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1. Introduction 

1.1 Polymer electrolyte membrane fuel cells. Operation at high temperature  
(120-200ºC) 
1.1.1 General overview 

Polymer Electrolyte Membrane Fuel Cells (PEMFC) can be considered as one of the most 
attractive type of fuel cells. They are able to produce efficiently high power densities. In 
addition, the use of a polymer electrolyte implies several advantages (Fuel Cell Handbook, 
2004), such as low problems of sealing, assembling and handling. No corrosive acids, 
compared to Phosphoric Acid Fuel Cells (PAFC) are used, and the low temperature of the 
cell allows faster responses to changes in load demands. The characteristics of these cells 
make them especially suitable for automotive applications, even though they are also used 
for stationary generation, and currently, there is a great research effort for its application on 
portable devices (laptops, mobile phones, cameras, etc.). 
PEMFC are composed of the following basic elements: 
 Ionic exchange membrane (PEM). 
 Gas diffusion layer (GDL). 
 Catalytic layer (CL). 
 Monopolar/bipolar (in case of a stack) plates. 
The combination of the GDL+CL+PEM forms the membrane-electrode-assembly (MEA), which 
is the real heart of a PEMFC. This MEA can be formed by applying pressure and 
temperature to the (GDL+CL) in the anode side/PEM/(GDL+CL) in the cathode side (hot 
pressing procedure), or by directly depositing the CL onto the PEM, and subsequent hot 
pressing with the GDL. 
Ionic exchange membrane fulfils the role of allowing the transient of ionic charges from the 
anode to the cathode, closing the electrical circuit. It also possesses a low permeability to the 
gases, in order to avoid the depolarization of the electrode (Savadogo, 2004). A high 
mechanical and chemical stability is also required for these materials, due to the harsh 
operational conditions (oxidant and reducing gases in an acid medium). The most extended 
PEM material is Nafion®, a perflurosulphonated material, whose structure consists of a 
perfluorocarbon skeleton (Teflon-like), onto which, branch chains with pendant sulphonic 
acid groups are located, allowing the transient of ionic charges (see Figure 1). 
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                                  (a)                                                                      (b) 

Fig. 1. (a) Nafion structure, (b) organization within the Nafion membranes of the 
hydrophilic domains (blue) allowing the transient of protons 

The gas diffusion layer (GDL) is placed between the catalytic layer and the bipolar plates 
(Cindrella et al., 2009). It will be later explained in more detail, but its basic function is to 
manage the access of the reactants, and the exit of the products (Benziger et al., 2005; 
Mathias et al., 2003; Williams et al., 2004). This layer is made of a carbonaceous support, 
onto which it can be deposited another layer, the microporous layer (MPL), formed by 
carbon black and a certain amount of a polymer binder. In traditional low temperature, this 
GDL also playes the role of an effective removal of the liquid water is produced in the 
cathode, in order to avoid the flooding of the electrode (Benziger et al., 2005; Mathias et al., 
2003; Prasanna et al., 2004a). 
The catalytic layer is the part of the cell where the electrochemical reactions take place. It is 
placed between the electrolyte and the gas diffusion layer (Mathias et al., 2003). This layer is 
generally formed by the own catalyst deposited on a porous carbon support. The most 
widely used catalyst for the reactions that take place in the cell (hydrogen oxidation and 
oxygen reduction) is platinum. A second element of this layer is the own carbon support, 
which acts as electronic conductor, and allows the dispersion of the platinum catalyst on its 
surface. The role of binder between the catalyst particle is performed by the own polymeric 
electrolyte. This also presents an additional advantage, since the catalyst active sites are in 
intimate contact with an ionic carrier, increasing its activity (Carrete et al., 2001). This 
apparent network is widespread all over the catalyst layer structure, forming the so-called 
three phase boundary. 
Monopolar/Bipolar plates are the last element of a fuel cell. They act as support of the 
previous described elements, allow the access and exit of the reactants and products, 
respectively, and must allow an uniform current distribution/collection. At laboratory scale, 
the most widely used material is graphite. However, its high cost and fragility make it 
relatively unviable for practical applications. Instead stainless steel or titanium plates are 
proposed, even though platinum, gold or silver plating are recommended in order to 
alleviate the corrosion problems of those raw materials. 

1.1.2 Increasing the operating temperature 

Operating at temperatures above 100ºC possesses some advantages (Li et al., 2003a; Li et al., 
2004; Savadogo, 2004; Wainright et al., 2003): 
 Faster kinetic of the electrochemical reactions. 
 Easier water management and cooling system 
 Possibility of co-generation. 
 Higher tolerance to fuel impurities (e.g., CO) (Li et al., 2003b). 
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This implies the use of a thermal resistant material, which, at the same time, has to be a 
proton conductor. A large number of option have been researched and developed in order 
to increase the operational temperature (Bose et al., 2011). However, among the different 
options, phosphoric acid impregnated polybenzimidazole (PBI) has emerged as the most 
interesting and well-established one. 
Firstly discover for fuel cell applications by Prof. Savinell’s group in Case Western Research 
University (Wainright et al., 2003), PBI is an aromatic heterocyclic polymer with two 
benzimidazolic ring linked by a phenyl group. It possesses a high thermal and chemical 
resistance, with a glass transition temperature of approx. 450ºC (Wainright et al., 2003), as 
corresponds to a thermoplastic amorphous polymer with a high degree of aromaticy. 
Benzimidazole groups of PBI provide certain basicity, allowing the impregnation with 
phosphoric acid. Some advantages of the use of this material are next listed: 
 Good conductivity up to 200ºC (Li et al., 2004, Lobato et al., 2006). 
 Low methanol permeability (Wang et al., 1996, Lobato et al., 2008a). 
 Excellent thermal stability, up to 500ºC in air (Samms et al., 1996). 
 Almost zero electro-osmotic drag coefficient (Weng et al., 1996), making unnecessary 

the pre-humidification of the reactant streams. 
 Enhancement of the kinetic of the oxygen reduction reaction compared to PAFC 

(Qingfeng et al., 2000). 

2. Mass transport in polymer electrolyte membranes fuel cells 

As previously described, a fuel cell is an electrochemical reactor, in which reactants are 
consumed, and consequently, new products are generated. This evidently leads to the 
appearance of concentration gradients, giving rise to mass transport phenomena. In 
addition, the complex design of the electrodes, with several layers sandwiched together, and 
the convoluted architecture of each one make it even more difficult the transport of the 
different species from/to the electrode, leading to the appearance of mass transport 
limitations if the system design is not the appropriate one. 
Mass transport processes already start in the flow fields of the monopolar/bipolar plates. In 
them, the reactant gases access to the fuel cell system, whereas the products have to leave it. 
Due to the dimensions of the flow fields, in the scale of millimeters, mass transport is 
dominated by convection and the corresponding laws of fluid dynamics. In the case of the 
electrode (GDL+CL), the tiny pore sizes make diffusion to govern the mass transport. The 
tortuous geometry of the GDL+CL isolates the gas molecules from the convective forces 
present in the flow channels. Gas transport inside the electrode is a complex processes. The 
gas must diffuse within the gas diffusion layer, to achieve the catalytic layer, and then, 
inside this, the gas must access to the active catalyst sites. These catalyst sites are usually 
covered by a certain amount of electrolyte (Lai et al., 2008; Lobato et al., 2010a), and hence, 
the reactant gases and the products must also diffuse through it, complicating, even more, 
the mass transfer processes. Figure 2 shows a typical concentration/partial pressure profile 
of a PEMFC. 
Mass transfer processes have implications in practically all the elements of the fuel cell. In 
the case of the flow field channels, they should provide an homogeneous distribution across 
the electrode external surface, minimize the pressure drop, and efficiently remove the 
product reactions. In the case of the GDL, the requirements are almost the same, even 
though the inexistence of convection forces makes more difficult the access of the reactants, 
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and the removal of the products. Thereby, this elements is notoriously more critical in this 
sense. The catalytic layer also requires an optimum design in order to facilitate all the mass 
transfer processes. In fact, an excessive amount of polymeric electrolyte causes the 
appearance of significance mass transfer limitations in the catalytic layer (Song et al., 2001). 
Finally, the own polymeric electrolyte has got also an important role, since the solubility of 
the gas in it is highly dependant on the cell operation conditions (Liu et al., 2006). 
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Fig. 2. Typical concentration profile inside a fuel cell 

In the case of H3PO4 doped PBI-based high temperature PEMFC, compared to traditional 
Nafion®-based PEMFC, mass transport becomes slightly simpler since all the species are in 
vapour state, and therefore, flooding problems do not appear (Lobato et al., 2008b). 
However, this does not imply that mass transport processes are not important in terms of 
cell performance. Indeed, as previously commented, it is necessary an optimum transport of 
hydrogen and oxygen gas across the gas diffusion layer. Moreover, the removal of the water 
vapour generated in the cathode must be effective. In the catalytic layer of this type of fuel 
cells, phosphoric acid is present in order to provide a protons pathway for their migration, 
and hence, oxygen and hydrogen must diffuse through this thin electrolyte layer. Oxygen 
solubility in phosphoric acid has been reported to be low, compared to, for example, 
Nafion® (Mamlouk et al., 2010), which also results in an extra-limitation in terms of mass 
transfer within the catalytic layer. 

3. The role of the gas diffusion layer in high temperature PEMFC 

The membrane-electrode-assembly of a phosphoric acid doped PBI-based PEMFC is similar to 
traditional low temperature Nafion®-based PEMFC, i.e., is formed by the membrane, and the 
electrodes. The electrodes, at the same time, are divided into two layers, the catalytic one, and 
the gas diffusion layer. The gas diffusion layer in high temperature PEM fuel cells must fulfil 
the following purposes (Benziger et al., 2005; Mathias et al., 2003; Williams et al., 2004): 
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 Good transport properties, for a uniform distribution of the reactants across the 
electrode surface. 

 High electronic conductivity to allow the transient of electrons between the catalytic 
layer and the bipolar/monopolar plate. 

 Good mechanical resistance, since this layer is the support of the catalytic one. 
 Good removal capacity of the water vapour produced in the cathode. 
The GDL is formed by a carbonaceous support, generally carbon cloth or carbon fibre paper 
(Han et al., 2008), relatively rigid, macroporous, and highly conductive (Cindrella et al., 
2009). Generally, this carbon support is wet-proofed with a certain amount of Teflon, which 
assists in an effective water management, and provides a pathway for the access of the 
reactant gases when massive amounts of water are being generated in the cathode (Park et 
al., 2004). Also, this amount of Teflon helps to keep the mechanical integrity of the gas 
diffusion layer during the hot pressing procedure used to prepare the membrane-electrode-
assembly (MEA) (Lobato et al., 2008b). 
In some cases, a second layer is incorporated to the GDL design, the microporous layer. As 
previously commented, this layer is formed by carbon black (Vulcan XC-72R, Ketjen Black, 
Acetylene Black...) (Antolini et al., 2002), and a certain amount of a polymeric binder 
(generally Teflon) (Carrete el al., 2001; Mathias et al., 2003). Both components, along with an 
appropriate solvent (generally non-toxic, e.g., isopropyl alcohol, water, ethylene glycol...) 
(Carrete et al., 2001) is generally deposited by forming a thick ink, and applied by different 
techniques, filtration, with the aid of an aerograph, tape-casting, etc. The properties of the 
ink and deposition method influence on the final mass transport properties of this layer 
(Cindrella et al., 2009; Mathias et al., 2003). The composition of this layer makes it have a 
microporous nature, with the following advantages: 
 Uniform current distribution between the catalyst layer and the carbonaceous support, 

due to a more intimate contact between the layers. 
 Avoid the penetration of catalyst particles in the carbon support, which would be 

located too far away from the membrane-electrode boundary, where most efficiently 
evolve the electrochemical reactions (Seland et al., 2006).  

Figure 3 shows a schematic structure of a general electrode (including MPL) for a high 
temperature phosphoric acid doped PBI-based PEMFC. 
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Fig. 3. Schematic general structure of an electrode with microporous layer 
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Therefore, in order to maximize the cell performance not only in terms of mass transfer, but 
in global terms, it is logically necessary to have an optimum gas diffusion layer structure, 
both in terms of the carbon support, and microporous layer. For this purpose, physical and 
electrochemical characterisation of the gas diffusion layer is performed, as it will be shown 
in the following sections. 

3.1 The carbon support. Influence of the Teflon percentage 

Carbon cloth, carbon fibre papers, or carbon felt are different options to be used as 
carbonaceous support in PEM Fuel Cells. Although any of them presents different 
advantages and disadvantages, carbon fibre papers is interesting in terms of robustness and 
mechanical reliability. This carbon paper is supplied by the Japanese company Toray 
Industries Inc., with different thickness 90, 170, 260 and 350 µm), and also with the possibility 
of different levels of wet-proofing (Teflon percentage on the basis of the carbon paper 
weight). If the MEA is prepared by hot pressing, thick carbon supports are more suitable in 
terms of mechanical integrity. For this material, a very interesting parameter to be analyzed 
is the influence of the Teflon on its physical properties, and on the electrochemical 
performance of the subsequent prepared electrode. 

3.1.1 Physical characterisation 

Next, some results of useful physical characterization techniques are presented. The 
physical parameters next evaluated have got a strong influence on the mass transport 
properties of the GDL, and therefore, on the cell performance in terms of mass transfer 
parameters (limiting current density). 
A typical pore size distribution of the carbon fibre paper (Toray Graphite Paper, TGPH-120, 
350 µm) obtained from Hg porosimetry for the different Teflon percentage is shown in  
Figure 4. 
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Fig. 4. (a) Cumulative, and (b) Specifical pore size volume for the differente Teflon 
percentage in the carbon fibre paper (TGPH-120) (Lobato et al., 2008b, with permission of 
Kluwer Academics) 

As it can be seen, the carbon support present a macroporous structure, with most of the 
pores in the range of 30-70 µm. Moreover, Teflon content reduces the macroporosity of the 
carbon paper. From the pore size distribution, other interesting parameters can be 
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evaluated, such as the overall porosity, the mean pore size, and the tortuosity. Table 1 collects the 
corresponding values. 
 

PTFE content / % Porosity  / % Mean pore diameter / m Tortuosity 

0 76.3 39.4 2.932 
10 73.9 36.7 3.363 
20 69.6 33.9 3.582 
40 61.6 31.6 4.377 

Table 1. Overall porosity, mean pore size and tortuosity of the carbon support for the 
different Teflon loading percentage (Lobato et al., 2008b, with permission of Kluwer 
Academics) 

As expected from the pore size distribution curves, porosity and mean pore size diminishes 
with the increase in the Teflon content, whereas the tortuosity increases with the Teflon 
content. Porosity and tortuosity are important parameters, since they directly influence on 
the effective diffusion coefficient (Williams et al., 2004), according to Equation 1. 

 eff

ε
D D

τ
   (1) 

Scanning electron microscopy is also a very useful tool in order to visualize the microstructure 
of the gas diffusion layer. Figure 5 displays the micrographs of the Toray Graphite Papers 
for the different Teflon percentage. 
 

(a) (b)  
Fig. 5. SEM micrographs of (a) Plain carbon fibre paper, (b) 20% wet-proofed carbon paper 
(Lobato et al., 2008b, with permission of Kluwer Academics) 

As it can be seen, appreciable differences appear between both carbon papers. When Teflon 
is applied, a large number of macropores are closed by the presence of the polymer binder, 
reflecting the previous results obtained by Hg porosimetry. Teflon occupies parts of the 
macropores between the carbon fibres. 
Gas diffusion layer permeability is another interesting parameter. Although this parameter is 
related with convectional processes, it can give us a rough idea about the transport 
properties of the gas diffusion layer. Figure 6 shows the gases (H2, O2, air and water vapour) 
permeability of the different carbon support. For its calculation, Equation 2 must be used. 
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Fig. 6. Gases permeability of the carbon support for different Teflon contents 
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As expected, gas (or water vapour) permeability reduces with the Teflon content due to  
the blockage of part of the macroporosity by the Teflon (Prasanna et al., 2004a; Prasanna  
et al., 2004b; Soler et al., 2003; Williams et al., 2004). It is especially significant the value of 
the water vapour permeability, since in this type of fuel cell, water product will be in this 
state. 
Gases permeability follows the expected trend according to their molecular size. Hydrogen 
permeates easily through the carbon support, whereas oxygen and air have got a more 
limited access. This, as will be later shown, reflects on the fuel cell performance, where 
hydrogen mass transport limitations are less noticeable than in the case of oxygen. In the 
case of water vapour, the fashion is broken, but this might be due to the vapour nature 
compared to gases.  

3.1.2 Electrochemical behaviour 

The electrochemical behaviour of a fuel cell is mainly defined by the polarization curves. As 
it was previously described, three main regions appear, each one related to different 
processes governing the performance. In this particular case, mass transport properties of 
the carbon support will mainly influence the cell performance at the highest current 
densities, where large amounts of gas reactants are claimed, and massive amounts of water 
vapour have to be released from the cell. In order to assist for the interpretation of the fuel 
cell results, a semi-empirical model (Linares, 2010) was developed, which includes kinetic, 
ohmic, and mass transport parameters (Equation 3). 

 

1
2

' HL
0 e pol

OL HL

j j
E E b log j - R j bln 1 R j

j j j

   
         

     (3) 
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Parameter E is the cell voltage, E0 is the open circuit voltage, b is the Tafel slope, being these 
two latter related to the mechanism of the oxygen reduction reaction, Re is the ohmic 
resistance of the system, j is the experimental current density, jOL is the limiting cathode 
current density, Rpol is the lineal polarization resistance of the hydrogen oxidation reaction, 
and jHL is the limiting anode current density. 
Impedance can be also an interesting tool to identify the appearance of mass transfer 
limitations associated with the gas diffusion layer (Bultel et al., 2005; Ciurenau et al., 2001; 
Ciurenau et al., 2003; Springer et al., 1996; Paganin et al., 1998). In general, it is admitted that 
the appearance at low cell voltage (high current densities) of a second loop in the typical 
one-loop spectrum of a fuel cell (Yuan et al., 2007) is due to mass transfer limitations in the 
gas diffusion layer. 
Influence of the percentage of Teflon in the carbon support was studied for both the anode 
and the cathode. In the case of the cathode, results for reduced stoichometries and air were 
subjected to study, along with the impedance response of the cell when air was used. In the 
case of hydrogen, it was analyzed the performance under a limited H2 stoichometry. 

i) The carbon support in the cathode 

Figure 7 shows the cell performance for the 10-20-40% Teflon in the carbon support. Points 
represent the experimental data, whilst lines represent the fitting to the semi-empirical 
model. 
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Fig. 7. Fuel Cell performance for the different Teflon percentage in the carbon support: (a) 
Oxygen stoichometry at 1 A cm-2 = 1,5, (b) Air stoichometry at 1 A cm-2 = 4 

As it can be seen, the presence of a large amount of Teflon in the carbon support diminishes 
the cell performance, especially at the highest current densities. The corresponding values of 
the limiting current density are collected in Table 2. They resemble to the fashion of a more 
limited transport properties of the carbon support the higher is the Teflon percentage. On 
the other hand, it can be seen the detrimental effect of substituting oxygen by air. Reduction 
of the oxygen partial pressure dramatically influences the cell performance. 
Figure 8 shows the impedance spectra of the cell under air operation, at a cell voltage of 300 
mV. Points represent the experimental data, whereas lines show the fitting to the equivalent 
circuit. In order to help to split the contribution of each process, a equivalent circuit 
(Boukamp, 1986) consisting of a series association of one ohmic resistance, one parallel mini-
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circuit constant phase element and resistance, related to the charge transfer processes 
(kinetic), and another parallel mini-circuit constant phase element and resistance, associated 
to mass transfer, is proposed [see Fig. 7(a)]. Table 2 also collects the values of the 
corresponding mass transfer resistances. 
As it can be seen, and concomitantly to fuel cell results, impedance spectra show how the 
total resistance of the system increases the higher is the Teflon percentage. More concretely, 
mass transfer resistance calculated from the fitting of the experimental data to the 
equivalent circuit confirms this notorious increase in Rmt. In consequence, a low Teflon 
percentage in the carbon support is desirable in order to favour the mass transport 
processes. A non wet-proofed carbon paper may be utilized; however, mechanical integrity 
of the electrode may be risked, due to the weakness of this particular carbon paper (Lobato 
et al., 2008b). 
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Fig. 8. (a) Equivalent circuit for the fitting of the experimental impedance data, (b) 
Impedance spectra of the electrodes with different Teflon percentages 

 
PTFE content / % jOL,oxygen / mA cm-2 jOL,air / mA cm-2 Rmt / ohm cm2 

10 1,418.9 952.8 0.744 
20 1,272.1 786.6 1.041 
40 1,029.8 562.2 1.502 

Table 2. Limiting current densities for oxygen and air operation, and the mass transfer 
resistance for the different Teflon percentage in the carbon support. 

ii) The carbon support in the anode 

Figure 9 shows the fuel cell performance for the different Teflon loaded carbon supports. 
As it can be seen for all the Teflon percentages in the carbon support, the cell performances 
are almost equal, and just tiny differences are observed when achieving the limiting current 
density conditions. This demonstrates that the controlling reaction in high temperature PBI-
based PEMFC is the cathodic one (Jalani et al., 2006). Differences just appear at limiting 
conditions, as it was also observed by Pan et al. (Pan et al., 2007). Table 3 collects the 
corresponding values for the hydrogen mass transfer. 
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Fig. 9. Influence of the Teflon percentage on the cell performance. Hydrogen stoichometry at 
1 A cm-2 = 1 (Points: experimental data; lines: fitting to the model) 

Values in Table 3 confirm the expected reduction in the limiting current density due to the 
most limited hydrogen transport from the gas channels to the catalytic layer. However, it is 
noticeable that these values are very close to the stoichometric ones, so that, in principle, 
hydrogen transport in the carbon support, unless very limited hydrogen flow, is not a 
limiting factor in the performance of a High Temperature PEMFC. 
 

PTFE content / % jHL,hydrogen / mA cm-2 

10 1,000.9 
20 990.1 
40 961.9 

Table 3. Limiting current density for the hydrogen oxidation for the different Teflon 
percentages of the carbon support 

3.2 The microporous layer 

As it was previously commented, the microporous layer is deposited on the carbon support, 
and is formed by carbon black and a polymer binder, in this case, Teflon. As in the case of 
the carbon support, two types of studies were carried out: 
 Physical characterisation. Measurements of the pore size distribution, overall porosity, 

mean pore size, tortuosity, and finally, the permeability to the different reactants and 
water vapour product. 

 Electrochemical behaviour. Evaluation of the cell performance under restricted 
stoichometries. Impedance spectra are also used in order to assist for the interpretation 
of the mass transfer influence on the fuel cell results. 

Physical characterisation was carried out on the complete gas diffusion layer, i.e., the sum of 
the carbon support (10% Teflon loaded TGPH-120) and the microporous layer. In the case of 
the electrochemical studies, actual electrodes were tested in the fuel cell. Beneficial effects of 
the microporous layer are shown in the following results. 

www.intechopen.com



 
Heat and Mass Transfer – Modeling and Simulation 

 

28

3.2.1 Influence of the Teflon percentage in the microporous layer 
For this study, microporous layers with a carbon content of 1 mg cm-2 were prepared, 
varying, on a total weight base, the percentage of Teflon (10, 20, 40 and 60%). Lower Teflon 
percentage could not be used, because they attempted against the integrity of the MPL. 

a) Physical characterisation 

Figure 10 displays the pore size distribution for the gas diffusion layer with different Teflon 
percentage in the microporous layer. Specific pore size distribution is shown in the 
macroporous and microporous region, for a better visualization of the effect of the inclusion of 
the microporous layer in the carbon support, and the effect of the Teflon percentage in the MPL. 
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Fig. 10. Specific pore volume for the GDLs with different Teflon percentage in the MPL in: 
(a) the macroporous region, and (b) in the microporous layer. 

As it can be seen, the presence of the MPL reduces the amount of macropores in the carbon 
support. Part of the microporous layer penetrates inside the carbon support, partially 
closing its macroporous structure. On the other hand, the increase in the Teflon percentage 
in the MPL hardly affects the macroporous structure. In the case of the microporous, the 
presence of the MPL generates microporosity in the GDL. This result diminished with the 
increase in the binder percentage. The Teflon occupies part of the microporous structure of 
the MPL. Table 4 displays the values of the overall porosity, mean pore size, and tortuosity of the 
GDL, extracted from the pore size distribution, for the different Teflon-loaded MPL. 
As it can be seen, the overall porosity and mean pore size decrease with the Teflon content 
in the MPL, and further does with the inclusion of the MPL. Comparing with the Teflon 
percentage in the carbon support, the diminution is lower, since in this case the microporous 
structure is only affected, which has a lower weight on the global structure of the complete 
GDL. In the case of the tortuosity, it can be seen a noticeable increase with the inclusion of 
the MPL, making more difficult the fluid transit.  
 

PTFE content / % Porosity  / % Mean pore diameter / m Tortuosity 

Without MPL 73.9 36.69 3.363 
0 70.6 34.23 3.795 
10 70.2 34.02 3.871 
20 69.4 33.81 3.940 
40 68.9 33.63 4.130 

Table 4. Values of the overall porosity, mean pore size diameter and tortuosity for the GDLs 
with different Teflon loaded MPL 
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Gases/water vapour permeability is shown in Figure 11 for the GDL with different Teflon 
percentage of the MPL. 
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Fig. 11. Gases and water vapour permeability of the GDLs with different Teflon percentage 
in the MPL (horizontal lines represent the carbon support permeability) 

As it can be observed, the gases/water vapour permeability diminishes with the Teflon 
content in the MPL. Logically, the occlusion of part of the microporous makes more difficult 
the transient of the gases through the GDL, and therefore, mass transfer becomes more 
impeded for high Teflon percentages in the MPL. As in the case of the carbon support, the 
values of the gases permeability for each gas are in the line of its molecular size, except for 
the case of water vapour.  
Therefore, in terms of mass transfer physical related properties, the use of a low percentage 
of Teflon in the MPL appeared to be beneficial. High porosity and permeability, and low 
tortuosity can be achieved under these conditions. On the other hand, these results also 
suggest the suitability of uniquely the carbon support in the MPL, even though these 
preliminary results must be confirmed by the fuel cells one. 

b) Electrochemical behaviour 

b.i) The Teflon percentage in the cathodic MPL 

Figure 12 shows the variation of the cell performance for the GDLs with different Teflon 
percentage in the MPL. Points correspond to the experimental data, whereas lines show the 
fitting of these data to the semi-empirical model. 
First of all, it is important to mention the positive effect that has got the inclusion of the MPL 
in the cell performance. This result can be explained taking into account one of the missions 
of the MPL: avoid the penetration of the catalyst particle in the carbon support. In the pore 
size distribution, it has been observed that part of the MPL penetrates into the carbon 
support, blocking part of the macroporosity. MPL and catalytic layer have a similar pore 
size distribution (same carbon black support), and therefore this latter penetrates into the 
carbon support if no MPL is used (Lobato et al., 2010b). Secondly, cell performance clearly 
worsens with an increase of the Teflon content. Unlike the carbon support, in this case the 
overall cell performance seems to result affected by an excess of Teflon binder, as Prasanna 
et al. (Prasanna et al., 2004a) also observed for Nafion®-based PEMFC. Therefore, the MPL 
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does not only have influence in terms of mass transfer limitations, but in kinetic and ohmic 
ones due to an excess of insulator material. Table 5 collects the values arisen from the fitting 
of the experimental data to the semi-empirical model. 
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Fig. 12. Cell performance of the electrodes prepared with different Teflon percentage in the 
MPL, (a) Oxygen stoichometry at 1 A cm-2 = 1,5, (b) Air stoichometry at 1 A cm-2  = 4 

 
PTFE content / % jOL,oxygen / mA cm-2 jOL,air / mA cm-2 Rmt / ohm cm2 

Without MPL 1,418.9 952.8 0.744 
10 1,477.6 1,115.4 0.430 
20 1,400.5 1,005.1 0.622 
40 1,320.7 922.5 0.761 
60 1,240.2 790.3 0.995 

Table 5. Limiting current densities for oxygen and air operation, and the mass transfer 
resistance for the different Teflon percentage in the MPL 

Model values confirm the experimental results and show how the 10% Teflon loaded MPL 
presents the maximum value of the limiting current density, both in the case of oxygen with 
a reduced stoichometry, and air. Figure 13 shows the corresponding impedance spectra at 
300 mV when the cell was operated with air. Values of the mass transfer resistance after 
fitting the experimental data to the equivalent circuit are collected in Table 5. 
Impedance spectra show the benefits of the inclusion of the MPL in the electrode design by 
the reduction of the global resistance of the cell. Moreover, this resistance attains its lowest 
values when the MPL is loaded with 10% Teflon. Higher loadings reflect higher mass 
transfer limitations, as the values of the Rmt displays. Consequently, the MPL must be 
included for high temperature PEMFC electrodes, since all the cell processes are enhanced, 
despite the decrease in the mass transfer parameters when added. On the other hand, a low 
Teflon percentage must be used in terms of global performance. 

b.ii) The Teflon percentage in the anodic MPL 

Figure 14 shows the influence of the Teflon percentage of the MPL in different GDLs. 
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Fig. 13. Impedance spectra of the cell when electrodes with different Teflon percentage in 
the MPL were used 
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Fig. 14. Influence of the Teflon percentage in the MPL on the cell performance. Hydrogen 
stoichometry at 1 A cm-2 = 1 (Points: experimental data; lines: fitting to the model) 

As it can be observed, the influence of the Teflon percentage in the MPL on the cell 
performance, as in the case of the carbon support, appears almost at the values 
corresponding to the limiting current density. However, a close look at the curves shows 
that the limiting current densities slightly diminishes as the Teflon percentage in the MPL 
increases, reflecting the higher limitation of the mass transport when a less porous or 
permeable GDL is used. In order to assist for interpretation of the fuel cell results, values of 
the hydrogen limiting current density are collected in Table 6. 
Values in Table 6 display the benefits of using an open GDL. In fact, the highest hydrogen 
limiting current density was obtained for the MPL free GDL, even though the protection of 
the catalytic layer plays a more important role in terms of global performance (lower 
performance in almost the whole range of current densities). Therefore, in terms of global 
performance, it is also advisable to use a MPL with a low Teflon percentage. 
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PTFE content / % jHL,hydrogen / mA cm-2 

Without MPL 1.000,8 
10 1,000.4 
20 990.2 
40 980.9 
60 964.9 

Table 6. Limiting current density for the hydrogen oxidation for the different Teflon 
percentages of the MPL 

3.2.2 Influence of the carbon content in the microporous layer 

For this study, microporous layers with a Teflon percentage of 10% were prepared, on a 
total weight base, varying the carbon loading (0.5, 1, 2 and 4 mg cm-2).  

a) Physical characterisation 

Figure 15 shows the pore size distribution of the gas diffusion layer for the different carbon 
loadings in the MPL, along with the carbon support. Results are shown focusing on the 
macroporous and microporous regions. 
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Fig. 15. Specific pore volume for the GDLs with different carbon loadings in the MPL in: (a) 
the macroporous region, and (b) in the microporous layer (Lobato et al., 2010, with 
permission of Wiley Interscience) 

As it can be observed, the macroporosity of the GDL diminishes with the addition of more 
carbon to the MPL. As previously commented for the Teflon percentage, part of the MPL 
will penetrate inside the macroporous carbon support, and therefore, will occlude part of 
the macropores. Macroporosity decreases until a carbon loading of 2 mg cm-2. Above this 
value, no more MPL carbon particles seem to penetrate into the carbon support, and 
therefore, the MPL is fully fulfilling its protective role since it is expected that no catalytic 
particle will penetrate inside the carbon support. Contrarily, the microporous region 
increases with the carbon content of the MPL. Logically, more microporosity is introduced 
in the system the higher is the carbon content (Park et al., 2006). 
Overall porosity, mean pore size and tortuosity of the GDL with different carbon loading in the 
MPL can be estimated from the pore size distribution. The corresponding values are 
collected in Table 7. 
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Carbon loading / mg cm-2 Porosity  / % Mean pore diameter / m Tortuosity 

Without MPL 73.9 36.69 3.363 
0.5 72.2 34.32 3.502 
1 72.2 33.23 3.717 
2 69.2 32.10 4.152 
4 67 30.50 4.620 

Table 7. Values of the overall porosity, mean pore size diameter and tortuosity for the GDLs 
with different carbon loadings MPL 

As it can be seen, the overall porosity and the mean pore size of the GDL decrease with the 
carbon loading. The diminution of the macroporosity and the increase of the microporosity 
of the GDL explain the reduction of the overall porosity and mean pore size. In the case of 
the tortuosity, the higher is the carbon loading, the thicker the MPL layer becomes, making 
more difficult the access of the gases to the catalytic layer. 
Gases/water vapour permeability for the GDLs with different carbon loading in the MPL are 
shown in Figure 16.  
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Fig. 16. Gases and water vapour permeability of the GDLs with different carbon loadings in 
the MPL (horizontal lines represent the carbon support permeability) 

As it can be seen, gases/water vapour permeability decreases with the carbon loading in the 
GDL. This is an effect of the reduction of the macroporosity, and the increase in the 
microporosity, which makes more difficult the transport of the gases reactant, and the water 
vapour through the GDL (Wang et al., 2006). On the other hand, the decay in the 
permeability becomes less noticeable the higher is the carbon loading in the MPL. This 
agrees with the previously mentioned fact that a lower amount of carbon particles from the 
MPL penetrates in the carbon support, so that the results reflect the effect of the increase in 
the microporosity. As in the previous cases, the molecular size of the gases determines the 
values of the gas permeability, except for the case of the extensively commented water 
vapour. 
As in the case of the influence of the Teflon percentage in the MPL, the simplest GDL, 
without microporous layer, seems to be the most adequate disposition in terms of mass 
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transport. However, in terms of fuel cell performance, other factors, as next shown, have to 
be taken into account. As it has been commented throughout this chapter, the MPL fulfils a 
very important protective role of the catalytic layer. 

b) Electrochemical behaviour 

b.i) The carbon loading in the cathodic MPL 

Figure 17 shows the variation of the cell performance for the GDLs with different carbon 
loadings in the MPL. Points correspond to the experimental data, whereas lines show the 
fitting of these data to the semi-empirical model. 
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Fig. 17. Cell performance of the electrodes prepared with different carbon loading in the 
MPL, (a) Oxygen stoichometry at 1 A cm-2 = 1,5, (b) Air stoichometry at 1 A cm-2  = 4 (Lobato 
et al., 2010b, with permission of Wiley Interscience) 

The beneficial influence of the inclusion of the MPL in the electrode structure can be more 
clearly seen in these results. Cell performance increases with the addition of a larger carbon 
amount, due to the greater protection of the MPL, until a value of 2 mg cm-2. At this value, 
the MPL avoids the complete penetration of catalyst particles inside the carbon support. 
This results is coincident with the pore size distribution ones, in which macroporosity does 
not decrease above 2 mg cm-2. On the other hand, when the carbon loading is too excessive, 
a drop in the cell performance can be observed. This can be ascribed to the increase in the 
MPL thickness, with the consequent increase in the mass transport limitations. Table 8 
collects the values of the limiting current density arisen from the fitting of the experimental 
data to the semi-empirical model. 
Values of the oxygen limiting current densities show the suitability of the 2 mg cm-2 
carbon loading, despite the most limited mass transport characteristics of this GDL 
compared to lower carbon loaded ones. This again points up that the important role that 
plays the microporous layer in terms of protection of the catalytic layer, contributing to a 
global enhancement of the cell performance. Nonetheless, limiting current density values 
decreases for the 4 mg cm-2 carbon loading, due to more prominent mass transfer 
limitation when excessively thick GDL are used. Figure 18 shows the corresponding 
impedance spectra at 300 mV when the cell was operated with air. Values of the mass 
transfer resistance after fitting the experimental data to the equivalent circuit are collected 
in Table 8. 
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Fig. 18. Impedance spectra of the cell when electrodes with different carbon loading in the 
MPL were used (Lobato et al., 2010b, with permission of Wiley Interscience) 

 
Carbon loading / mg cm-2 jOL,oxygen / mA cm-2 jOL,air / mA cm-2 Rmt / ohm cm2 

Without MPL 1,418.9 952.8 0.744 
0.5 1,431.3 1,092.3 0.621 
1 1,477.6 1.115.4 0.430 
2 1,479.2 1.118.3 0.408 
4 1,300.4 980.3 0.565 

Table 8. Limiting current densities for oxygen and air operation, and the mass transfer 
resistance for the different Teflon percentage in the MPL 

Impedance spectra confirm the suitability of the inclusion of the MPL, and the particular 
loading to use in order to obtain a good protection of the catalytic layer. Global cell 
resistance decreases with the carbon loading until a minimum value corresponding to 2 mg 
cm-2 of carbon. If a higher carbon loading is applied, mass transfer resistance notably 
increases, showing more limitations in terms of gases/vapour transport, due to the 
excessive amount of carbon present in the MPL. 
The influence of the carbon loading has demonstrated the importance of the addition of the 
MPL to the electrode design. Protection of the catalytic layer is fundamental in order to 
maximize the cell performance, and indeed, and according to the experimental results, it 
plays even a more important role than mass transfer characteristics of the GDL. However, if 
an excessive amount of carbon is added to the MPL, significant mass transport limitations 
appear, leading to an optimum carbon loading of 2 mg cm-2. 

b.ii) The Teflon percentage in the anodic MPL 

Figure 19 shows the influence of the Teflon percentage of the MPL in different GDLs. 
As it can be observed, the influence of the carbon loading in the anodic MPL is more 
notorious than in the case of the cathode. However, it is visible the beneficial effect of the 
inclusion of the MPL, despite being at the anode. The carbon loading, in this case, slightly 
improves the global cell performance with an increase of the carbon loading, showing the 
best performances for 1 and 2 mg cm-2, and a decrease when the carbon loading was  
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4 mg cm-2. Table 9 collects the values of the hydrogen limiting current density for the 
different carbon loaded MPL in the gas diffusion layer. 
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Fig. 19. Influence of the carbon loading in the MPL on the cell performance. Hydrogen 
stoichometry at 1 A cm-2 = 1 (Points: experimental data; lines: fitting to the model) (Lobato et 
al., 2010b, with permission of Wiley Interscience) 

Values of the limiting current density are very similar for GDL without MPL, and with low 
loadings of carbon, demonstrating the suitability of these gas diffusion layers in terms of 
mass transport. Nevertheless, in the case of the carbon loading of 2 and 4 mg cm-2, the 
limiting current density decreases, due to the more impeded access of the hydrogen gas. 
However, as in the case of the study focused on the cathode, the optimum protective role of 
the MPL prescribes the use of a carbon loading of 2 mg cm-2, since hydrogen mass transfer 
limitations will only appear in case of the use of a very restricted stoichometry. 
 

Carbon loading / mg cm-2 jHL,hydrogen / mA cm-2 

Without MPL 1.000,8 
0.5 1,000.1 
1 1,000.4 
2 990.2 
4 975.3 

Table 9. Limiting current density for the hydrogen oxidation for the different carbon loading 
in the MPL 

4. Conclusions 

The gas diffusion layer plays an important role for High Temperature PBI-based PEMFC in 
terms of cell performance. Thus, it is desirable to have a carbonaceous support with a low 
Teflon content (10% Teflon), in order to guarantee the mechanical stability of the membrane-
electrode assembly, and have the maximum porosity and permeability, allowing the 
reduction of the mass transfer limitations. On the other hand, it is even more important the 
inclusion of a microporous layer in the design of the electrodes, since this protects the 
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catalytic layer for penetrating within the macroporous carbon support, maximizing the 
electrochemically active area of the electrode. For this purpose, a carbon loading of 2 mg cm-2 
is an optimum value. Besides, with this loading, the electrode presents the best mass 
transfer characteristics. Finally, the amount of polymer binding (Teflon) to add in this layer 
must be the minimum possible one (10% Teflon), in order to maximize the cell performance.  
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6. Nomenclature 

CRB bulk reactant concentration  S cross-section 

CPB 
bulk product reactant 
concentration 

 P 
pressure different observed 
across the carbon support 

CRS 
reactant concentration at the 
external surface of the electrode 

 E cell voltage 

CPS 
product concentration at the 
external surface of the electrode 

 E0 open circuit voltage 

CRC 
reactant concentration at the 
catalytic layer 

 b Tafel slope 

CPC 
product concentration at the 
catalytic layer 

 j experimental current density 

CRcat 
reactant concentration in the 
platinum active sites 

 R ohmic resistance of the system 

Deff effective diffusion coefficient  jOL limiting cathode current density 
D diffusion coefficient  jHL limiting anode current density 

 porosity  Rpol 
lineal polarization resistance of 
the hydrogen oxidation reaction 

 tortuosity  R 
ohmic resistance from 
impedance measurement 

K permeability  Rct 
resistance for the charge 
transfer process 

Q flow of gas  (CPE)ct 
constant phase element for the 
charge transfer process 

µ gas viscosity  Rmt 
resistance for the mass transfer 
process 

L thickness of the porous medium  (CPE)mt 
constant phase element for the 
mass transfer process 
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