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1. Introduction

The study of quantum semiconductor structures has received much attention in recent

years. Especially group III nitrides have been of considerable interest due to their potential

applications as LEDs and laser diodes in the UV region (Kneissl et al., 2003; Nakamura et al.,

1994; Yoshida et al., 2008a;b). But also other materials, as the group II oxides have been

investigated for their potential as highly efficient laser diodes (Fan et al., 2006; Fujita et al.,

2004). Typically, these materials are in the wurtzite crystal phase. Nevertheless some of these

materials also exist in the zincblende crystal phase. Furthermore there are the more classical

materials as AlGaAs that are in zincblende phase. For this reason we chose to focus on these

two crystal structures throughout this chapter.

As opposed to other semiconductor materials as silicone, the above mentioned materials

generate electric fields when deformed and vice versa. This so called piezoelectric effect plays

a significant role for both band structure and optical gain (Park & Chuang, 1998), which is

why it is important to investigate.

In this chapter we start by covering the properties of the wurtzite and zincblende crystal

structures and proceed by presenting definitions of stress and strain followed by a derivation

of the constitutive relations for the piezoelectric effect from thermodynamic considerations.

After establishing the governing equations and justifying for the electrostatic approximation

we apply these to a single quantum well structure. Then we present the according calculations

for a cylindrical quantum dot along with results from current research papers. We give a brief

discussion about the validity of these models and possibilities for improving these. To give a
better overview, we briefly present the VFF model as an alternative method for determining

strains in quantum wells.

Finally we give a simplified mathematical description of the connection between the

computed electromechanical fields and the optical and electrical properties of the quantum

structures. Also we provide tables containing various material parameters needed to compute

the electromechanical fields as described in this chapter.

2. Crystal structures

As mentioned, there are two predominant crystal structures in semiconductor technology that

have piezoelectric properties: zincblende and wurtzite. Silicon based semiconductors are not

piezoelectric and will not be covered in this chapter.
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A sketch of the zincblende unit cell is shown in Figure 1. zincblende is a combination of

two face-centered cubic (fcc) crystals, where one of them is offsetted by a/4, a/4, a/4, a being

the lattice constant which in this case is the length the cubic edges. It looks quite similar to

the diamond structure, but as opposed to the latter, the zincblende structure consists of ionic
bonds, causing a nonhomogeneous charge distribution. Macroscopically however, all dipole

moments cancel each other and the nonhomogeneous charge distribution is not visible as long

as it is not deformed. Notable semiconductor materials that can be fabricated in zincblende

form are arsenides such as GaAs, AlAs, or InAs; nitrides such as GaN, AlN, InN, as well as

oxides such as ZnO (Auld, 1990; Davydov, 2002; Fonoberov & Balandin, 2003; J.I.Izpura et al.,

1999; Vurgaftman et al., 2001).

Fig. 1. The zincblende unit cell observed from two different angles. The colors represent the
respective atom as e.g. Ga and As for GaAs. Due to ionic bonding they possess different
charges. Note that the unit cell to the right has an appearance resembling a hexagonal
structure. Indeed we will show that this crystal orientation exhibits piezoelectric properties
resembling those of wurtzite (albeit there still are differences)

The other important crystal structure is wurtzite, which is sketched in Figures 2-3. Wurtzite

is a hexagonal crystal and, opposed to zincblende, possesses spontaneous polarization, a

built-in net polarization in the c-axis direction. Important semiconductor materials grown

in wurtzite form include nitrides such as GaN, AlN, and InN as well as oxides such as ZnO

and MgO (Fonoberov & Balandin, 2003; Gopal & Spaldin, 2006; Vurgaftman et al., 2001).

2.1 Miller indices

As we will cover the effect of crystal orientation in this chapter, we will briefly introduce the
use of Miller indices. They are written in square brackets and consist of three integer digits,

i.e. the form is [klm]. The integers refer to directions with respect to the crystal basis. For

cubic crystal classes as zincblende the basis vectors are simply the three orthogonal vectors

coinciding with the cube edges as can be seen in Figure 4. Note that the indices also describe

the orientation of crystal planes by denoting their normal vector. This can be used to construct

the indices since one can use intersection points with the basis vectors and invert them. For

example a crystal plane with the direction [112] intersects the basis at points [1, 0, 0], [0, 1, 0],
and [0, 0, 1/2]. This crystal plane then gives the cross section one would see when looking at

a crystal in this direction. When denoting a plane directly then one typically uses parenthesis

instead of square brackets. Negative directions are denoted by a bar over the respective index.

For example [k̄k̄k̄] is exactly the opposite of [kkk]. For hexagonal classes such as wurtzite, the

basis vectors are shown in Figure 4. It should be mentioned however, that in crystallography
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Electromechanical Fields in Quantum Heterostructures and Superlattices 3

Fig. 2. The wurtzite crystal structure. For clearer impression of the hexagonal symmetry,
more than one unit cell is drawn. One unit cell is indicated by the transparent blue box. Also
here the atomic bonds are predominantly of ionic nature.

Fig. 3. Top view of the wurtzite structure (left). Here the hexagonal symmetry becomes clear.
Side view of the wurtzite structure (right). Note the lack of inversion symmetry which causes
both piezoelectric behavior and spontaneous polarization

it is quite common to denote directions in hexagonal crystals by four indices, of which one is

redundant. These so called Bravais-Miller indices can be constructed from the standard Miller

indices by [klm] → [kl − (h + k)m].

3. Fundamental equations

As we are dealing with electromechanical fields, we need fundamental equations for both the

mechanical and the electrical part as well as equations for coupling these. In this section we

will cover the definitions of linear stress and strain and develop a linear description of the
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[100]
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Fig. 4. Basis vectors of the cubic crystal (left) and the hexagonal crystal (right)

piezoelectric effect. Furthermore we will present Maxwell’s equations in differential form and

derive Navier’s law as a linearized form of Newton’s Second law. Note that we will stay

entirely within the domain of classical physics.

3.1 Stress, strain, and the Piezoelectric effect

The need of a precise definition of deformation of a material should be rather obvious. He

we consider material as a continuum consisting of infinitely many, infinitely small elements.

Let r be the position of such an element. Then let u be the dislocation of the element, i.e.

u = r − r0. In general, u is a function of both space and time, but it does not give a

measure of deformation, since it can be non-zero also for undeformed shapes. As an example,

taking the gradient of u will prove insufficient as well, since rotation of an undeformed shape

will be non-zero (Landau & Lifshitz, 1986). However, introducing the strain as (Auld, 1990;

Landau & Lifshitz, 1986)

Sij =
1

2

(

∂ui

∂rj
+

∂uj

∂ri
+

∂uk

∂ri

∂uk

∂rj

)

, (1)

allows us to obtain zero if and only if the shape in question is deformed. Assuming that

we only work with small u quantities we can neglect the second order terms to arrive at the

definition of linear strain

Sij =
1

2

(

∂ui

∂rj
+

∂uj

∂ri

)

. (2)

As we deform a shape of a certain material, obviously we do also create restoring forces.

Defining these forces we consider an infinitely small volume element δV = δxδyδz. Then we
can consider traction forces one each of the sides of the element (x, y, and z sides), that is three

force vectors:

Tx = Txx x̂ + Txyŷ + Txzẑ,

Ty = Tyx x̂ + Tyyŷ + Tyzẑ, (3)

Tz = Tzxx̂ + Tzyŷ + Tzzẑ.

The second order tensor consisting of the entries Tij is called the stress tensor and is a measure

of pressure.
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As long as we stay within the elastic limit, the shape will be restored to its original state once

all deformation forces are removed. In other words, the process is reversible and we can

treat it thermodynamically. The fundamental thermodynamic relation for deformed bodies

reads(Landau & Lifshitz, 1986)

dUmech = Θdσ + TikdSik, (4)

where dUmech is the change in internal energy, Θ is the temperature, σ is the entropy,

and summation over indices is implicit. However, we have seen that deformations in a

piezoelectric material give rise to an electric polarization, stipulating that one needs to take

electrical energy into account as well. This contribution reads (Landau et al., 1984)

dUelec = EidDi , (5)

where Ei and Di denote the ith electric and displacement field component, respectively.

Conclusively the total change in internal energy is

dU = Θdσ + TikdSik + EidDi . (6)

It will prove convenient however, to look at other thermodynamic quantities as well. Here we

chose the electric enthalpy Helec, as this will yield the equation we will use later on. For other

interesting quantities and a more detailed derivation of these, see Willatzen (2001). Defining

Helec = U − EiDi, (7)

we obtain the differential

dHelec = dU − d(EiDi)

= dU − EidDi − DidEi (8)

= Θdσ − DidEi + TkldSkl .

Furthermore it is common to assume isentropic operation (Auld, 1990; Willatzen, 2001), even

though in principle isothermal operation is possible as well. However, isothermal operation

is hard to achieve due to energy dissipation and it has been found experimentally that the

isentropic assumption works quaite well (Auld, 1990). In the following we will always assume

constant entropy without denoting it specifically.

We will chose to use the thermodynamic state variables E and S. Then we express the two

remaining variables D and T as

Di =

(

∂Di

∂Ej

)

S

Ej +

(

∂Di

∂Skl

)

E

Skl, (9)

Tkl =

(

∂Tkl

∂Ej

)

S

Ej +

(

∂Tkl

∂Smn

)

E

Smn, (10)

where the subscript at the partial derivatives denotes the field that is held constant.

Furthermore we have used the zero-reference to arrive at these equations.
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Notice that we can describe the above derivatives as derivatives of Helec and define a

constant, such that (using that order of differentiation is arbitrary)

eikl ≡
(

∂Di

∂Skl

)

E

= −
(

∂2 Helec
∂Skl∂Ei

)

= −
(

∂2Helec
∂Ei∂Skl

)

= −
(

∂Tkl

∂Ei

)

S

= ekli, (11)

cE
klmn =

(

∂Tkl

∂Smn

)

E

, ǫS
ij =

(

∂Di

∂Ej

)

S

(12)

Note the transposition symmetry eikl = ekli. Similarly it can be shown that cE
klmn = cE

mnkl and

ǫS
ij = ǫS

ji. Regarding these constants as material constants we can rewrite the piezoelectric

equations as

Di = ǫS
ijEj + eiklSkl + P

sp
i , (13)

Tkl = −ekliEi + cE
klmnSmn, (14)

where the first equation is the direct effect while the latter is called the converse effect. The

vector Psp denotes spontaneous polarization, which is zero for zincblende crystals and has
a nonzero z-component for wurtzite. It should be mentioned already here that there are

generally two common approaches to these equations when dealing with quantum structures.

One is the fully-coupled approach, where the equations above are used as they are, while the

other approach is the semi-coupled one where the piezoelectric tensor e for the converse effect

is neglected.

3.1.1 Voigt notation

Due to the symmetry of the tensors involved in the piezoelectric fundamental equations it is

possible and useful to contract the index notation. This will transform the nine-element strain

and stress tensors to six-element vectors. The subscript contraction for Cartesian coordinates

is as follows:

xx → 1, yy → 2, zz → 3, (15)

yz & zy → 4, xz & zx → 5, xy & yx → 6. (16)

Note that the piezoelectric stiffness tensor e cannot be fully reduced since it is of third rank.

Thus one reduces only the kl-set from equations (13) and (14) such that one can use standard

matrix multiplication rules once contracted.

It should also be mentioned that there exist different standards with respect to weights when

contraction. One standard is to use the same weight (typically 1) for both stress and strain.

Another standard, used by Auld (1990), is to multiply the three shear strains by two while

using unit weight for the stress, i.e

SI = 2 · Sij − δijSij, i, j = 1, 2, 3, I = 1, 2, 3, 4, 5, 6, (17)

TI = Tij i, j = 1, 2, 3, I = 1, 2, 3, 4, 5, 6. (18)
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We will use the latter standard as the resulting contraction operations for the stiffnesses are

weightless and thus can be taken directly from several sources containing many of these

constants, such as Vurgaftman et al. (2001).

cI J = cklmn, eiK = eikl. (19)

Tensors that already are of second rank are not contracted. Using this contraction, the

piezoelectric relations read

D = εSE + eS + Psp, (20)

T = −eTE + cES, (21)

where ε is the 3 × 3 permittivity matrix, e is the 3 × 6 piezoelectric matrix, c is the 6 × 6

stiffness, while D, E are the 3 × 1 electric displacement and electric field vectors, respectively,

and T, S are the 6 × 1 stress and strain vectors, respectively.

3.2 Material property tensors

For the sake of completeness we give the general form of the material properties of wurtzite

and zincblende.

3.2.1 Wurtzite

The wurtzite crystal structure has three independent entries in the piezoelectric tensor, four in

the stiffness tensor and two in the purely diagonal permittivity tensor. The matrices read

e =

⎡

⎣

0 0 0 0 ex5 0

0 0 0 ex5 0 0

ez1 ez1 ez3 0 0 0

⎤

⎦ ,

c =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 1
2 (c11 − c12)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

ε =

⎡

⎣

ǫxx 0 0

0 ǫxx 0

0 0 ǫzz

⎤

⎦ ,

PSP =

⎡

⎣

0

0

pSP

⎤

⎦ (22)

3.2.2 Zincblende

For zincblende there is only one independent entry for the piezoelectric coupling ex4 and

three independent entries for the stiffness tensor c while the permittivity in fact can be used

as a scalar ǫxx since all the diagonal entries in the purely diagonal matrix are the same. The

425Electromechanical Fields in Quantum Heterostructures and Superlattices
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matrices read

e =

⎡

⎢

⎣

0 0 0 ex4 0 0

0 0 0 0 ex4 0

0 0 0 0 0 ex4

⎤

⎥

⎦
,

c =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

ε =

⎡

⎢

⎣

ǫxx 0 0

0 ǫxx 0

0 0 ǫxx.

⎤

⎥

⎦
(23)

3.3 Higher order electromechanical effects

This chapter will not cover the handling of nonlinear electromechanical effects. Nevertheless

the importance of these effects is being discussed in literature (Voon & Willatzen, 2011) and for

this reason we will give a brief introduction to second order piezoelectricity. The other effect,

electrostriction, should also be mentioned here. It is a second order effect between strain and

the electric field, with the governing equation reading (Newnham et al., 1997)

Sij = MijklEkEl . (24)

Note that, opposed to the piezoelectric effect, Mijkl is a tensor of even rank and thus this

effect does not need breaking of symmetry as the piezoelectric effect does. However, it is very

difficult to estimate the impact of this effect since the electrostrictive tensor is very hard to

measure correctly (Voon & Willatzen, 2011).

3.3.1 Second order Piezoelectricity

Instead of assuming a linear relationship between the piezoelectrically generated field and the

strain, it is also possible to assume relationships of second order. This yields a piezoelectric

tensor that does depend on the strain itself and reads (Bester, Wu, Vanderbilt & Zunger, 2006;

Bester, Zunger, Wu & Vanderbilt, 2006)

eiJ = e0
iJ +

6

∑
k=1

BiJKSK, (25)

where e0
iJ is the piezoelectric tensor at zero strain and BiJK is the fifth rank tensor representing

the non-linear piezoelectric effect. Theoretically, the impact of this effect has been shown

to be of significance (Bester, Wu, Vanderbilt & Zunger, 2006; Bester, Zunger, Wu & Vanderbilt,

2006), however the agreement with experiments is still disputed (see also discussion

in Voon & Willatzen (2011)).
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3.4 Navier’s and Maxwell’s equations

As we deal with coupled electrical and mechanical effects we will need the field equations for

both. The electromagnetic field equations consist of the four Maxwell equations

∇× E = − ∂B

∂t
, (26)

∇× H =
∂D

∂t
+ Jc + Js, (27)

∇ · B = 0, (28)

∇ · D = ρe, (29)

where we have chosen the differential form and H denotes the magnetic field intensity,

B denotes the magnetic flux density and Jc, Js denote conduction and source currents,

respectively, while ρe is the free electric charge density. For further details on the origin of

these equations the reader is referred to Landau & Lifshitz (1975).

The mechanical field equation of course has its origin in Newton’s Second law. Considering a

small volume δV with surface δS we have the balance of forces

∫

δS
Tn̂ dS +

∫

δV
F dV =

∫

δV
ρm

∂2u

∂t2
dV, (30)

where the first integral is the summation of surface forces, the second is due to the possible

presence of a body force FδV and ρm is the mass density. In the case where δV → 0 the

integrands can be regarded as being constant and we obtain Navier’s equation

∇ · T = ρm
∂2u

∂t2
− F, (31)

where ∇ · T ≡ limδV→0

∫

δS
Tn̂ dS
δV . In Cartesian coordinates the divergence of stress ∇ · T reads

(∇ · T)i =
∂Tij

∂rj
, (32)

where i, j = x, y, z. In Voigt notation, the divergence can be expressed by a 3 × 6 matrix which

in Cartesian coordinates reads

∇· →

⎡

⎢

⎣

∂
∂x 0 0 0 ∂

∂z
∂

∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎤

⎥

⎦
(33)

Forms for other coordinate systems can be obtained by considering an elementary volume of

this coordinate system and making a linear approximation of the stresses T on the surfaces

on that volume, finally letting the volume approach zero. The divergence for cylindrical and

spherical systems are also given in Auld (1990).

With Maxwell’s and Navier’s equations together with the piezoelectric constitutive relations

we have the complete basis for computing electrical and mechanical fields in piezoelectric

materials (neglecting second order terms as electrostriction).
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3.4.1 Electrostatic approximation

When dealing with problems that are constant in time, the electromagnetic coupling is

non-existent and the only equations left to solve are Navier’s equation along with the

following two of Maxwell’s equations

∇× E = 0, ∇ · D = ρe. (34)

With time varying problems on the other hand, one needs to solve all of Maxwell’s and

Navier’s equations self-consistently. However, in most cases (Auld, 1990) it is possible to

use the electrostatic approximation, forcing ∇× E = 0 and introducing an insignificant error.

Here we will justify this on a simple example and leave further discussions to Auld (1990).

Consider an electromechanical plane wave in the z-direction of a bulk piezoelectric material

with zero free electric charges of general crystal structure (however, for simplicity considering

diagonal terms in ε only as well as assuming non-magnetic properties, as is always the case

for either wurtzite or zincblende). In this case we will not be able to assume that also B and

H depend on z only. After some manipulation using Maxwell’s and Navier’s equations, one

arrives at the dispersion relation

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Γ53
k2

ω2 Γ54
k2

ω2 Γ55
k2

ω2 − ρm −e5x
k2

ω2 −e5y
k2

ω2

Γ43
k2

ω2 Γ44
k2

ω2 − ρm Γ45
k2

ω2 −e4x
k2

ω2 −e4y
k2

ω2

Γ33
k2

ω2 − ρm Γ34
k2

ω2 Γ35
k2

ω2 −e3x
k2

ω2 −e3y
k2

ω2

μ0ex3 μ0ex4 μ0ex5 μ0ǫxx − k2

ω2 0

μ0ey3 μ0ey4 μ0ey5 0 μ0ǫyy − k2

ω2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎣

S3

S4

S5

Ex

Ey

⎤

⎥

⎥

⎥

⎥

⎦

= 0, (35)

where Γ denotes the piezoelectrically stiffened elastic tensor given by

Γ = cE +
eTe

ǫ

−1

. (36)

Considering standard numerical values of the material properties, i.e. Γ ∼ 1010, ρm ∼
103, eiJ ∼ 1, ǫ ∼ 10−11, μ0 = 4π · 10−7 it is easily seen that there is only a weak coupling

between the submatrices 1 − 3 × 1 − 3 and 4 − 5 × 4x5. When computing the determinant

of this matrix as the sum of all permutation products (negating sign for odd permutations)
it becomes clear that the elements with three Γ contributions are dominating in the range of

k2/ω2 = 1/c2 with c ∼ 103. The summation terms including three Γ contributions are of

order 100 while the terms including only two Γ contributions are of order 10−6.

On the other hand, for large ω so we are getting close to electromagnetic wave propagation,

we have c ∼ 108. Then the one dominating term becomes ∼ −ρ3
mμ0ǫxxμ0ǫyy ∼ 10−25, with

the second largest terms ∼ 10−34.

Note that in the absence of piezoelectricity we obtain the uncoupled dispersion relations for

acoustic and electromagnetic wave propagation, respectively. Thus the piezoelectric coupling

terms in the dispersion relation are negligible and one obtains the same dispersion relation

as with the electrostatic approximation, where only the 1 − 3 × 1 − 3 submatrix will occur in

the dispersion and the electromagnetic wave is considered to be purely electromagnetic. Even

more, the amplitudes of the strain elements and the electric field elements will also only be

perturbed insignificantly.
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4. Quantum structures

The key issue for investigating piezoelectric effects in the wurtzite and zincblende crystal

structures is their widespread use in optoelectronics and electronics in general. Here we

will focus on "clean" quantum structures, i.e. without doping. The major reason for the

use of materials such as GaN, AlN and others is their large electronic band gap creating the

possibility of large energy transitions as necessary for UV-leds. A basic sketch of a quantum

well structure is shown in Figure5

(1) (1)(2)

E(2)
g

E(1)
g

Fig. 5. Basic sketch of a quantum well structure. The indices (1) and (2) denote barrier and
well material, respectively. The upper part indicates the conduction and valence band
energies for zero electric field.

The three types of quantum structures that differ in the number of confined dimensions are

• Quantum well: one dimension confined

• Quantum wire: two dimensions confined

• Quantum dot: three dimensions confined

One motivation for investigation of these types is that a decrease of dimensionality is reflected

in the density of state functions of these structures. The dependency of the density of states

(DOS), denoted N(E), on the energy E functions read in a one-band effective model (Singh,

2003)

N(E)bulk =

√
2m∗3/2

√
E − Ec

π2h̄3
, (37)

N(E)well =
m∗

πh̄2
; E > Ei(from each subband i), (38)

N(E)wire =

√
2m∗1/2

πh̄
(E − Ei)

−1/2; E > Ei(from each subband i), (39)

N(E)dot = δ(E − Ei), (40)

where Ec is the conduction band energy and m∗ is the electron effective mass. Note that the

DOS for a quantum dot is discrete, i.e. a quantum dot is treated as a single, isolated particle.

A thorough discussion about these three structures can be found in Singh (2003).

The theory presented in this chapter covers electromechanical fields of both well and barrier

structures, the latter being used for transistor technology (Koike et al., 2005; Sasa et al., 2006).
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5. One-dimensional electromechanical fields in quantum wells

This section contains an example for the application of the above equations on quantum wells.

For simplicity we will assume no free charges in the structure as this removes the necessity of

solving the Schrödinger equation simultaneously.

The well layer (2) will adapt its lattice constant to the barriers (1) and the strain in the well

layer is defined as (Ipatova et al., 1993)

S(2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂u
(2)
x

∂x − amis

∂u
(2)
y

∂y − amis

∂u
(2)
z

∂z − cmis

∂u
(2)
y

∂z + ∂u
(2)
z

∂y

∂u
(2)
x

∂z + ∂u
(2)
z

∂x

∂u
(2)
x

∂y +
∂u

(2)
y

∂x

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (41)

while the strain in layer (1) is defined as usual (see equation (1)). This definition is for

wurtzite structures, having two lattice constants a, c. The mismatch amis is given by amis =
(

a(2) − a(1)
)

/a(1) and cmis is defined similarly. For use with zincblende, cmis = amis.

For the quantum well it is often assumed that all quantities depend exclusively on the

z-direction and the x, y-directions are infinite. Note that, since we are working with first

order strain, the choice of the denominator for amis and cmis is arbitrary, as the difference
(

a(2) − a(1)
)

/a(1) −
(

a(2) − a(1)
)

/a(2) is of second order.

5.1 Crystal orientation

As already discussed, the zincblende structure does not exhibit piezoelectric properties upon

hydrostatic compression (i.e. no shear). However, as seen in Figure 1 there is reason to

believe that a rotation of the crystal structure yields a piezoelectric field upon hydrostatic

compression.

The rotation of unit cells is modeled by a rotation of the describing coordinate system

transforming coordinates x, y, z → x′, y′, z′. The transformation is performed by two

subsequent rotations around coordinate axis as shown in Figure 6. The different quantities

then transform as

r′ = a · r, PSP′
= a · PSP,

T′ = M · T, S′ = N · S,

E′ = a · E, D′ = a · D,

ε′ = a · ε · aT , e′ = a · e · MT,

cE ′ = M · cE · MT,
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z, zφ

xφ

yφ

φ
φ y
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y

z, zφ

xφ, x
′

yφ

y′y′

z′

θ

θ

Fig. 6. Subsequent coordinate system rotations - φ around z followed by θ around the new
x-axis. The cubes to the left indicate the cubic crystal structure while the middle and right
figures represent the same operation for hexagonal crystals. Reprinted with permission
from Duggen et al. (2008) and Duggen & Willatzen (2010).

where a is given by (Auld, 1990; Goldstein, 1980)

a =

⎡

⎣

cos(φ) sin(φ) 0

− cos(θ) sin(φ) cos(θ) cos(φ) sin(θ)
sin(θ) sin(φ) − sin(θ) cos(φ) cos(θ)

⎤

⎦ , (42)

and the M, N matrices are called Bond stress and strain transformation matrices, respectively.

They are constructed out of the elements of a as given in the following (Auld, 1990; Bond,
1943):

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a2
11 a2

12 a2
13 2a12a13 2a13a11 2a11a12

a2
21 a2

22 a2
23 2a22a23 2a23a21 2a21a22

a2
31 a2

32 a2
33 2a32a33 2a33a31 2a31a32

a21a31 a22a32 a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32

a31a11 a32a12 a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31

a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (43)

N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a2
11 a2

12 a2
13 a12a13 a13a11 a11a12

a2
21 a2

22 a2
23 a22a23 a23a21 a21a22

a2
31 a2

32 a2
33 a32a33 a33a31 a31a32

2a21a31 2a22a32 2a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32

2a31a11 2a32a12 2a33a13 a12a33 + a13a32 a13a31 + a11a33 a11a32 + a12a31

2a11a21 2a12a22 2a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (44)

Note that we have chosen to let the third rotation angle ψ to be zero, as this is a rotation about

the z′-axis and does not alter the growth direction. In the following the primes are omitted.

It is also noteworthy that calculations for wurtzite show that all the material parameter tensors

as well as the misfit strain contributions do not depend on the angle φ (Bykhovski et al., 1993;

Chen et al., 2007; Landau & Lifshitz, 1986).
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5.2 Static case

In the static case the equations to solve in each layer become

∇ · T(i) = 0, ∇ · D(i) = 0, ∇× E(i) = 0

→ ∂T
(i)
3

∂z
=

∂T
(i)
4

∂z
=

∂T
(i)
5

∂z
= 0, → ∂D

(i)
z

∂z
= 0, → ∂E

(i)
x

∂z
=

∂E
(i)
y

∂z
= 0, (45)

where the superscript i denotes the material, as depicted in Figure 5. Usually one would use

homogeneous Dirichlet boundary conditions for the electric field Ex|z=zl,zr = Ey|z=zl,zr = 0,

corresponding to the case where the two ends are covered by a perfect conductor. As electric

coupling conditions force continuity of the tangential components of E and these components

are constant in each layer we obtain Ex = Ey = 0 everywhere. Using the definition of strain

we find that in each layer

∂2ux

∂z2
=

∂2uy

∂z2
=

∂2uz

∂z2
, (46)

that is, we have linear solutions for the displacement in each layer:

ui = A(j)
i z′ + B(j)

i . (47)

These coefficients are then found by applying continuity of

T3, T4, T5, ux, uy, uz, and Dz (48)

at the material interfaces. At the outer boundaries we will assume free ends

T5 = T4 = T3 = 0, Dz = D. (49)

The conditions for clamped ends would be ux = uy = uz = 0 at the ends. The parameter D

is a degree of freedom that in principle corresponds to the application of a voltage across the

outer ends (as it changes the electric field and in the static case the electric potential is merely

an integration over space). Calculations for a superlattice structure (i.e. a periodic repetition

of well and barriers) are exactly the same, with the lattice constants in the well layers adapting

to those of the barrier (Poccia et al., 2010).

Calculations for the [111] growth direction of zincblende crystals yields the following

analytical expression for the compressional strain in the quantum well (Duggen et al., 2008):

Szz =
2
√

3
e
(2)
x4

ǫ(2)
D + 3

(

c
(2)
11 + 2c

(2)
12

)

amis

4
e
(2)2

x4

ǫ(2)
+ c

(2)
11 + 2c

(2)
12 + 4c

(2)
44

− amis. (50)

Results for the [111] direction in zincblende quantum wells, with several materials, are given

in Table 1. The [111] direction is a rather special case as a compression in the [111] direction

yields an electric field in the [111] direction as well and this direction does not couple to the

transverse components (i.e. a compression in z-direction does not generate an electric field

in x or y directions.) - here zincblende behaves very similar to wurtzite grown along the
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[0001] direction. The table also contains a comparison between the fully and the semi-coupled

model. The terms Ssemi and Scoupling refer to semi-coupled result and the difference to the fully

coupled result, respectively, i.e. S f ully−coupled = Ssemi + Scoupling.

substrate/QW Ssemi Scoupling Deviation E′
z,t [V/μm] E′

z,e [V/μm]

GaAs/In0.1Ga0.9As 0.34% −0.002% 0.5% 15.56 17 ± 1a

GaAs/In0.2Ga0.8As 0.710% −0.003% 0.4% 28.63 25b

AlN/GaN 1.34% −0.04% 3.1% 271.6
GaN/In0.3Ga0.7N 1.69% −0.07% 4.4% 355.0
GaN/InN 7.24% −0.61% −9.1% 1441.5
GaN/AlN −0.91% 0.04% −4.7% −280.3
a Caridi et al. (1990)
b J.I.Izpura et al. (1999)

Table 1. Contributions to S′
zz in the [111]-grown quantum well layer for different zincblende

material compositions with D = 0. For GaAs/InxGa1−xAs both E′
z,t and E′

z,e, being the
theoretical and the experimental electric field in the QW-layer respectively, are listed for
comparison

It can be seen that it does not play a role whether one uses the fully-coupled or the semi

coupled approach for the nitrides. Note, however, that the electric field generated by the

intrinsic strain in the quantum well layer is quite large and will definitely have an influence

on the electrical properties.

The same calculations have been carried out for wurtzite quantum wells (and barriers). For

the [0001] growth direction, the analytic result for the compressional strain, which is not

coupled to the shear strains in this case, reads (Duggen & Willatzen, 2010; Willatzen et al.,

2006)

Sxx = Syy = −amis, (51)

S
(1)
zz = e

(1)
z3

D − P
(1)
z

e
(1)2

z3 + c
(1)
33 ǫ

(1)
zz

, (52)

S
(2)
zz =

e
(2)
z3 (D − P

(2)
z ) + 2amis(e

(2)
z1 e

(2)
z3 + c

(2)
13 ǫ

(2)
zz )

e
(2)2

z3 + c
(2)
33 ǫ

(2)
zz

, (53)

In principle one can of course find analytic expressions for the general strains as function of

the two angles φ, θ (for both wurtzite and zincblende). However, these expressions are very

cumbersome to comprehend and therefore do not provide additional insight.

Results for the growth direction dependency of a GaN/Ga1−xAlxN/GaN well are shown

in Figure 7. For this structure the shear strain is negligible and therefore omitted. For

other materials, however the shear strain component is significant and there are significant

differences between the fully and semi-coupled approach as seen in Figure 8.
Note that for sufficiently large Al-content, the electric field in the GaAlN well becomes zero

at two distinct angles. For the MgZnO structures it shows that there even exist up to three

distinct zeros (Duggen & Willatzen, 2010). This is of potential importance as it might lead to

increased efficiency for the application of white LEDs (Waltereit et al., 2000).
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Fig. 7. Compressional strain S

(2)
zz (left) and electric field Ez(2) (right) for

GaN/Ga1−xAlxN/GaN with several x-values and D = 0 C/m2. The colors blue, red, green,
black, and magenta correspond to x = 1, x = 0.8, x = 0.6, x = 0.4, and x = 0.2, respectively.
Solid (dashed) lines correspond to the semi-coupled (fully-coupled) model. Reprinted with
permission from Duggen & Willatzen (2010)
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Fig. 8. Shear strain component S
(2)
yz (left) and compressional strain component S2

zz (right) in
the quantum-well layer of a Mg0.3Zn0.7O/ZnO/Mg0.3Zn0.7O heterostructure for the
fully-coupled and semi-coupled models corresponding to D = 0 C/m2. Reprinted with
permission from Duggen & Willatzen (2010)

5.3 Monofrequency case

Both single quantum wells and for superlattice structures might be subject to an applied

alternating electric field, which we will model as application of a monofrequent D-field, i.e.

we will assume time harmonic solutions ∝ exp(iωt), where ω = 2π f and f is the excitation

frequency. Here we will limit us to the zincblende case, but the theory is just as well applicable

to wurtzite structures, where one needs to take into account the spontaneous polarization PSP

as well.

As the coupling conditions are continuity of T, it is convenient to derive the corresponding

differential equation for T. As we assume only z-dependency, Navier’s equation becomes

three equations:

∂TI

∂z
= ρm

∂2ui

∂z
, (54)
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where I, i are 3, z, 4, y, 5, x. Furthermore we have that

∂SI

∂t
=

∂2ui

∂t∂z
, (55)

with the same pairs I, i. Differentiating with respect to z and t, respectively, combining and

eliminating u we obtain

∂2TI

∂z2
= ρm

∂2SI

∂t2
. (56)

Then using the piezoelectric fundamental equation along with the electrostatic approximation

(forcing Ex = Ey = 0 as in the static case) we obtain the set of three coupled wave equations:

Γ33
∂2T3

∂z2
+ Γ34

∂2T4

∂z2
+ Γ35

∂2T5

∂z2
− ρm

∂T3

∂t2
= ρm

eT
3z

ǫS

∂2Dz

∂t2
, (57)

Γ43
∂2T3

∂z2
+ Γ44

∂2T4

∂z2
+ Γ45

∂2T5

∂z2
− ρm

∂T4

∂t2
= ρm

eT
4z

ǫS

∂2Dz

∂t2
, (58)

Γ53
∂2T3

∂z2
+ Γ54

∂2T4

∂z2
+ Γ55

∂2T5

∂z2
− ρm

∂T5

∂t2
= ρm

eT
5z

ǫS

∂2Dz

∂t2
, (59)

where Γ is the piezoelectrically stiffened elastic tensor. Note that the dispersion relation

(which is above equations with Dz = 0) is the same as in equation (35) with the weak coupling

terms removed as is done with the electrostatic approximation.

The general solution to these wave equations consist of forward and backward propagating

waves. The solution in each layer for e.g. the x-polarization reads

T
(i)
5 = T (i)

5A+ exp(ik1z) + T (i)
5A− exp(−ik1z) + T (i)

5B+ exp(ik2z) + T (i)
5B− exp(−ik2z)

+ T (i)
5C+ exp(ik3z) + T (i)

5C− exp(−ik3z)− e
(i)T
5z

ǫS(i)
Dz. (60)

The other polarizations can then be found by solving the dispersion relation for T3(k)/T5(k)
and T4(k)/T5(k). Thus, when the T5 amplitudes are known, all amplitudes are known. The

coupling conditions between the layers are continuity of stress and continuity of particle

velocity (corresponding to continuity of particle displacement in the static case), with the

particle velocity v given by

v =
1

ρmω

∂T

∂z
, (61)

where a comment about the dimensionality of v should be made, since obviously we get

elements vzx, vzy, vzz. This is consistent, as the wave has propagation direction z, but

three different polarizations x, y, z, i.e. v5, v4 describe shear waves while v3 describes a

compressional wave.

The collection of boundary condition equations yields an 18 × 18 matrix with exp(ik1z1)-like

entries. If one would solve for a superlattice consisting of n layers, one would need to solve

a 6n × 6n system of equations. As for superlattices this becomes useful when e.g. wanting to
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compute a macroscopic speed of sound as one can find resonance frequencies and compare to

the expression for resonance frequencies of a homeogeneous material. Note that the intrinsic

strain will change the bulk speed of sound of the well material, so one cannot simply use a

weighted average of the two sound velocities. Furthermore it is expected that operation at
resonance strongly influences the properties of the structure (Willatzen et al., 2006).

The first five resonance frequencies for a zincblende AlN/GaN are shown in Figure 9.

It is seen that the transversely dominated resonances (only at [111] the, at this direction

degenerate, transverse polarizations are uncoupled from the compressional one) are much

lower than the compressionally dominated ones, as one would expect. Thus, when computing

resonance frequencies it is important not to compute the ideal [111] direction only, but

also take into account the significantly lower frequencies as they might occur due to lattice

imperfections (Duggen et al., 2008).
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Fig. 9. The first five resonance frequencies for the AlN/GaN structure with φ = −π/4. The
dimensions of the well-strucure used are 100nm-5nm-100nm. Reprinted with permission
from Duggen et al. (2008)

5.4 Cylindrical symmetry of [0001] wurtzite

As we have already noted, the material parameter matrices are invariant under rotation

of an angle φ around the z-axis. This stipulates investigations of cylindrical structures of

wurtzite type. The calculations can, in principle, be done exactly the way described for the

quantum well. However, here we consider two degrees of freedom (r, z) which complicates

the differential equations and it might not be possible to find analytic solutions anymore.

The Voigt notation follows the same standard as for the Cartesian coordinates (including the

weight factors) and are

rr → 1, φφ → 2, zz → 3, φz → 4, rz → 5, rφ → 6. (62)

The divergence operator becomes

∇· →

⎡

⎢

⎣

∂
∂r +

1
r − 1

r 0 0 ∂
∂z

1
r

∂
∂φ

0 1
r

∂
∂φ 0 ∂

∂z 0 ∂
∂r +

2
r

0 0 ∂
∂z

1
r

∂
∂φ

∂
∂r +

1
r 0

⎤

⎥

⎦
, (63)
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and the material property matrices are transformed in the same manner as for crystal

orientation, with

a =

⎡

⎣

cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1

⎤

⎦ , (64)

so since there is cylindrical symmetry, the material parameter matrices remain unchanged.

Again using Navier’s equation and ∇ · D = 0 one obtains the following linear system of

differential equations (with all φ-dependencies neglected) (Barettin et al., 2008):

L ·

⎡

⎣

ur

uz

V

⎤

⎦ =

⎡

⎣

−∂r [(C11 + C12)amis + C33cmis]
−∂z [2C13amis + 2C13cmis]

−∂z pSP

⎤

⎦ , (65)

L =

⎡

⎣

∂rC11∂r + ∂zCee∂z + 1/r∂rC12 + c11∂r1/r

∂rC44∂z + ∂zC13∂r + ∂zC13/r + c44/r∂z

∂re15∂z + e15/r∂z + ∂ze31∂r + ∂ze15/r

⎤

⎦ ·
[

1 0 0
]

+

⎡

⎣

∂rC13∂z + ∂zC44∂r

∂rC44∂r + ∂zC33∂z + C44/r∂r

∂re15∂r + e15/r∂r + ∂ze33∂z

⎤

⎦ ·
[

0 1 0
]

+

⎡

⎣

∂re31∂z + ∂ze15/r∂r

∂re33∂z + ∂ze13∂r + e15/r∂r

−∂rǫ11∂r − ∂zǫ33∂z − ǫ11/r∂r

⎤

⎦ ·
[

0 0 1
]

, (66)

where ∂i is short notation for ∂/∂i and V is the electric potential (thus Ez = −∂zV). This

system can be solved numerically e.g. by using the Finite Element Method. This has been

done for a cylindrical quantum dot structure sketched in Figure 10

Fig. 10. Geometry of the system under consideration (left) and the two-dimensional
equivalent (right). Reprinted with permission from Barettin et al. (2008)

They have found, as can be seen in Figure 11, that the major driving effect for the strain is the

lattice mismatch and not the spontaneous polarization.

437Electromechanical Fields in Quantum Heterostructures and Superlattices

www.intechopen.com



20 Will-be-set-by-IN-TECH

Fig. 11. Displacements ur at z = 0 (left) and uz at r = 0. Four modeling cases are depicted. It
suffices to say that only case three does not consider lattice mismatch contributions.
Reprinted with permission from Barettin et al. (2008)

Furthermore, using basically the same calculations, Lassen, Barettin, Willatzen & Voon (2008)

revealed that calculations in the 3D case can yield a substantially larger discrepancy between

semi and fully coupled models, where in the GaN/AlN differences up to 30% were found.

5.5 Other effects

It should be noted that the method described above is by no means secure to be absolutely

correct. For example we have disregarded possible free charge densities in order to solve

the electromechanical equations self-consistently, without having to solve the Schrödinger

equation simultaneously, which would have been necessary otherwise (Voon & Willatzen,

2011). However, it was found by Jogai et al. (2003) that there exists a 2D-electron gas at

the interfaces, effectively reducing the generated electric field. Thus the necessity of a fully

coupled model is not automatically given, even though calculations as above indicate it.

Also, as already indicated in the piezoelectricity section there might be non-linear effects that

are of importance. According to Voon & Willatzen (2011) the effect of non-linear permittivity

can be neglected in spite of large electric fields. However, it is not sure whether electrostrictive

or second order piezoelectric effects might be of importance. Clearly these questions need

further research in order to improve the understanding of electromechanical effects in these

structures.

5.6 Alternative: VFF method

As opposed to the above, semi-classical approach there also exist atomistic methods of

calculating strains in quantum structures. The are called Valence Force Field (VFF) methods

of which Keatings model is the most prominent one (Keating, 1966). Due to limited space we

will only present a brief description here, with mainly is taken from Barettin (2009). It should

be noted from the start that the piezoelectric effect is not included in this model.

The essence of the model is to impose conditions on the mechanical energy Fs, namely

invariance of Fs under rigid rotation and translation as well as symmetries due to the crystal

structure. The first condition can be ensured by describing Fs as a function of λklmn, where

λklmn =
(

�ukl ·�umn − �Ukl · �Umn

)

/2a, (67)
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where a is the lattice constant, �Ukl = �Xk − �Xl with capital �X denoting nucleus positions in

the undeformed crystal and the non-capital �x denote nucleus positions after deformation.

Following assumptions of small deformations and limiting the range of atomic effects to

neighboring and second-neighbor terms one arrives at

Fs =
1

2 ∑
l,l ′

4

∑
m,n,m′,n′

Bmnm′n′ (l − l ′)λmn(l)λm′n′ (l ′) + O(λ3). (68)

where λmn(l) =
(

�xm(l) ·�xn(l)− �Xm · �Xn

)

/2a and l denotes the atom cell index (i.e. the atom

which neighbors are considered). Within the harmonic approximation one arrives at

Fs =
1

2 ∑
l

⎡

⎣

α

4a2

4

∑
i=1

(

x2
0i(l)− 3a2

)2
+

β

2a2

4

∑
i,j>i,1

(

x0i(l) · x0j(l) + a2
)2

⎤

⎦ , (69)

where α, β are empirical elastic parameters. The strain is then found by minimizing the elastic

energy Fs, fulfilling boundary conditions as e.g. an imposed dislocation of several atoms at

an interface between two materials. The VFF method has also been used to determine ground

state configurations of lattice mismatched zincblende structures (Liu et al., 2007) as well as

non-binary alloys (Chen et al., 2008).

6. Influence of electromechanical fields on optical properties

Since this book covers optoelectronics, we will also have a brief description of the influence

of (piezo)electric fields on the optical properties of a quantum well heterostructure. Instead

of using the widely used k · p method with eight bands (Singh, 2003) we will limit ourselves

to solve the Schrödinger equation for one band, using the effective mass approximation as

also has been done by Lassen, Willatzen, Barettin, Melnik & Voon (2008) for investigating a

cylindrical quantum dot.

We need to solve the Schrödinger eigenvalue equation, reading

HΨ = EΨ, (70)

where H is the Hamiltonian and is given by Lassen, Willatzen, Barettin, Melnik & Voon (2008)

H =

(

kz
h̄2

m
||
e

kz + k⊥
h̄2

me ⊥
k⊥

)

+ Vedge + a⊥c ǫzz + a⊥c (ǫxx + ǫyy)− eV, (71)

where the me denote effective masses, ac are deformation potentials, e is the fundamental

charge, Vedge is the band-edge potential. Furthermore, the k-vector is given by kj = −i∂j

(i being the imaginary unit). Indeed, if one considers a quantum well (i.e. one dimension)

there exist analytic solutions to this problem as the Ψ functions can be shown to be linear
combinations of Airy functions of first and second kind (Ahn & Chuang, 1986).

The conclusion of the above calculations on a cylindrical quantum dot, performed

by Lassen, Willatzen, Barettin, Melnik & Voon (2008) show that the semi-coupled model

becomes insufficient when the radius of the quantum dot is comparable or larger than the dot

height. In terms of conduction band energy for GaN/AlN the difference between fully and
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semi-coupled models is up to 36meV which for large radii is comparable to the conduction

band energy itself.

GaNa AlNa ZnOb MgOc

e33[C/m2] 0.73 0.97 1.32 1.64

e15[C/m2] −0.49 −0.57 −0.48 −0.58

e31[C/m2] −0.49 −0.57 −0.57 −0.58

cE
11[GPa] 390 396 210 222

cE
12[GPa] 145 137 121 90

cE
13[GPa] 106 108 105 58

cE
33[GPa] 398 373 211 109

cE
44[GPa] 105 116 42 105

ǫS
xx/ǫ0 9.28 8.67 9.16 9.8d

ǫS
zz/ǫ0 10.01 8.57 12.64 9.8d

psp[C/m2] −0.029 −0.081 −0.022c −0.068d

a[10−10m] 3.189 3.112 3.20c 3.45

c[10−10m] 5.185 4.982 5.15c 4.14

a Fonoberov & Balandin (2003)
b Auld (1990)
c Gopal & Spaldin (2006)
d Park & Ahn (2006)

Table 2. Material parameters. Data for different materials are taken from references indicated
in the first row unless otherwise specified. As Fonoberov & Balandin (2003) we assume
e15 = e31 (except for ZnO) and ǫxx = ǫzz for MgO due to lack of data. We use linear
interpolation to obtain parameters for non-binary compounds.

Material ex4 cE
11/1010 cE

12/1010 cE
44/1010 ǫS/ǫ0 a/10−10 ρm

In0.1Ga0.9As 0.149a 11.82 5.55 5.79 13.13a 5.6935 5635b

GaAs 0.16a 12.21 5.66 6.00 12.91a 5.6536 5307b

GaN 0.50c 29.3 15.9 15.5 9.7c 4.50 6150d

AlN 0.59c 30.4 16.0 19.3 9.7c 4.38 3245d

InN 0.95f 18.7 12.5 8.6 14.86f 4.98 6810e

a Caridi et al. (1990)
b Auld (1990)
c Fonoberov & Balandin (2003)
dAverage from Willatzen et al. (2006) and Chin et al. (1994)
e Chin et al. (1994)
f Davydov (2002)

Table 3. Material parameters for incblende structure materials (in SI units). Parameters
from Vurgaftman et al. (2001) if not stated otherwise

440 Optoelectronics – Devices and Applications

www.intechopen.com



Electromechanical Fields in Quantum Heterostructures and Superlattices 23

7. References

Ahn, D. & Chuang, S. L. (1986). Exact calculations of quasibound states of an isolated

quantum well with uniform electric field: Quantum-well stark resonance, Phys. Rev.

B 34(12): 9034–9037.

Auld, B. A. (1990). Acoustic Fields and Waves in Solids, Vol. I, Krieger Publishing Company,

Malabar, Florida.

Barettin, D. (2009). Multiphysics effects in quantum-dot structures, PhD thesis, University of

Southern Denmark.

Barettin, D., Lassen, B. & Willatzen, M. (2008). Electromechanical fields in GaN/AlN Wurtzite

quantum dots, Journal of Physics: Conference Series 107(1): 012001.

URL: http://stacks.iop.org/1742-6596/107/i=1/a=012001

Bester, G., Wu, X., Vanderbilt, D. & Zunger, A. (2006). Importance of second-order

piezoelectric effects in zinc-blende semiconductors, Phys. Rev. Lett. 96(18): 187602.

Bester, G., Zunger, A., Wu, X. & Vanderbilt, D. (2006). Effects of linear and nonlinear

piezoelectricity on the electronic properties of InAs/GaAs quantum dots, Phys. Rev.

B 74(8): 081305.

Bond, W. L. (1943). The mathematics of the physical properties of crystals, The Bell System

Technical Journal 22(1): 1–72.

Bykhovski, A., Gelmont, B. & Shur, M. (1993). Strain and charge distribution in GaN-AlN-GaN

semiconductor-insulator-semiconductor structure for arbitrary growth orientation,

Applied Physics Letters 63(16): 2243–2245.

URL: http://link.aip.org/link/?APL/63/2243/1

Caridi, E., Chang, T., Goossen, K. & Eastman, L. (1990). Direct demonstration of a misfit strain

- generated in a [111] growth axis zinc-blende heterostructure, Applied Physics Letters
56(7): 659–661.

Chen, C.-N., Chang, S.-H., Hung, M.-L., Chiang, J.-C., Lo, I., Wang, W.-T., Gau, M.-H.,

Kao, H.-F. & Lee, M.-E. (2007). Optical anisotropy in [hkil]-oriented Wurtzite

semiconductor quantum wells, Journal of Applied Physics 101(4): 043104.

URL: http://link.aip.org/link/?JAP/101/043104/1

Chen, S., Gong, X. G. & Wei, S.-H. (2008). Ground-state structure of coherent

lattice-mismatched zinc-blende a1−xbxc semiconductor alloys ( x = 0.25 and 0.75),

Phys. Rev. B 77(7): 073305.

Chin, V. W. L., Tansley, T. L. & Osotchan, T. (1994). Electron mobilities in gallium, indium, and

aluminum nitrides, Journal of Applied Physics 75(11): 7365–7372.

URL: http://link.aip.org/link/?JAP/75/7365/1

Davydov, S. (2002). Evaluation of physical parameters for the group iii nitrates: BN, AlN,

GaN, and InN, Semiconductors 36: 41–44. 10.1134/1.1434511.

URL: http://dx.doi.org/10.1134/1.1434511

Duggen, L. & Willatzen, M. (2010). Crystal orientation effects on Wurtzite quantum well

electromechanical fields, Phys. Rev. B 82(20): 205303.

Duggen, L., Willatzen, M. & Lassen, B. (2008). Crystal orientation effects on the piezoelectric

field of strained zinc-blende quantum-well structures, Phys. Rev. B 78(20): 205323.

Fan, W. J., Xia, J. B., Agus, P. A., Tan, S. T., Yu, S. F. & Sun, X. W. (2006). Band parameters

and electronic structures of Wurtzite zno and zno/mgzno quantum wells, Journal of

441Electromechanical Fields in Quantum Heterostructures and Superlattices

www.intechopen.com



24 Will-be-set-by-IN-TECH

Applied Physics 99(1): 013702.

URL: http://link.aip.org/link/?JAP/99/013702/1

Fonoberov, V. A. & Balandin, A. A. (2003). Excitonic properties of strained Wurtzite

and zinc-blende GaN/AlxGa1−xN quantum dots, Journal of Applied Physics
94(11): 7178–7186.

URL: http://link.aip.org/link/?JAP/94/7178/1

Fujita, S., Takagi, T., Tanaka, H. & Fujita, S. (2004). Molecular beam epitaxy of MgxZn1−xO

layers without wurzite-rocksalt phase mixing from x = 0 to 1 as an effect of ZnO

buffer layer, physica status solidi (b) 241(3): 599–602.

URL: http://dx.doi.org/10.1002/pssb.200304153

Goldstein, H. (1980). Classical Mechanics, 2nd edn, Addison Wesley, Cambridge,

Massachusetts, USA.

Gopal, P. & Spaldin, N. (2006). Polarization, piezoelectric constants, and elastic

constants of ZnO, MgO, and CdO, Journal of Electronic Materials 35: 538–542.

10.1007/s11664-006-0096-y.

URL: http://dx.doi.org/10.1007/s11664-006-0096-y

Ipatova, I. P., Malyshkin, V. G. & Shchukin, V. A. (1993). On spinodal decomposition in

elastically anisotropic epitaxial films of III-V semiconductor alloys, Journal of Applied

Physics 74(12): 7198–7210.

URL: http://link.aip.org/link/?JAP/74/7198/1

J.I.Izpura, Sánchez, J., Sánchez-Rojas, J. & Muñoz, E. (1999). Piezoelectric field determination

in strained InGaAs quantum wells grown on [111]b GaAs substrates by differential

photocurrent, Microelectronics Journal 30: 439–444.

Jogai, B., Albrecht, J. D. & Pan, E. (2003). Effect of electromechanical coupling on the

strain in AlGaN/GaN heterojunction field effect transistors, Journal of Applied Physics

94(6): 3984–3989.

URL: http://link.aip.org/link/?JAP/94/3984/1

Keating, P. N. (1966). Effect of invariance requirements on the elastic strain energy of crystals

with application to the diamond structure, Physical Review 145(2): 637–645.

Kneissl, M., Treat, D. W., Teepe, M., Miyashita, N. & Johnson, N. M. (2003). Ultraviolet AlGaN

multiple-quantum-well laser diodes, Applied Physics Letters 82(25): 4441–4443.

URL: http://link.aip.org/link/?APL/82/4441/1

Koike, K., Nakashima, I., Hashimoto, K., Sasa, S., Inoue, M. & Yano, M. (2005). Characteristics

of a zn[sub 0.7]mg[sub 0.3]o/zno heterostructure field-effect transistor grown on

sapphire substrate by molecular-beam epitaxy, Applied Physics Letters 87(11): 112106.

URL: http://link.aip.org/link/?APL/87/112106/1

Landau, L. & Lifshitz, E. (1975). Course of Theoretical Physics, Vol. II: The Classical Theory of

Fields, Butterworh Heineman, Oxford, UK.

Landau, L. & Lifshitz, E. (1986). Course of Theoretical Physics, Vol. VII: Theory of Elasticity,

Butterworh Heineman, Oxford, UK.

Landau, L., Lifshitz, E. M. & Pitaevskii, L. (1984). Course of Theoretical Physics, Vol. VIII:

Electrodynamics of Continuous Media, Butterworh Heineman, Oxford, UK.

Lassen, B., Barettin, D., Willatzen, M. & Voon, L. L. Y. (2008). Piezoelectric models for

semiconductor quantum dots, Microelectronics Journal 39(11): 1226 – 1228. Papers

CLACSA XIII, Colombia 2007.

442 Optoelectronics – Devices and Applications

www.intechopen.com



Electromechanical Fields in Quantum Heterostructures and Superlattices 25

Lassen, B., Willatzen, M., Barettin, D., Melnik, R. V. N. & Voon, L. C. L. Y. (2008).

Electromechanical effects in electron structure for GaN/AlN quantum dots, Journal

of Physics: Conference Series 107(1): 012008.

URL: http://stacks.iop.org/1742-6596/107/i=1/a=012008
Liu, J. Z., Trimarchi, G. & Zunger, A. (2007). Strain-minimizing tetrahedral networks of

semiconductor alloys, Phys. Rev. Lett. 99(14): 145501.

Nakamura, S., Mukai, T. & Senoh, M. (1994). Candela-class high-brightness

InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Applied Physics

Letters 64(13): 1687–1689.

URL: http://link.aip.org/link/?APL/64/1687/1

Newnham, R. E., Sundar, V., Yimnirun, R., Su, J. & Zhang, Q. M. (1997). Electrostriction:

Nonlinear electromechanical coupling in solid dielectrics, The Journal of Physical

Chemistry B 101(48): 10141–10150.

URL: http://pubs.acs.org/doi/abs/10.1021/jp971522c

Park, S.-h. & Ahn, D. (2006). Crystal orientation effects on electronic and optical properties

of Wurtzite ZnO/MgZnO quantum well lasers, Optical and Quantum Electronics

38: 935–952. 10.1007/s11082-006-9007-y.

URL: http://dx.doi.org/10.1007/s11082-006-9007-y

Park, S.-H. & Chuang, S.-L. (1998). Piezoelectric effects on electrical and optical properties of

Wurtzite GaN/AlGaN quantum well lasers, Applied Physics Letters 72(24): 3103–3105.

URL: http://link.aip.org/link/?APL/72/3103/1

Poccia, N., Ricci, A. & Bianconi, A. (2010). Misfit strain in superlattices controlling the

electron-lattice interaction via microstrain in active layers, Advances in Condensed

Matter Physics 2010: 261849.

URL: http://dx.doi.org/doi:10.1155/2010/261849

Sasa, S., Ozaki, M., Koike, K., Yano, M. & Inoue, M. (2006). High-performance

ZnO/ZnMgO field-effect transistors using a hetero-metal-insulator-semiconductor

structure, Applied Physics Letters 89(5): 053502.

URL: http://link.aip.org/link/?APL/89/053502/1

Singh, J. (2003). Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge

University Press, Cambridge, UK.

Voon, L. C. L. Y. & Willatzen, M. (2011). Electromechanical phenomena in semiconductor

nanostructures, Journal of Applied Physics 109(3): 031101.

URL: http://link.aip.org/link/?JAP/109/031101/1

Vurgaftman, I., Meyer, J. & Ram-Mohan, L. (2001). Band parameters for IIIŰV compound
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