoff wavelength and with it the confinement of polaritons inside

the medium.

6. Efficient quadrupole polariton generation with unconventional approaches

As a bound state of an electron and a hole, an exciton in Cu2O is electrically neutral and

only weakly magnetic.7 Therefore, conventional electromagnetic external perturbations do

not cause a significant modification in its electronic properties. But, mechanical strain affects

the electronic states of Cu2O in two ways: (i) it induces a bandgap shift and, more important,

(ii) it lowers the crystal symmetry, resulting in splitting of orthoexciton levels depending

on the stress direction. Although numerous studies on excitons under external stress were

performed [Jang & Wolfe (2006b); Lin & Wolfe (1993); Liu & Snoke (2005); Mysyrowicz et al.

(1983); Naka & Nagasawa (2002); Snoke & Negoita (2000); Trauernicht & Wolfe (1986)], the

effect of external stress on quadrupole polaritons is essentially a virgin territory, potentially

full of unexplored interesting physics.

Under spatially inhomogeneous Hertzian stress [Snoke & Negoita (2000)], a strain well forms

a potential minimum for excitons inside the crystal. This technique has been extensively

used in attempts to create trapped high-density excitons. Figures 7(a) and (b) illustrate the

potential well formed in a Lucite crystal under Hertzian contact stress and a schematic of

7 One needs more than 10 T to observe noticeable exciton-level splitting in Cu2O induced by external
magnetic field [Fishman et al. (2009)].
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Fig. 7. (a) Hertzian contact at Lucite showing potential minimum and equipotential contours
monitored by cross polarizer. (b) Schematic of potential-trap experiments and (c) image of
excitons in Cu2O effectively confined by a potential well just below the stressor after fast
drift from the excitation spot (left).

stress experiments at low temperatures, respectively. Exciton drift into such a potential well

in Cu2O at 2 K is clearly shown in Fig. 7(c). One can then ask how this harmonic potential well

affects the propagating quadrupole polaritons. They could be attracted by the well due to the

excitonic component, as shown in Fig. 7(c), or not because the photonic component is little

affected. It will be interesting to study the influence of the potential well on the quadrupole

polariton propagation.

As a preliminary, we first conduct a rather simple experiment using uniaxial stress along a

(001) direction and collect the PL from a (110) surface of a natural-growth Cu2O sample.8

Surprisingly, our results indicate that the quadrupole polariton PL (Xo line) is significantly

enhanced with external stress. Figures 8(a)−(c) plot the observed Xo intensities (red traces) as

a function of stress in the range of σ = 0 − 0.3 kbar. The heavy solid traces are fits using

a single or double Gaussian function, considering the spectral resolution of our detection

system. As we increase stress, the triply-degenerate quadrupole state splits into the singlet

and doublet states where the latter lies lower [Jang & Wolfe (2006b)]. The measured splitting

is consistent with our theoretical prediction. In Figs. 8(d)−(f), we plot the corresponding

polarization dependence of the Xo intensities obtained using an analyzer behind the sample,

indicating a significant modification of the one-photon selection rules. Most of all, it is very

interesting that the quadrupole polariton PL rapidly increases with σ and its brightness at σ =

0.3 kbar is more than 10 times that obtained under no stress. We have also performed the same

experiments using one-photon over-the-gap excitation to check the exciton PL as a function of

σ and confirmed that no such a strong enhancement is observed. It implies that this is solely

related to either "coherent" polaritonic effects or enhanced two-photon excitation, arising from

modification of the electronic structure (mixing between dark and bright states) induced by

external stress. In order to clarify the underlying mechanism, one needs to time-resolve the
population and relaxation dynamics of quadrupole polaritons as a function of σ. Clearly, this

stress technique is promising for generating high-density quadrupole polaritons for BEC.

Previous experiments based on two-photon absorption were conducted using a single-beam

laser tuned to the two-photon quadrupole resonance (1219.4 nm). However, quadrupole

polariton generation can be also accomplished using two independent beam sources as long

as (i) the sum of beam frequencies matches with the quadrupole resonance and (ii) the

8 This sample was previously used for studying paraexcitons under stress [Trauernicht & Wolfe (1986)].
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Fig. 8. Time-integrated quadrupole polariton PL (red traces) at (a) σ = 0 kbar, (b) 0.2 kbar, and
(c) 0.3 kbar, respectively, superimposed with Gaussian fits (heavy solid curves). (d) Measured
polarization dependence (dots) under no stress, well explained by the one-photon selection
rules (solid curve). The corresponding polarization dependence under external stress are
plotted by dots (doublet) and circles (singlet) in (e) and (f). Superimposed are empirical fits.

conservation of momentum is fulfilled inside the crystal (phase matching). This two-beam

technique has been initially triggered by the idea of mixing much stronger pulses from

the pump YAG laser (1064 nm) and those from the OPA (tuned to 1428 nm) in order to

generate high-density quadrupole polaritons. Moreover, we can independently control the

polarizations of the two incident beams and their propagation directions, and therefore, the

resulting wavevector of quadrupole polaritons inside the sample.

Unlike one-beam two-photon technique, however, there are number of issues to optimize

two-beam two-photon excitation such as pulse synchronization, OPA wavelength tuning, and

precise optical alignments, etc. For example, the dots in Fig. 9(a) correspond to the quadrupole

polariton signal when the delay arm of the OPA is varied near the pulse synchronization

position. The superimposed curve is a fit to the data, yielding a temporal overlap of

30 ps, which is consistent with the pulse widths of two beams. In Fig. 9(b), we plot the

quadrupole polariton signal (dots) observed when we vary the wavelength of the OPA near

1428 nm. The solid curve is a fit that basically reflects the spectral linewidth of the OPA at

this wavelength. These clearly show that two-beam two-photon efficiency strongly depends

on both time and wavelength detuning of the OPA. The dots (and superimposed curve) in

Fig. 9(c) show the relative polarization dependence of the two-beam two-photon efficiency

when the polarization angle of the OPA is varied in the range from −90o to 90o, indicating

that orthogonal polarization is not favorable, as expected. Employing this two-beam

two-photon technique, we can also study “impact ionization” of quadrupole polaritons by

varying two incident beam powers independently, which arises from additional absorption
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Fig. 9. Measured Xo intensity from quadrupole polaritons as a function of (a) OPA time
detuning, (b) OPA wavelength detuning, and (c) OPA polarization relative to the fixed
vertical polarization of the 1064 nm output from the YAG laser, respectively.

of an incident photon by a quadrupole polariton that ionizes the excitonic component. In

fact, this mechanism can mimic Auger-type collisional loss of quadrupole polaritons, and

therefore, measuring and controlling this process could be an important issue for achieving a

high-density polariton system.

Another interesting direction is to use “quadrupole-induced” second harmonic generation

(SHG) to efficiently generate high-density quadrupole polaritons using a non-collinear

orthogonal polarization geometry [Figliozzi et al. (2005)]. Interestingly, the corresponding SHG

polarization is largest when the incident electric fields are mutually orthogonal and is

proportional to sin ψ, where ψ is the angle between two wavevectors inside the crystal. This

condition is quite different from that for two-beam two-photon absorption as explained above.

The technique was developed to investigate the surface structure of Si nanocrystals embedded

in SiO2 matrix using SHG signals, which is enhanced by several orders of magnitude

[Figliozzi et al. (2005)]. Since Cu2O has a centrosymmetric crystal structure, SHG is not viable

in the dipole approximation. However, one can turn on SHG in this semiconductor by

exploiting this technique. Clearly, it is an interesting question whether quadrupole polariton

generation can be further improved via enhanced quadrupole SHG.

7. Third-order nonlinearity and nonlinear processes at quadrupole resonance

Although Cu2O has a rich history as a prototype material for studying fundamental exciton

physics, its nonlinear optical properties have received little attention presumably because

of its vanishing second-order susceptibility χ(2) stemming from its centrosymmetric crystal

structure. Consequently, the lowest-order optical nonlinearity in Cu2O arises from the

third-order susceptibility χ(3). Precise characterization of the nonlinear optical parameters

such as χ(3) and the two-photon absorption coefficient β is crucial in evaluating its potential

for nonlinear optical applications and estimating the densities of excitonic matter under

two-photon excitation. Recently, we have reported the first measurement of the nonlinear

refractive index n2 ∝ Re[χ(3)/n] (n = 2.65) and β based on the Z-scan technique [Mani et al.

(2009b)].

The single-beam Z-scan technique relies on the phenomenon of self-focusing of an intense

Gaussian laser beam in the presence of a nonlinear medium [Sheik-Bahae et al. (1990; 1991)].
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Fig. 10. (a) Normalized closed-aperture Z-scan data (dots) obtained from a (110)-oriented
natural-growth Cu2O sample with 20% aperture transmittance, superimposed by a
theoretical fit (solid trace). (b) Wavelength-dependent THG from Cu2O (red) and GaAs
(blue).

One can characterize both n2 and β using the closed- and open-aperture Z-scan configurations,

respectively. The dots in Fig. 10(a) correspond to the normalized closed-aperture Z-scan

trace showing a valley-peak configuration, indicating positive nonlinearity of Cu2O, when

the on-axis irradiance at the focus is set to I(Z = 0) = 0.86 GW/cm2 at λ = 1064 nm.

At this relatively low irradiance level, with negligible e-h pair generation by two-photon

transition, the closed-aperture Z-scan accounts for purely refractive nonlinearity due to the

bound electronic Kerr effect; ∆n = n2 I, where ∆n is the on-axis index change at focus.

Transmittance change at the detector (∆T) is related to ∆n by

∆T ≃ 0.406(1 − S)0.25 2π

λ
de f f ∆n, (9)

where S = 20% is the aperture transmittance and de f f = (1 − e−αd)/α, with the linear

absorption coefficient α = 47 cm−1 at λ = 1064 nm for the sample thickness d = 100 μm. The

solid curve is a least-square fit to the data, yielding n2 = 1.32 × 10−10 esu. We have found

that similar values of n2 are obtained from our synthetic samples [Mani et al. (2009b)]. This

measured n2 value of Cu2O seems comparable with those of other conventional nonlinear

semiconductors with large n2 values. However, it is important to note that n2 ∝ 1/E4
g, where

Eg is the bandgap, and that the best χ(3) materials have bandgap energies far below that

for Cu2O [see for example Table III of Sheik-Bahae et al. (1991)]. This implies that the matrix

elements entering χ(3) are very large in Cu2O but the overall response is scaled down by its

relatively large bandgap energy. Considering this factor, we believe that Cu2O is a potential

χ(3) material with a bandgap energy lying in the visible region.

This is further confirmed by Fig. 10(b), showing the measured THG signals from Cu2O and

GaAs, both oriented along a (111) direction and 0.5 mm thick, when the input OPA wavelength

is varied from 1300 nm to 1800 nm. Considering that n2 of GaAs is about two times that of

Cu2O, it is initially surprising that THG from Cu2O is more intense. This basically arises from

two reasons: (i) since χ(2) of GaAs is very large, the incident laser most strongly contributes

to the lower-order SHG process and (ii) GaAs is a dipole-allowed semiconductor in which
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Fig. 11. (a) Normalized ω Z-scan (red dots) for 10 μJ/pulse, superimposed by a theoretical fit
(solid trace) with β = 0.217 cm/GW. (b) 2ω Z-scan traces (colored dots) for various excitation
levels in the range of 10.4 − 226 μJ/pulse, fit by the theoretical model (solid traces). (c) 3ω
Z-scan traces (colored dots) for 79.5, 122, and 226 μJ/pulse. The solid curves correspond to a
model assuming no fundamental depletion.

the THG light being above the bandgap is strongly absorbed compared with the case for a

dipole-forbidden semiconductor of Cu2O. In support of the latter, Fig. 10(b) shows that the

THG intensity from GaAs sharply depends on the OPA input wavelength, whereas for Cu2O it

does not. Most importantly, it is noteworthy that measurable THG signals can be transmitted

through a 0.5 mm-thick Cu2O sample used in the measurements since the absorption lengths

for the converted THG wavelengths shown in Fig. 10(b) are known to be less than a few

microns [O’Hara et al. (1999b)]. This implies that Cu2O could be utilized for an active THG

medium working at ωIR in the mid-IR range such that 3ωIR is still below the bandgap of Cu2O

without any complication from χ(2) contributions.

Recently, it has been suggested that three-photon excitation [Ideguchi et al. (2008)] and THG

[Mani et al. (2009b)] can affect population dynamics of quadrupole polaritons in Cu2O under

strong two-photon excitation. Considering possible complications caused by these high-order

processes, the feasibility of quadrupole polariton BEC remains an open question. In pursuit

of this question we systematically investigate various nonlinear optical processes such as

two-photon absorption, Auger-type recombination, and THG under resonant two-photon

excitation at 2 K. By extending the standard open-aperture Z-scan method (that only monitors

the intensity at ω), we also keep track of the frequency-doubled (2ω) and tripled (3ω)

Z-scan outputs to probe the quadrupole polariton PL and THG responses using appropriate

band-pass filters [Mani et al. (2010)].

In order to estimate the absolute number of quadrupole polaritons generated under

two-photon excitation, it is essential to precisely determine β, basically arising from Im[χ(3)]

at the quadrupole resonance. The red dots in Fig. 11(a) correspond to the normalized ω

Z-scan trace, showing two-photon absorption for 10.4 μJ/pulse. Note that only 0.4% of

the incident beam is absorbed at the focus (Z = 0). The solid trace is a theoretical fit

[Sheik-Bahae et al. (1990)] with β = 0.217 cm/GW and the beam waist of ω0 = 15.1 μm at

Z = 0. This ω0 is consistent with the standard Gaussian width σs = 0.19 cm of the incident

beam through σs/ f = λ/πω0, where f = 7.5 cm and λ = 1219.4 nm. Unlike conventional

band-to-band two-photon absorption, the effect at the narrow quadrupole resonance depends

on the spectral width δω of the incident laser. In our case of δω ≃ 8 meV, we have confirmed
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that β = 0.217 cm/GW within a 50% uncertainty based on the series of ω Z-scan experiments.

We also find that the measured β value persists up to 226 μJ/pulse without any evidence

for higher-order multiphoton absorption. This implies that one-photon transition induced by

subsequent absorption of the THG light apparently mimics three-photon excitation.
With β determined, depletion of the fundamental intensity I along the beam path z due to

two-photon absorption can be calculated and is given by

dI

dz
= −βI2 → I(z; Z, t) =

I0(Z, t)

I0(Z, t)βz + 1
, (10)

where I0(Z, t) is the photon flux at the incident sample surface, which is a function of the

focusing lens position Z and given by

I0(Z, t) =
2P(t)

πω2(Z)
→ 2P

πω2(Z)
=

2P

πω2
0(1 + Z2/Z2

0)
, (11)

where P(t) is the input pulse power with a 30 ps temporal profile and Z0 = πω2
0/λ ≃

0.06 cm is the confocal parameter. Since Z-scan yields the time-averaged data, we use the

time-integrated pulse power P to evaluate I0(Z). In Eq. (11), a factor of 2 is correctly introduced

for the averaged power of the TEM00 mode Gaussian beam.

Figure 11(b) plots the 2ω Z-scan traces (colored dots) under several excitation levels from

10.4 μJ/pulse to 226 μJ/pulse, showing quadrupole polaritons generated by resonant

two-photon excitation. Note that we plot the time-averaged absolute number of quadrupole

polaritons using the measured β as explained below. As predicted for two-photon absorption

in a finite-thickness sample, for a given excitation level, the measured quadrupole polariton

number increases quadratically with the corresponding I0(Z) as we sweep Z.9 However, a

striking dip-like feature develops in the vicinity of Z = 0 as we increase the pulse energy and

quadrupole polariton generation severely saturates at the focus. In order to check whether

any signal was lost due to the finite aperture of the PMT collector, we have probed the

quadrupole polariton spatial profile in the far field as a function of Z using a gated intensified

CCD camera and verified that this mechanism is negligible [Mani et al. (2010)]. Together

with ω Z-scan indicating negligible higher-order contributions, this implies that quadrupole

polaritons undergo an Auger-type two-body decay process at high densities.

In order to explain 2ω Z-scan, we now model the population and relaxation dynamics of

quadrupole polaritons. The quadrupole polariton generation rate G should match the laser
absorption profile; G(r; Z) = −(dI/dz)/2 = βI2/2, where a factor of 1/2 accounts for energy

conservation during two-photon absorption. The temporal behavior of the local quadrupole

polariton density n(r; Z, t) is described by

dn

dt
= G(r; Z)− n

τ
− An2, (12)

where τ is the quadrupole polariton lifetime and A is an Auger coefficient [Jang & Wolfe

(2005; 2006a;c); Jang & Ketterson (2008)]. The analytical solution to Eq. (12) exists and the

9 If the sample is infinitely thick, the incident IR photons N should be all absorbed and the number of
quadrupole polaritons created is simply N/2, independent of I0(Z).
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time-averaged density n(r; Z) is given by

n(r; Z) =

∫

n(r; Z, t)dt
∫

dt
=

ln[1 + An0(r; Z)τ]

Aτ
, (13)

where the initial density is well approximated by n0(r; Z) = {[1+ 4G(r; Z)Aτ2
p ]

1/2 − 1}/2Aτp

with the pulse width τp = 30 ps. While n0 is essentially Gτp at low excitation, it approaches

to (G/A)1/2 and is limited by fast Auger-type decay during the 30 ps buildup time when

GAτ2
p ≫ 1. To obtain the time-averaged quadrupole polariton number N(Z) for a given Z,

we numerically integrate n(r; Z) over the sample dimension (d = 100 μm):

N(Z) =
∫

n(r; Z)d3r = πω2(Z)
∫ d

0
n(z; Z)dz. (14)

Note that N(Z) contains only two independent fit parameters of τ and A, since G is accurately

determined with β = 0.217 cm/GW. The solid traces in Fig. 11(b) show N(Z) using a single

fit-parameter set of τ = 2 ns and A = 0.55 × 10−16 cm3/ns, showing excellent fits to the series

of 2ω Z-scan data. A value τ = 2 ns is consistent with that obtained from coherent quantum

beat spectroscopy [Frohlich et al. (1991)] and A is about 2 times smaller than that reported

based on Lyman absorption spectroscopy [Jang & Ketterson (2008); Tayagaki et al. (2006)].

Most of all, it is remarkable that the measured A value for quadrupole polaritons is more

than 10 times smaller than that for thermalized excitons [Jang & Wolfe (2005; 2006a;c)]. This

significantly reduced A seems puzzling but we can qualitatively explain it based on the

unique property a quadrupole polariton possesses but an exciton does not. This two-body

decay process for excitons is exclusively caused by “matter-matter collision” via Coulomb

interaction between two e-h pairs consisting of two excitons. Since this process arises from

random collision of excitons, it depends on the exciton gas temperature [Jang & Wolfe (2005;

2006a;c)]. However, as a quantum superposition of a photon (light) and a bright orthoexciton

(matter), a quadrupole polariton also carries the light character that is not relevant to this

collisional process. Unlike diffusive excitons, quadrupole polaritons all move in the same

direction with a definite nonzero wavevector primarily determined by the incident laser beam.

Therefore, they should have a greatly reduced probability for random collision. In this view,

it is not surprising that quadrupole polaritons have a much suppressed Auger coefficient.

Figure 11(c) displays 3ω Z-scan traces (colored dots) for 79.5, 122, and 226 μJ/pulse, resulting

from THG of the input laser. We confirmed that 3ω Z-scan responses were very small for

lower excitation. Again, considering a submicron absorption length at 406.5 nm in Cu2O,

it is remarkable that measurable THG signals are transmitted through the sample. Since

fundamental depletion due to two-photon absorption is negligible, the THG field intensity

E3ω as a function of Z is given by [Boyd (2008)]

E3ω(Z) =
i3ω

2nc
χ(3)E3(Z)J3ω(∆kd), (15)

where n is the index of refraction for Cu2O, c is the speed of light in vacuum, E(Z) =
[I0(Z)/2nc]1/2, and J3ω(∆kd) is the phase-matching factor. The solid traces in Fig. 11(c) are the

predicted THG photon counting [∝ πω2(Z)|E3ω(Z)|2] properly scaled to match the overall

data, simply assuming phase matching (J3ω = d) and using I0(Z) in Eq. (11). While this
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Fig. 12. (a) Time-averaged quadrupole polariton densities (colored dots) as a function of Z,
superimposed by our Auger model (solid traces). Calculated quadrupole polariton
dispersion for (b) 3D bulk and (c) 10 μm-thick cavity (m = 84) modes in Cu2O for a (110)
direction.

simple model basically corresponds to a I3 fit, the observed 3ω Z-scan data reveal a different

power dependence of I1.8. We believe that this rather unusual power dependence stems

from complicated processes involving (i) strong absorption of THG beam that crucially affects

phase coherence between the fundamental and THG lights inside Cu2O and/or (ii) possible

contribution due to the generation of higher harmonics. Although a full understanding of

detailed THG mechanism in Cu2O awaits more experimental and theoretical studies, it is clear
that high-density quadrupole polariton generation is more affected by an Auger-type process

rather than THG, as indicated by our Auger model explaining 2ω Z-scan data without a χ(3)

parameter [see Fig. 11(b)].

Unlike typical dipole coupling encountered in other semiconductors, quadrupole coupling

near the crossover is much smaller in bulk Cu2O, causing relatively large curvature of

the dispersion near the quadrupole polariton bottleneck; the associated group velocity is

relatively fast and the effective mass is very small, several orders of magnitude smaller than

the exciton mass [see Fig. 12(b)]. This should result in a significant reduction in the BEC

transition density. Furthermore, the Auger-type cross section is significantly reduced for

quadrupole polaritons owing to their half-matter/half-light characters. This implies that

the experimentally achievable quadrupole polariton densities can be well above the critical

density for BEC.

In order to estimate experimental quadrupole polariton densities attainable, we plot the

time-averaged density n(Z) = N(Z)/πω2(Z)d (colored dots) in Fig. 12(a) using N(Z) in

Fig. 11(b). The solid traces correspond to our Auger model with A = 0.55 × 10−16 cm3/ns.

In our excitation range, the spatial extent of quadrupole polaritons along the propagation

direction is limited by the sample thickness of d = 100 μm, which is smaller than the

two-photon absorption length (βI)−1. The corresponding areal densities N(Z)/πω2(Z) are

also plotted in Fig. 12(a). Despite considerable decrease in N(Z) around Z = 0 in Fig. 11(b),

it is important to note that the maximum density still locates at the focus in which it saturates

around 3× 1016 cm−3 under high excitation levels. This is more than 10 times higher than the

maximum thermal exciton density (≃ 1015 cm−3) [O’Hara & Wolfe (2000)], basically due to

the suppression of A by the same amount.
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Fig. 13. (a) Time-integrated PL recorded using a reflection geometry, showing effective
confinement of quadrupole polaritons from a silvered region . Inset depicts the sample and
collection geometry. (b) Schematic diagram for a Cu2O Fabry-Perot cavity.

Although the areal densities for quadrupole polaritons we observe in Cu2O are much higher

than the critical BEC density (≃ 109 cm−2) in the 2D cavity-polariton structures [Balili et al.

(2007); Deng et al. (2003); Kasprzak et al. (2006)], BEC is not expected to arise in practice,

since the absence of a local minimum precludes condensation as shown in Fig. 12(b); of

course such minima have been engineered into the polariton dispersion curves of the 2D

microcavities. This limitation might be circumvented by depositing partially transmitting

mirrors on opposing sides of a flat platelet of Cu2O, thereby forming a Fabry-Perot cavity

[see Fig.13(b)]. In Fig. 12(c), we plot our simulation result for the m = 84 cavity-photon

mode assuming a 10 μm-thick Cu2O platelet that forms a Fabry-Perot cavity (blue dashed

curve) sitting just above the exciton mode (red dashed curve).10 Then, the lower-polariton

branch (red solid curve) would develop a local minimum via quadrupole coupling associated

with a very small effective mass (≃ 10−5me) in which long-lived quadrupole polaritons can

condense.

Recently, we have experimentally confirmed that depositing a silver film on Cu2O

significantly enhances the quadrupole polariton confinement without altering underlying

excitonic structures, as demonstrated by Fig. 13(a). The quadrupole polariton PL from a

silvered region (blue trace) is about 4 times stronger than that from an unsilvered region

(red trace). This behavior persists when we move the excitation position around the

silvered portion. Figure 13(b) illustrates a detailed schematic of the proposed cavity system

for quadrupole polariton BEC. The excitation surface of a Cu2O platelet is attached to a

commercial dichroic mirror that transmits the incident excitation beam in the IR (1219.4 nm),

but strongly reflects the quadrupole polariton PL in the visible range (609.7 nm), thereby

forming a high-Q cavity with efficient quadrupole polariton generation. Optimally coupling

the OPA output to the cavity poses a more challenging problem, as it requires a way to

continuously vary this coupling. We have two strategies for matching of mode frequency

10 Smaller node numbers and large mode spacings would require a thinner sample. A promising
technology to make thin Cu2O films showing sharp exciton lines was reported by Markworth et al.
(2001).
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either by (i) adjusting the propagation direction of quadrupole polaritons relative to the plane

normal or (ii) placing a silver mirror on the far side of the sample with a variable thickness.

Unlike our previous experiments based on time-integrated methods, we plan to directly

time-resolve the population and relaxation dynamics of two-photon generated quadrupole
polaritons as a function of the input IR power and the angle of incidence. This will clearly

reveal not only the impact of two-body decay on high-density quadrupole polaritons but

also the coherent temporal evolution of long-lived quadrupole polariton condensate once

achieved.

8. Concluding remarks

The goal of this chapter is to study both fundamental and technological aspects of

natural-growth/synthetic cuprous oxide (Cu2O) crystals that host long-lived excitonic

matter and exhibit large third-order nonlinear optical responses. All these remarkable

physical properties primarily originate from the centrosymmetric crystal structure and

the dipole-forbidden bandgap of Cu2O. Bright orthoexcitons intersecting the light cone

quadrupole couple to the electromagnetic field and split into two polariton branches. A

quadrupole polariton in Cu2O is special in that it propagates over a macroscopic distance

with a very long coherence time, compared with polaritons in conventional dipole-allowed

semiconductors.

Based on the series of experiments under resonant two-photon excitation, we

have demonstrated various interesting phenomena essentially arising from unique

half-matter/half-light characteristics of quadrupole polaritons. However, our current

understanding of the properties of a quadrupole polariton is rather empirical and accessible

only experimentally, calling for a more rigorous microscopic description of this quasiparticle.

More importantly, our findings imply that high-density quadrupole polaritons can be

effectively confined inside Cu2O and we have proposed a promising direction for long-lived

polariton Bose-Einstein condensation (BEC). Clearly, BEC in a forbidden-gap semiconductor

would be a valuable addition to the current BEC class from the perspective of fundamental

physics. Also, polariton BEC on the order of several nanoseconds at nominal cryogenic

temperatures will be a revolutionary step toward quantum computers and information

sciences.

Various nonlinear optical parameters have been quantitatively characterized using Z-scan

and third harmonic generation (THG) techniques. Distinctive and interesting properties

of this semiconductor allow us to consider possible optoelectronic applications involving

polariton-based waveguides and whispering gallery resonators, polariton lasers, and active

third-order nonlinear optical devices. We have also discussed a set of particularly

interesting and timely issues. This includes detailed research directions such as (i)

high-density quadrupole polariton dynamics near BEC regime, (ii) impact of external stress

on quadrupole polaritons, (iii) nonlinear optics at the quadrupole resonance using both

two-beam two-photon absorption and quadrupole-induced second harmonic generation, and

(iv) clarification of underlying THG mechanism.
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