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1. Introduction 

The processes of energy storage and dissipation in biological systems have been studied 
during the past few decades in search of alternative energy storage systems to the 
conventional ones. Based on these studies, living cells have proven to provide appropriate 
energy storage and consumption patterns for other areas of science and engineering 
(Alberty, 2003; Lehninger, 1984).  
The ability of cells to store energy in an efficient manner and to release it to gain control 
over the system, has made them an important target for energy related studies and 
modeling efforts (Qian & Beard, 2006). Since bioenergetics and biochemical thermodynamics 
specifically deal with energy transductions in biochemical reactions, it would be necessary 
to investigate these processes from a thermodynamic point of view.  
Living organisms usually operate at constant temperature and depend on energy from food 
consumption or exposure to sunlight for running their vital processes and maintaining their 
body temperature. Energy transduction takes place in the mitochondrion of animal cells, 
chloroplast of plant cells and cytoplasm of bacteria. This study focuses on bioenergetics of 
mitochondria, considering that membranes of mitochondria, chloroplasts and bacteria show 
many similarities in this regard.  
Mitochondria have two types of complexes for obtaining energy from substrates. Complex I 
includes production of NADH from oxidation of fatty acids, TCA cycle, and glycolysis. 
Complex II includes FADH2 production from TCA cycle. These complexes vary in different 
kinds of mitochondria (Cairns et al., 1998). The energy is eventually stored in the body in the 
form of high-energy molecules such as Adenosine Triphosphate (ATP). ATP molecules have 
three high-energy bonds which enable them to store energy and then release it as the bonds 
are broken according to the following equations (Hammes, 2000; Harper et al., 2000): 

 ATP 髪 H態O 蝦 ADP 髪 P辿   , ΔG°旺 噺 岫伐ぬど.の岻 KJ mol⁄  (1) 

 ADP 髪 H態O 蝦 AMP 髪 P辿  , ΔG°旺 噺 岫伐にば.は岻 KJ/mol (2) 

The change in Gibbs free energy for ATP hydrolysis in cells is estimated as follows: 

 ∆G 噺 ΔG°旺 髪 R. T. ln岫k岻 (3) 
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The normal operating conditions of cells would be considered as T= 37ºC and k=2300. By 
replacing these values into equation 3, the total amount of energy released from the hydrolysis 
of each mole of ATP will be 50 KJ. As a result, an average person with a body mass of 50 K, 
who needs at least 11700 KJ energy per day, will require over 125 K of ATP. The fact that this 
amount of energy is produced by only 50 g of this molecule in his body, confirms that ATP is 
constantly produced and consumed in cycles in the body (Datta, 2002; Haynie, 2003).  
Oxidation of different substrates such as 3-hydroxybutyrate, glutamate plus malate (with 
equal mole fractions), 2-oxoglutarate, and succinate in mitochondria provides the energy that 
is required to phosphorylate molecules of ADP to form ATP molecules. This process is called 
“oxidative phosphorylation” and enables the aerobic organisms to obtain more energy from 
the substrates in comparison to anaerobic organisms (Haynie, 2003; Scheffler, 2000). The 
overall oxidative phosphorylation process in the mitochondria can be expressed as follows: 

 SH態 髪 ど.のO態 髪 nADP 髪 nP辿 蝦 S 髪 H態O 髪 nATP (4) 

where S represents the substrate and the stoichiometric coefficient, n, is also determined by 
the type of substrate (Lemasters et al., 1984). The inner membrane operates very selectively 
and most of the metabolites and ions such as Pi, ADP, ATP and the respiratory substrates 
can only cross it through channels or by means of carrier proteins. The transport mechanism 
of these carriers is usually based on exchanging one substance for the other (Szewczyk & 
Wojtczak, 2002).  
According to the chemiosmotic hypothesis, the electro-chemical driving force for 
transferring potassium ions into the matrix, leads to the opening of KATP channel which in 
turn results in osmotic swelling. In order to maintain electrical balance, the protons released 
by substrate oxidation are pumped from the matrix to the intermembrane space of 
mitochondrion. Subsequently, the concentration gradient drives these protons back to the 
matrix, where they will contribute to the phosphorylation process (Jin & Bethke, 2002; 
Mitchell, 1961, 1966, 1972). Therefore, proton flux causes a proton motive force (PMF) which 
is the key factor in energy transduction and ATP production. This process has been 
schematically shown in figure 1.  

 

 

Fig. 1. Proton transport across the inner membrane of mitochondrion 
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However, coupling of oxidation and phosphorylation processes is not 100 percent complete. 
As can be observed in figure 1, the uncoupling proteins (UCPs) in the inner membrane let 
some protons back to the matrix without passing through ATPsynthase (Stuart et al., 2001). 
This proton leak reduces the coupling of processes and lowers the amount of ATP that is 
produced (Brand, 2005; Jezek et al., 1998; Jezek, 1999).  The cycle of proton pumping and 
proton leaking across the membrane, also referred to as futile cycle, can release significant 
amounts of energy (Brand et al., 1999).   
The efficiency of oxidative phosphorylation demonstrates the physiological role of 
mitochondria. In general, mitochondria are capable of taking on different roles to economize 
energy storage relevant to the current status of the body. These roles can be summarized as 
(Cairns et al., 1998): 

• Maximizing ATP production 

• Maximizing Pi production 

• Minimizing the costs of energy storage 

• A combination of the above     
The overall rate of ATP production depends on substrate availability and cellular energy 

demand. Mitochondria of different tissues have various functions for matching the energy 

transductions with energy demands; based on these functions, mitochondria will be 

categorized as either “energetic” or “thermogenic” (Moyes, 2003). Mitochondria with 

energetic role, e.g. those of liver cells, are designed to maximize ATP production to provide 

the energy required for vital reactions. On the other hand, mitochondria with thermogenic 

role, e.g. those of brown adipose tissue (BAT) cells, release a considerable amount of energy 

as heat to maintain constant body temperature (Porter, 2001; Schrauwen & Hesselink, 2002).  

Mitochondria within BAT cells differ from mitochondria of liver cells in that they have a 

limited rate of ATP synthesis, lower membrane potential, and higher respiratory rates 

(Kowaltowski, 2000). This is due to varying amounts of proton leak in different 

mitochondria and also dependents on the body mass (Hulbert, 2003; Else et al., 2004). The 

major characteristic of the membrane that distinguishes these two types of mitochondria is 

the property of membrane proton permeability (CH) which can be used as a criterion for 

evaluation of proton leak across the membrane. The amounts of CH are generally much 

higher in thermogenic mitochondria than the energetic ones (Nicholls, 1997). The main 

uncoupling protein in BAT is UCP1 which is activated by fatty acids and inhibited by 

nucleotides (Brand et al., 1999). These remarkable characteristics of BAT cell mitochondria 

have been a topic of interest among many researchers both from biological and 

thermodynamic point of views (Matthias et al., 2000).  

In order to apply biological energy patterns to current industrial energy systems, an 

appropriate body of comprehensive models and criteria is required. Unfortunately most of 

the studies on energetic and thermogenic functions have so far focused on qualitative 

descriptions (Cadenas et al., 2001; Schrauwen & Hesselink, 2002) and little effort has been 

made to compare them from a quantitative point of view. 

In this study we have proposed a thermodynamic model for ATP synthesis in systems that 
operate with some distance from equilibrium, by which the energy loss and the efficiency of 
oxidative phosphorylation can be calculated. Consequently, we have made a quantitative 
comparison between the rate of energy loss and efficiency of energetic and thermogenic 
mitochondria by means of this model. This quantitative evaluation of different mitochondria 
leads to a better understanding of their thermodynamic functions.  
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2. Non-equilibrium thermodynamics 

Although thermodynamics is highly applied in studying biological systems, still many 
thermodynamic analyses are done based on equilibrium conditions. In other words, it is 
usually assumed that the systems tend to an equilibrium state after a while. This assumption is 
not very accurate for biological systems due to the fact that their survival depends on constant 
mass and energy exchange with their environment. As a result, it would be best to assume that 
such systems approach a non-equilibrium stationary state (NESS) (Qian & Beard, 2005).  
The main difference between equilibrium steady state and non-equilibrium stationary state 
is that the system needs a constant supply of energy to maintain the latter state, which can 
be provided by cellular metabolism (Jou & Llebot, 1990). As a result, non-equilibrium 
thermodynamics (NET) govern such systems.  
One of the simplifying assumptions in NET is the local equilibrium assumption, which 
states that in every small region within the system, thermodynamic properties can be related 
to state variables by means of equilibrium state equations. A small region is identified by 
enough number of molecules so that the macroscopic theory can be applied. Therefore, the 
entropy and specific internal energy can be obtained through the same calculations as in 
equilibrium state and Gibbs and Gibbs-Duhem relations are also applicable (Demirel & 
Sandler, 2001, 2004; Hill, 2002; Mazur, 1999).   
When applying non-equilibrium thermodynamics to a process, it is important to take into 
account how far from equilibrium the process is (Demirel & Sandler, 2004). Distance from 
equilibrium conditions can be determined by the energy dissipation function (Φ) which 
gives the rate of free energy loss of a system (Caplan & Essig, 1969).  
Entropy production in living systems can be viewed from three different aspects (Gnaiger, 
1994): 
• Stationary low entropy level:  

According to Prigogin, biological systems tend to produce the minimum amount of 
entropy and maintain almost constant entropy, so that it can be assumed: 

 dS dt⁄ 噺 ど (5) 

• Entropy production within the system: 
Energy dissipation from irreversible processes in the system cause an increase in the 
entropy so that: 

 d辿S dt⁄ 伴 ど (6) 

• Stream of negative entropy:  
In order to balance the entropy that is produced in the cell, some entropy is lost through 
interactions with the surrounding environment. This behavior can be expressed as 
follows: 

 d奪S dt⁄ 隼 ど (7) 

Subsequently, the overall entropy balance of a biological system based on non-equilibrium 
thermodynamics can be regarded as: 

 dS dt⁄ 噺 d辿S dt⁄ 髪 d奪S dt⁄  (8) 

Equation 8 suggests that entropy change in cells has two distinct components; deS which 
represents entropy exchange through system boundaries, and diS that corresponds to 
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entropy production within the system. For every small volume within the system (dv), 
energy dissipation function and entropy are related by (Demirel & Sandler, 2001): 

 奄 噺 T. d辿S dt. dv⁄  (9) 

Since energy dissipation is directly proportional to the entropy production, Φ can be used to 
evaluate the amount of energy released during a process (Demirel & Sandler, 2004). 
Therefore, one of the main objectives of this study was to determine Φ for different 
mitochondria in order to compare their functions. However, a prerequisite for 
determination of Φ is the knowledge of the fluxes and forces in the system.  
Based on Linear Non-equilibrium Thermodynamics theory (LNET) for processes with small 
values of Φ, the relationship between the driving forces (Potential gradients within the 
system) and thermodynamic fluxes are linear. LNET theory assumes local thermodynamic 
equilibrium within the system and is valid for many processes in biological systems 
(Demirel & Sandler, 2001). This can be stated as follows: 

 J辿 噺 ∑ 岫L辿棚. X辿岻棚  ; (i,j = 1,2,…,n) (10) 

In equation 10, Ji represent thermodynamic fluxes, and Xj stand for thermodynamic forces. 
The Lij coefficients are phenomenological coefficients (PCs) that have the characteristics of 
conductance and contain some general information on the coupling mechanism of the 
processes (Aledo & Valle, 2004). According to the Onsager’s theory, the matrix of PCs is 
symmetrical and positive definite. Therefore, the following relations exist (Stucki, 1980): 

 L辿棚 噺 L棚辿 (11) 

 L辿辿 半 ど (12) 

 L辿辿. L棚棚 半 L辿棚態  (13) 

Based on the information provided in this section, Φ can be determined for different 
processes if the relevant fluxes and forces are known. In the next section a thermodynamic 
model is developed to study oxidative phosphorylation processes and dissipation 
function.  

3. Thermodynamic model 

Although many studies have been carried out on ATP production in mitochondria, literature 
seems to be lacking reliable mathematical models in this area. Such models could be used to 
provide proper quantitative results on the amounts of energy being stored or released, as well 
as the entropy production and efficiency of oxidative phosphorylation processes.  
In this section a thermodynamic model for determining energy dissipation, ATP production, 
and efficiency of oxidative phosphorylation processes is presented. This model is based on 
non-equilibrium thermodynamic equations, and chemiosmotic theory (Golfar et al., 2010).  

3.1 Fluxes and forces 

The first step is to determine the relationships between thermodynamic forces and fluxes. 
For oxidative phosphorylation, equation 10 is written as follows: 

 J拓淡 噺 L拓拓. A拓淡 髪 L拓H. ∆µH 髪 L拓沢. A沢竪 (14) 
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 JH 噺 LH拓. A拓淡 髪 LHH. ∆µH 髪 LH沢. A沢竪 (15) 

 J沢竪 噺 L沢拓. A拓淡 髪 L沢H. ∆µH 髪 L沢沢. A沢竪 (16) 

In equations 14, 15 and 16, the subscripts Ox, H, and Ph refer to substrate oxidation, net H+ 

flow and ADP phosphorylation. Δ┤H is the electrochemical potential difference across the 

inner membrane of mitochondrion and can be obtained from the following equation: 

 ∆µH 噺 F∆ψ 伐 に.ぬ岫RT. ∆pH岻 (17) 

where F is the Faraday constant and Δψ is the electrochemical potential difference across the 

membrane. The values of Δψ vary between 140 to 200 mV for different mitochondria.     

AOx and APh are the affinities of oxidation and phosphorylation processes which serve as 

thermodynamic forces. These affinities can generally be calculated by means of the 

following equation: 

 A辿 噺 伐 ∑ 岫ν棚辿. µ棚岻棚  (18) 

where ┥ji is the stoichiometric coefficient of species j in the ith reaction and µj is the 

electrochemical potential of j (Caplan & Essig, 1969). However, in the case of oxidative 

phosphorylation, the affinities of processes have been considered equal to Gibbs free energy 

difference (ΔG) with opposite signs (Lemasters et al., 1984).  

In order to establish the phenomenological coefficients, the relationships among them 

should be verified. The following steps have been taken to determine which coefficients are 

independent and how to relate them to the dependent ones. 

Although JH can be calculated by equation 15, it can also be written as sum of the flux due to 

oxidation and the fluxes through ATPsynthase and passive channels (proton leak) as 

follows: 

 JH 噺 岫伐m拓. J拓淡岻 髪 CH. ΔµH 髪 m沢. J沢竪 (19) 

where mO and mP are the stoichiometric coefficients of the respective pumps and CH is the 

proton permeability of the membrane per unit area (Jou & Llebot, 1990). By replacing 

equations 14 and 16 into equation 19 and its comparison with equation 15 results in the 

following set of equations:  

 L拓H 噺 岫伐m拓岻. L拓拓 髪 m沢. L沢拓 (20) 

 L沢H 噺 岫伐m拓岻. L拓沢 髪 m沢. L沢沢 (21) 

 LHH 噺 岫伐m拓岻. L拓H 髪 CH 髪 m沢. L沢H (22) 

 

Equations 20 to 22 enable us to calculate the desired phenomenological coefficients. 

Since mitochondria operate at steady state conditions, all of the protons that are pumped to 

the intermembrane space will return to the inner membrane either by means of 

ATPsynthase or other enzymes. Otherwise, the electrochemical potential difference between 

the two sides of the membrane would increase. Therefore, the total proton flux is equal to 

zero at steady state (JH = 0). Setting equation 15 equal to zero, Δ┤H will be calculated from 

the next equation: 
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 ΔµH 噺 岫岫伐L沢H岻 LHH岻. A沢竪 髪 岫岫伐L拓H岻 LHH岻. A拓淡⁄⁄   (23) 

Substituting equation 23 into equations 14 and 16, the fluxes JOx and JPh will appear as: 

 J拓淡 噺 岷L拓拓 伐 岫L拓H態 LHH岻峅. A拓淡 髪 岷L拓沢 伐 岫L拓H. L沢H LHH岻峅. A沢竪⁄⁄  (24) 

 L沢竪 噺 岷L沢拓 伐 岫L沢H. L拓H LHH岻峅. A拓淡 髪 岷L沢沢 伐 岫L沢H態 LHH岻峅. A沢竪⁄⁄  (25) 

Now that we are able to determine the values of oxidation and phosphorylation fluxes by 
means of equations 24 and 25, we can proceed to the next step to evaluate energy dissipation 
function in mitochondria.  

3.2 Energy dissipation function 

Under isothermal conditions, Φ can be generally expressed as follows (Caplan & Essig, 
1969): 

 奄 噺 範伐 ∑ 盤n岌 棚辿樽. Δµ棚匪 髪棚 ∑ 岫J辿. A辿奪淡岻棚 飯 (26) 

where nj represents the number of moles of species j, and 券岌珍 is defined as: 

 n岌 棚 噺 岫dn棚岻 岫dt岻⁄  (27) 

The superscripts “in” and “ex” refer to the interior and exterior of the inner membrane of 

mitochondrion. In case of oxidative phosphorylation the following relation exists for net H+ 

flow: 

 n岌 H辿樽 噺 岫伐岻JH (28) 

Therefore, the general equation for energy dissipation function (equation 26) takes the 

following form: 

 奄 噺 J拓淡. A拓淡 髪 JH. ΔµH 髪 J沢竪. A沢竪 (29) 

At the steady state the net proton flux is set to zero so that Φ is as follows: 

 奄 噺 J拓淡. A拓淡 髪 J沢竪. A沢竪 (30) 

Substituting equations 24 and 25 into equation 30, the dissipation function for oxidative 

phosphorylation at steady state will appear as: 

 奄 噺 崕範L拓拓 伐 岫L拓H態 LHH岻⁄ 飯 髪 に岷L拓沢 伐 岫L拓H. LH沢 LHH岻⁄ 峅. 岫A沢竪 A拓淡⁄ 岻髪岷L沢沢 伐 岫L沢H態 LHH⁄ 岻峅. 岫A沢竪 A拓淡⁄ 岻態 崗 . A拓淡態  (31) 

In equation 31, LOO (influence of substrate availability on oxygen consumption), LPP 

(feedback of phosphate potential on ATP production), and CH (membrane proton 

permeability) depend on the nature of the inner membrane and are available for various 

mitochondria. Similarly, the values of mO and mP for different substrates are available from 

the literature. Knowing the amounts of these parameters, LOH, LPH, and LHH can be obtained 

from equations 20 to 22. LOP (substrate dependency of ATP production) can be determined 

according to degree of coupling of oxidation and phosphorylation reactions (q) by means of 

the following relation (Cairns et al., 1998): 
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 q 噺 L拓沢 岷岫L拓拓. L沢沢岻待.泰峅⁄  (32) 

q is a dimensionless scale that represents how well the process of oxidation is coupled with 

phosphorylation. In case of complete coupling, q is equal to one and if the processes are 

independent from each other, q is equal to zero. For any pair of coupled reactions, q can be 

viewed as follows: 

 q 噺 謬∏ L辿棚 ∏ L辿辿⁄N
 (33) 

When the value of q is close to one, the stoichiometric coefficients can be applied with an 

appropriate precision. As the values of q deviate from one, it would be best to use 

phenomenological stoichiometric coefficients (Z) that are defined as (Stucki, 1980): 

 Z 噺 紐L沢沢 L拓拓⁄  (34) 

As q tends to one, values of Z tend to real values of stoichiometric coefficients. The 

relationship between q and Z is as follows (Lemasters et al., 1984): 

 Z 噺 岫伐q岻. 岫∆GR ∆G沢⁄ 岻 (35) 

where ΔGR and ΔGP are the Gibbs free energy change for phosphorylation and oxidation 

reactions respectively.  

The degree of coupling has been experimentally determined for some energetic 

mitochondria (Lemasters et al., 1984; Stucki, 1980), but as for thermogenic ones the data is 

more limited. Therefore, we have considered the full range of variations of q from 0 to 1. 

Based on equation 32, for fixed values of LOO and LPP, LOP is minimum at q = 0 and 

maximum at q = 1. Therefore the range of variations of LOP can be determined for any kind 

of mitochondrion. After determination of the related parameters, Φ can be calculated for any 

given APh/AOx using equation 31. 

Although Φ is a very useful criterion for comparing different mitochondrial functions, 

evaluating the efficiency of oxidative phosphorylation processes will provide more insight 

into these missions and operating regimes.  

3.3 Efficiency 

The efficiency of oxidative phosphorylation is defined as the percentage of released energy 

by oxidation process that is consumed by phosphorylation process as follows (Kedem & 

Caplan, 1965): 

 η 噺 岫伐J沢竪. A沢竪岻 岫J拓淡. A拓淡岻⁄  (36) 

 

The JPh/JOx ratio (or P/O ratio, in brief) can be theoretically determined from equations 24 

and 25 and consequently, the efficiency of oxidative phosphorylation can be easily obtained 

from equation 36. The JPh/JOx ratio is an important criterion in biological systems (Hinkle, 

2005) and represents the number of moles of ATP that are produced per consumed moles of 

oxygen. High values of this ratio imply high efficiency for energy storage processes. 

Furthermore, the optimum efficiency (ηopt) could be determined by means of the following 

equation (Stucki, 1980): 
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 η誰丹担 噺 q態 岾な 髪 紐な 伐 q態峇態斑  (37) 

From equation 37 it can be concluded that optimum efficiency happens when 

phosphorylation flux is not zero and the priority for the mitochondrion is to maximize ATP 

production. Clearly, complete coupling of oxidation and phosphorylation processes leads to 

maximum efficiency. 

Such phenomenological thermodynamic models as the present one deal with the role of 

mitochondria of different organs in utilization and storage of biological energy (or ATP). As 

a result they could be used to determine energy dissipation function and efficiency of 

oxidative phosphorylation processes in mitochondria with different thermodynamic 

functions. The output of these theoretical approaches could be compared with experimental 

data, if any, to evaluate the model.  

4. Results and discussion 

In this section, the thermodynamic model is applied to two different types of mitochondria 

to compare their behaviors based on energy dissipation and efficiency of oxidative 

phosphorylation processes. We have focused on types of mitochondria for which there is 

sufficient experimental data available in literature. This will provide the chance to evaluate 

the theoretical results generated by the model by comparing them against the experimental 

results.      

In order to investigate mitochondria with different thermodynamic roles, rat liver cell 

mitochondrion with energetic role and BAT cell mitochondrion with thermogenic function 

have been chosen. Calculations have been carried out for 3-hydroxybutyrate, glutamate plus 

malate (with equal mole fractions), 2-oxoglutarate and succinate as substrate, all of which 

have been widely used in previous investigations in this field. The values of different 

parameters for these two tissues (Jou & Llebot, 1990) and four substrates (Copenhaver & 

Lardy, 1952; Lee et al., 1996) are listed in tables 1 and 2 respectively. Table 1 includes the 

parameters related to the structure of the membranes, whereas table 2 contains the 

parameters corresponding to different substrates.  

 

Parameter Rat Liver Mitochondrion 
Brown adipose tissue  

Mitochondrion 

LOO 1.9  nmolO2/(mgP.min.mV) 0.5  nmolO2/(mgP.min.mV) 

LPP 7.9  nmolH+/(mgP.min.mV) 0.4  nmolH+/(mgP.min.mV) 

CH 3.2  nmolH+/(mgP.min.mV) 35   nmolH+/(mgP.min.mV) 

Table 1. Parameters related to rat liver and brown adipose tissue mitochondria (Jou & 
Llebot, 1990). 

Energy dissipation function has been calculated in each case by means of equation 31. Since 

q is approximately 0.98 in rat liver cell mitochondria (Lemasters, 1984), LOP is equal to 3.8 

according to equation 32. As for BAT cell mitochondria, data on values of q were not 

sufficient. As a result, we assigned different values between 0 and 1 to q which lead to 

values of LOP varying between 0 and 0.4 based on equation 32. The proton gradient across 
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the inner membrane is taken equal to 200 mV in calculations but the results still hold for a 

large range of affinity ratios for proton gradients from 140 to 200 mV.   

 

Substrate mP mO AO 

3-Hydroxybutyrate 4 nmolH+/nmolATP 12 nmolH+/nmolO2 209 KJ/mol 
Glutamate+Malate 4 nmolH+/nmolATP 12 nmolH+/nmolO2 220 KJ/mol 

2-Oxoglutarate 4 nmolH+/nmolATP 12 nmolH+/nmolO2 307 KJ/mol 
Succinate 4 nmolH+/nmolATP 6 nmolH+/nmolO2 151 KJ/mol 

Table 2. Parameters related to different substrates (Copenhaver & Lardy, 1952; Lee et al., 
1996). 

By replacing these values into equation 31, the rate of free energy loss (Φ) has been 

determined and plotted versus the affinity ratio (APh/AOx) for both energetic and 

thermogenic mitochondria with 3-hydroxybutyrate, glutamate plus malate, 2-oxoglutarate 

and succinate respectively. Figures 2 to 5 correspond to these plots.   

It is clearly seen that the values of Φ in BAT mitochondria are two to four times greater than 

rat liver mitochondria, indicating higher amounts of proton leak in BAT mitochondria. 

These results are in complete agreement with the qualitative descriptions based on 

biological functions of the two types of tissues and indicate the validity of the proposed 

model for such calculations.  
 

 

Fig. 2. Rate of energy loss (micro joules/(mgP.min)) vs. force ratio in rat liver and BAT 
mitochondria with 3-hydroxybutyrate as substrate. 
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Fig. 3. Rate of energy loss (micro joules/(mgP.min)) vs. force ratio in rat liver and BAT 
mitochondria with glutamate+malate as substrate. 

 

 

Fig. 4. Rate of energy loss (micro joules/(mgP.min)) vs. force ratio in rat liver and BAT 
mitochondria with 2-oxoglutarate as substrate. 
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Fig. 5. Rate of energy loss (micro joules/(mgP.min)) vs. force ratio in rat liver and BAT 
mitochondria with succinate as substrate. 

The efficiency of oxidative phosphorylation processes have also been calculated for these 
mitochondria for different values of LOP with the four selected substrates, and plotted 
against Φ in figures 6 to 9. The curves in these figures show theoretical results while 
separate points show some experimental results (Hinkle et al., 1991; Lehninger, 1955; 
Lemasters, 1984; Nath, 1998; Nicholls, 1974).  
From figures 6 to 9 three main points can be made: 

• As expected, the efficiency of oxidative phosphorylation is much higher in rat liver than 
in BAT mitochondria. Lower efficiency is an advantage for BAT mitochondria since it 
enables them to release heat, conduct thermogenesis and regulate body temperature 
(Cannon & Nedergaard, 2003).     

• In both energetic and thermogenic tissues the values of Φ are low considering the high 
values of efficiency. Furthermore, in rat liver mitochondria, selection of parameters 
leads to minimum entropy production with high efficiency. This operating regime in 
biological systems complies neither with minimum entropy production (MEP) nor 
maximum power output (MPO) regimes. In fact this conclusion supports the idea that 
biological systems follow the ecological regime, which involves producing little entropy 
together with considerable efficiency (Sanitillan et al., 1997).  

• Once more the results obtained from the presented model comply with the earlier 
experimental outcomes. As can be seen in figures, the amounts of efficiency calculated 
in this model for rat liver mitochondria are close to the experimental results. Therefore, 
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we are convinced that the predicted values for the efficiency in thermogenic 
mitochondria will also comply with experimental results. This could be a challenge for 
further research in order to find proper data for the efficiency in thermogenic 
mitochondria. 

 

 

Fig. 6. Efficiency of oxidative phosphorylation vs. rate of energy loss in rat liver and BAT 
mitochondria with 3-hydroxybutyrate as substrate. 

 

 

Fig. 7. Efficiency of oxidative phosphorylation vs. rate of energy loss in rat liver and BAT 
mitochondria with glutamate+malate as substrate. 
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Fig. 8. Efficiency of oxidative phosphorylation vs. rate of energy loss in rat liver and BAT 
mitochondria with 2-oxoglutarate as substrate. 

 

 

Fig. 9. Efficiency of oxidative phosphorylation vs. rate of energy loss in rat liver and BAT 
mitochondria with succinate as substrate. 
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5. Conclusion 

Since biological systems are reasonably efficient in energy storage, they can be regarded as 

appropriate patterns for science and engineering. Thermodynamic models on energy 

transductions in such systems could play a key role in applying these patterns in industry 

and other relevant areas. In developing models for energy transductions in biological 

systems, it is important to apply non-equilibrium thermodynamics since the survival of 

these systems depend on constant mass and energy exchange with their surroundings, 

which requires operating at some distance from the equilibrium state.    

Energy dissipation function (Φ), along with efficiency of oxidative phosphorylation 

processes can be viewed as useful criteria in studying the energy storage capabilities of a 

system and its operating regime. They can also be used to explain different mitochondrial 

functions.  

Mitochondria of various tissues have different functions for matching the energy 

transductions with energy demands. The rate of energy dissipation and efficiency of energy 

storage in mitochondria is set according to their roles. In the previous sections, rate of free 

energy dissipation and efficiency of ATP production were determined for both energetic 

and thermogenic mitochondria by means of the proposed model and plotted in figures 2 to 

9. These plots suggest that mitochondria with energetic function dissipate less energy as 

heat and store more energy in form of ATP molecules. As a result, the efficiency of oxidative 

phosphorylation is high in these cases (about 60 to 70 percent in rat liver mitochondria). On 

the contrary, thermogenic mitochondria release a great deal of energy due to more proton 

leak across the inner membrane. Therefore, the maximum amount of efficiency in BAT 

mitochondria is about 30 percent. These theoretical results comply with the experimental 

results for rat liver mitochondria. 

Furthermore, comparison of efficiency values of two types of mitochondria with the rate of 

their energy dissipation indicates that such systems tend to produce less entropy and store 

energy in an efficient manner. This conclusion supports the theory of ecological regime in 

biological systems. 

6. Further research 

Based on the results of this research  as well as the previous works on the subject, 

developing models for energy transductions in living organisms is of great importance in 

applying these energy patterns in industry. Therefore, it would be beneficial to figure out 

such models for other microbial cells such as bacteria and fungi. Studying ATP storage in 

animals with special characteristics such as hibernating animals or those with high 

resistance against thirst or starvation might also provide a better insight in this regard.  

As mentioned earlier, there is not sufficient experimental data on different kinds of organs 

and substrates in the literature. Performing such experiments is essential for further research 

in this field. Furthermore, since Φ and η can be determined for different mitochondria by 

means of the model, they can be used in diagnosing mitochondrial dysfunctions. Moreover, 

they could assist in producing therapeutic drugs with mitochondria as their first or 

secondary target (Szewczyk & Wojtczak, 2002). These amounts can be changed 

synthetically, to help overcome mitochondrial diseases (Roussel, 2004). But for this to be 

practically possible, the range of values of Φ and η should be found for different organs.  
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Such thermodynamic models can also be used in assessing the effect of some drugs used for 
weight loss or doping. In fact weight loss through reducing the efficiency of ATP production 
(also reoffered to as “increased metabolic inefficiency”) is a topic of interest in nutritional 
studies (Fine et al., 2004). The underlying mechanism of such drugs is usually based on 
affecting the mitochondrial membrane and changing the amounts of energy storage or 
dissipation. Measuring Φ before and after drug injection helps to study the effect of the drug 
and determine a healthy dosage. Similarly, if the range of Φ is known for an ordinary 
person, an increase in this function in athletes might be a sign of doping.  
We believe the model presented in this chapter has the potential to be applied in various 
areas of science, pharmaceuticals and industry. Expanding and generalization of this model 
could be a challenge for further research.    

7. Nomenclatures 

A affinity of reaction or ΔG of reaction (KJ/mol) 
Ai affinity of the ith reaction (KJ/mol) 
AOx affinity of oxidation reaction (KJ/mol) 
APh affinity of phosphorylation reaction (KJ/mol) 
ADP adenosine diphosphate 
ATP adenosine triphosphate  
BAT brown adipose tissue 
CH membrane proton permeability [nmol H+/(mg protein. min. mV)]     
I subscript for reaction  
J subscript for flux  
JH flux of proton transfer [nmol H+/(mg protein. min)]      
Ji thermodynamic flux for ith reaction    
JOx flux of oxidation reaction [nmol O2/(mg protein. min)]   
JPh flux of phosphorylation reaction [nmol ATP/(mg protein. min)]  
LHH phenomenological coefficient of proton (H+) in proton transfer [nmol H+/(mg                   
protein. min. mV)] 
Lij phenomenological coefficient of j species in ith reaction [nmol of j species /(mg  
protein. min. mV)]   
LOH phenomenological coefficient of proton (H+) in oxidation reaction [nmol H+/(mg 
protein. min. mV)]  
LOO phenomenological coefficient of O2 in oxidation reaction [nmol O2/(mg protein. 
min. mV)]    
LOP phenomenological coefficient of ATP in oxidation reaction [nmol ATP/(mg 
protein. min. mV)] 
LPH phenomenological coefficient of proton (H+) in phosphorylation reaction [nmol 
H+/(mg protein. min.mV)] 
LPP phenomenological coefficient of ATP in phosphorylation reaction [nmol ATP/(mg 
protein. min.mV)]   
LNET linear non-equilibrium thermodynamics 
mO stoichiometric coefficient of pumps for oxidation reaction (nmol H+/nmol O2)  
mP stoichiometric coefficient of pumps for phosphorylation reaction (nmol H+/nmol                  
ATP)    
nj number of moles of species j 
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P protein (ATPsynthase) 
PCs phenomenological coefficients (see Lij) 
q degree of coupling of oxidation and phosphorylation reactions (dimensionless)  
UCP uncoupling proteins 
Xj thermodynamic forces for species j (KJ/mol) 
η overall efficiency of oxidative phosphorylation 
┤ electrochemical potential (KJ/mol) 
Δ┤H electrochemical potential difference (KJ/mol) 
┥ji stoichiometric coefficient of species j in the ith reaction 
Φ energy dissipation function [micro J/(mg protein. min)] 
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