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Imaging Dyskinesias in Parkinson’s Disease 

Marios Politis and Clare Loane 
Centre for Neuroscience, Hammersmith Hospital, Imperial College London, 

 United Kingdom  

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative movement disorder characterised by the 
motor features of tremor, rigidity and bradykinesia. These features are associated with the 
loss of dopaminergic (DA) neurons in the substantia nigra pars compacta and a subsequent 
deficiency in striatal DA, which is required for the effective control of movements. However, 
there is evidence of a more diffuse pathology in PD (Braak et al., 2004) with other, non-DA 
neutotransmitter systems possibly playing a role (Kish et al., 2003, 2008; Remy et al., 2005; 
Albin et al., 2008; Politis et al., 2010a).   
To date, regular administration of the direct metabolic precursor for DA, L-3,  
4-dihydroxyphenylalanine (L-DOPA) remains the most effective treatment of PD 
symptomatology. L-DOPA therapy is most optimally effective in the early stages of the 
disease and long term use leads to the appearance of motor complications such as 
involuntary movements, so-called L-DOPA-induced dyskinesia (LID). LID represents a 
debilitating complication of L-DOPA therapy in PD and is experienced by the vast majority 
of patients (estimates range between 40-90% between 4 and 10 years after initiation of L-
DOPA therapy) (Racol et al, 2000; Ahlskog and Muenter, 2001). The mechanisms underlying 
LID remain obscure. It is known that LID is observed following DA therapy and that there is 
a time-lag between the initiation of DA therapy and the emergence of LID. Risk factors 
commonly associated with the development of LID include PD severity, L-DOPA dose and 
duration of L-DOPA therapy.  
Positron emission tomography (PET) neuroimaging provides a useful tool for assessing in 
vivo functionality of basal ganglia in the PD brain. As such, the use of specific radiotracers 
permits insight into the integrity of both pre- and postsynaptic DA function, which could 
help elucidate some of the pathophysiological mechanisms underlying LID. Furthermore, 
over the last decade or so, PET studies have provided evidence that non-DA 
neurotransmitter systems may be involved in the development of LID. For example, PET 
has been used to investigate the role of different neuropeptides in LID, such as opioids and 
NK1, preliminary findings implicating the role of adenosine A2A receptors and more 
recently promising results have emerged suggesting that the serotonergic system may 
possess a valuable role in the emergence of LID in PD. 
Taken together, the in vivo findings to date have provided valuable information regarding 
the function of various neurotransmitter systems in the occurrence of LID and support the 
use of PET brain imaging to further explore these investigations. Considering the promising 
evidence suggesting that non-DA neurotransmitter systems may have a role in the 
pathogenesis of LID, further manipulation of these systems may offer an alternative 
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therapeutic approach in abating LID and preventing their initial development. Such 
investigations are vital as consequences of LID are pertinent to both the patients’ quality of 
life and healthcare services and costs. 
This chapter will review the use of PET imaging in the attempt to delineate the possible 
mechanisms underlying LID in PD. The imaging data available to date will be discussed 
supporting these mechanisms in relation to both DA and non-DA neurotransmitter systems 
including opioid, adenosinergic, glutamatergic and serotonergic systems.  

2. LID in PD: incidence and phenomenology  

LID is a common complication of L-DOPA treatment. It has been estimated to occur in 
approximately 40-50% of PD patients 4-6 years post-initiation of L-DOPA treatment 
(Ahlskog and Muenter, 2001) rising to approximately 90% after 10 years of treatment with 
an estimated incidence of approximately 10% per year of treatment (Rascol et al., 2000). 
Studies suggest that LID often initiates in the foot, ipsilateral to the side most affected by PD 
(Marconi et al., 1994). Somatotopically, the foot area corresponds to the dorsolateral 
striatum, an area which has been shown to be affected by DA denervation in the early stages 
of PD and is innervated by the ventrolateral portion of the substantia nigra (Fearnley et al., 
1991).  
The phenomenology of LID is diverse, encompassing: chorea, athetosis, dystonia, stereotypy 
and ballism. However, there are three many types of LID observed in PD patients in relation 
to their L-DOPA treatment. The most common is called ‘peak-dose’ LID which is 
characterised by both choreic and dystonic movements occurring during L-DOPA peak 
plasma concentration (60-90 minutes following L-DOPA administration) (Contin et al., 
2000), i.e. when the L-DOPA is optimally abating PD motor symptoms. This type of LID is 
characterised by a sequence of Improvement-Dyskinesia-Improvement (IDI) and can often 
be improved by reducing the L-DOPA dose (for review see, Fahn, 2000). A less common 
form of LID is termed ‘biphasic’ dyskinesia. This form of LID follows a sequence opposite to 
the peak-dose form, of Dyskinesia-Improvement-Dyskinesia (DID). A further, form of LID 
termed ‘yo-yo’ dyskinesia does not follow an Improvement-Dyskinesia sequence with the 
involuntary movements appearing and abating at various points throughout the L-DOPA-
dose cycle, therefore, it does not seem to be related to L-DOPA dosing (Nutt and Wooton, 
1995).  Finally, an unusual form of LID occurring when the patient is in an ‘off’ state, i.e. 
they are not taking any L-DOPA medication and is termed ‘off-phase’ dyskinesia. This form 
of LID has been observed in patients following surgical interventions, such as deep brain 
stimulation (DBS) and neural transplantation with fetal tissue (Freed et al., 2001; Hagell et 
al., 2002; Olanow et al., 2003). The off-phase dyskinesia observed following neural 
transplantation are named, ‘graft-induced’ dyskinesia (GID) and currently is not known 
whether they share the same pathogenic mechanisms as LID. 
The initial presentation of LID is often mild with the majority of patients preferring to 
continue the L-DOPA therapy reaping the therapeutic benefits while experiencing some 
form of LID, rather than terminate L-DOPA therapy with its associated decrease in mobility 
(Hung et al, 2010). Fatigue and exhaustion levels increase as LIDs develop and there is 
increased risk of injury for the patient.  LID usually appear at the point where the disease is 
advancing and larger L-DOPA doses are required (Thanvi et al., 2007).  
Despite the increased frequency and the clinical significance, the underlying mechanisms of 
LID in PD are not clear. It has been suggested that the development of LID may be 

www.intechopen.com



 
Imaging Dyskinesias in Parkinson’s Disease 

 

71 

dependent on several clinical risk factors including, disease severity, extent of DA 
denervation, and dose and duration of L-DOPA treatment. However, considerable efforts 
have been devoted to developing neuroimaging techniques to study the basal ganglia (the 
set of structures most affected by DA denervation leading to PD motor symptoms) 
(Eidelberg and Edwards, 2000; Feigin et al., 2001; Eidelberg, 2009). PET imaging in particular 
has provided a useful in vivo tool to assess the DA as well as other neurotransmitter systems 
in relation to LID in PD.  

3. Animal models of LID 

Two animals models commonly used to investiagte LID pathogenesis are the 1-methyl 4-
phenyl 1,2,3,6-tetrahydropyridine [MPTP]-lesioned primate model and 6-hydroxydopamine 
[6-OHDA]- lesioned rat model. MPTP is a lipophillic substance which can efficiently cross 
the blood-brain-barrier and subsequently inhibit complex 1 of the mitrochondrial 
respiratory chain (Heikkila et al., 1985) thus inducing parkinsonian, behavioural, 
neurochemical and pathological effects (Jenner et al., 1984).  The 6-OHDA rat model utilises 
the 6-OHDA, a nonspecific catecholaminergic toxin. Following administration of the toxin 
via sterotaxial surgery, induction of unilateral lesions along the nigrostrial pathway allow 
permenant DA depletion and observation of Parkinsonian deficits can be achieved. In both 
models, L-DOPA is administered to reproduce human LID (dyskinetic group) and 
compared to at least one control group (non-dyskinetic group) which may or may not be 
lesioned, but will not have LID induced.  
To date, findings from these studies appear to corroborate what is observed clinically; that 
is, the degree of DA denervation is associated with LID development. However, interesting 
findings from MPTP-treated models, revealed that primates which did not develop 
parkinsonian motor symptoms, did go on to develop LID, indicating that the threshold of 
DA denervation required to induce LID is lower than that of PD sympotmatology (Sassin et 
al., 1975). Furthermore, LID has been  effectively induced in normal, unlesioned primates 
(Mones et al., 1973). Indeed, L-DOPA dosage in animal studies are invariably much higher 
than in patients studies or administered in clinic and as such may explain the swift 
development of LID (Di Monte et al., 2000). Nonetheless, 6-OHDA-lesioned rats has 
demonstrated that daily administration of L-DOPA induces LID, emerging 20-30 minutes 
after administration (Lundblad et al., 2002). This observation is comparable to the peak-dose 
dyskinesia observed in PD patients. Again in 6-OHDA-lesioned rats, L-DOPA dose was 
shown to modulate dyskinesia development, i.e. a therapeutic dose of L-DOPA (6-10 mg/kg 
L-DOPA/day) produced LID in nearly all rats within 2-3 weeks compared to a larger L-
DOPA dose (50 mg/kg L-DOPA/day) which shortened latency, and increased the severity 
and incidence of LID induced (Lundblad et al., 2010).  
Furthermore, L-DOPA leading to a priming effect has been demonstrated in both 6-OHDA-
lesioned rats and MPTP-lesioned primates, with recurrence of LID appearing more readily 
compared to primates who did not receive any L-DOPA or were only partially lesioned 
(Cenci et al., 1998; Pearce et al., 1998; Andersson et al., 1999; Johansson et al., 2001; Maratos 
et al., 2001; Delfino et al., 2004). Moreover, primates who were lesioned, exhibited LID after 
a single dose of L-DOPA compared to partially lesioned primates where several doses were 
require before any LID developed (Di Monte et al., 2000). However, it has also been shown 
that the paradigm of lesion induction or pulsatility of L-DOPA treatment may play a role in 
LID induction (Jenner, 2003; Schneider et al., 2003). The extent of nigrostrital DA neuronal 
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loss required before LID is exhibited in 6-OHDA-lesioned rats has been proposed as 80% 
denervation, indicating that DA denervation is no soley responsible for the induction of LID 
in rats, and likely not the sole contributory factor in PD patients either (Winkler et al., 2002). 
It is generally thought that both presynaptic (production, storage, release and reuptake of 
DA by dopaminergic neurons in the nigrostriatal pathway) and postsynaptic (receptor and 
second messenger signaling pathway status in striatal neurons) DA components are critical 
for the development of LID. A presynaptic mechanism proposed as a contributary factor of 
LID development relates to the administration of L-DOPA resulting in a dramatic increase 
in synaptic DA levels subsequently leading to an alteration in the degree of DA receptor 
stimulation (Carta et al., 2006). Clinically this pathologic mechanism corresponds to peak-
dose dyskinesias (de la Feunte-Fernandez et al., 2001, 2004). It has been suggested that a 
decrease in the pre-synaptic ‘buffering’ is not dependent upon the degree of pre-synaptic 
denervation (Sassin et al., 1975).  
Postsynaptically, LID may result from dysplastic changes occuring following the destruction 
of DA input to the striatum and subsequent L-DOPA administration (Hirsch et al., 2000). 
Alterations at the synpase level may cause a ’denervation sensitivity’ and as such modifying 
the downstream cascade including the second messenger and signalling pathways 
ultimately leading to the developemnt of dyskinesia (Cenci and Lundblad, 2006; Ulusoy et 
al., 2010). However, dissociating changes induced by each compartment independently is 
complicated by the fact that following destruction of the presynaptic DA neurons, plastic 
changes of the postsynaptic neurons occur simultaneously (Nadjar et al., 2009; Ulusoy et al., 
2010).  

4. Positron emission tomography 

PET is a nuclear imaging technique which allows in vivo estimations of important 
physiological parameters, such as, glucose metabolism and neuroreceptor binding (Table 1.).  
In PET, radioisotopes bound to specific tracers are administered to an individual via an 

intravenous (IV) injection. After administration, the radiotracer will decay by positron 

emission, whereby a positron will be emitted (a particle with the opposite electrical charge 

but same mass as an electron) and then collide and annihilate with an electron, producing a 

pair of photons. These photons are subsequently detected by the scintillator in the scanner. 

These measurements allow the final outcome of estimation of the distribution of the 

radiotracer over time in the brain. The development of various radiotracers for PET has 

allowed the in vivo assessment of various physiological processes in PD which can be 

applied for the investigation of pathophysiologic mechanisms underlying both motor and 

non-motor symptomatology. For example, 18-FDG PET has been implemented to assess 

glucose brain metabolism in PD patients with dementia (Peppard et al., 1992; Goto et al., 

1993) and 11C-PK11195 for microglial activation estimation for monitoring disease 

progression (Ouchi et al., 2005; Teune et al., 2010)  

PET has high sensitivity and specificity for detecting striatal DA deficiency, the core 

pathological feature of PD, and as such provides an excellent tool for gaining greater 

understanding of the underlying pathological mechanisms leading to the development of 

LID in PD. The function of the presynaptic DA system in LID pathogenesis has utilised the 

tracers; 11C-methylphenidate (MP) which targets the DA transpoter (DAT) (Sossi et al., 2007; 

Troiano et al., 2009), 11C-dihydrotetrabenaine (DHTBZ) which targets the vesicular 
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monoamine transporter 2 (VMAT2) (Troiano et al., 2009) and Fluorine-18-6-fluoro-L-DOPA 

(18F-dopa) targeting aminoacid decarboxylase (AADC) PET (de la Feunte-Fernandez et al., 

2000). The postsynaptic DA system has been assessed using 11C-raclorpide (RAC) trageting 

D2/D3 receptors (Kishore et al., 1997; Tortonsen et al., 1997; de la Fuente-Fernandez et al., 

2001; Pavese et al., 2006; Turjanski et al., 2007) and 11C-SCH23390 which targets D1 receptors 

(Kishore et al., 1997; Turjanksi et al., 2007). Due to emerging evedence that non-DA 

neurotransmitter systems may play a role in the pathogeneisis of dyskinesia tracers such as 
11C-diprenorphine (Piccini et al., 1997) and 18F-L829165 (Whone et al., 2002) have permitted 

in vivo investgation of the neuropeptides, μ, κ, δ opioid sites and NK1 receptors respectively. 

The adenosinergic system has been investiagted with 11C-SCH442416 as a measure of A2A 

receptors (Ramlackhansingh et al., 2010), the serotonergic system using 11C-DASB as a 

measure of 5-HT1A binding (Politis et al., 2010b) and the glutamatergic system with 11C-

CNS5161 as a marker of activated N-methyl-D-aspartate receptor (NMDA) receptor 

channels (Ahmed et al., 2010). Knowledge regarding the underlying mechanisms of LID in 

PD has been greatly advanced by the use of PET imaging tools.  

 

PET tracer Target Assessment Reference 
11C-methylphenidate 
(MP) 

DAT Presynaptic DA system 
Sossi et al., (2007); Troiano 
et al., (2009) 

11C-dihydrotetrabenazine 
(DHTBZ) 

VMAT2 Presynaptic DA system Troiano et al., (2009) 

Fluorine-18-6-fluoro-L-
DOPA (18F-dopa) 

AADC 

Monaminergic systems:
-Presynaptic DA 
system 
- Noradrenergic system
- Serotonergic system 

de la Feunte-Fernandez et 
al., (2000) 

11C-raclopride (RAC) D2/D3 receptors 
Postsynaptic DA 
system 

Turjanski et al., (2007); 
Kishore et al., (1997); 
Tortonsen et al., (1997); de 
la Fuente-Fernandez et al., 
(2001); Pavese et al., (2006) 

11C-SCH23390 D1 receptors 
Postsynaptic DA 
system 

Turjanski et al., (2007); 
Kishore et al., (1997) 

11C-DASB 5-HT1A receptors Serotonergic system Politis et al., (2010a) 

11C-diprenorphine 
μ, κ, δ,  opioid 
sites 

Opioid system Piccini et al., (1997) 

11C-SCH442416 
Adenosine A2A  
receptors 

Adenosinergic system 
Ramlackhansingh et al., 
(2010) 

18F-L829165 NK1 receptors Substance P Whone et al., (2002) 

11C-CNS 5161 NMDA receptors Glutamatergic system Ahmed et al., (2010) 

Table 1. PET tracers used to image dyskinesias in PD 

5. PET imaging and LID 

5.1 Dopaminergic system 

The role of DA denervation in the pathogenesis of PD has resulted in the DA 

neurotransmitter system to have received the most attention in PET studies to date. As 

both pre- and postsynaptic DA mechanisms are though to be involved in dyskinesia 
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pathogenesis and pathophysiology, the opportunity to choose specific tracers targeting 

each system independently with PET is an important asset of the technique. A study 

utilising 18F-dopa PET, a measure of the presynaptic DA system by targeting L-aromatic-

amino-acid-decarboxylase (AADC) has reported a 28% decrease in presynaptic terminal 

function in the putamen in PD subjects who had a fluctuating motor response to L-DOPA 

(‘wearing-off’ effect) compared to patients who had a stable response to L-DOPA (de la 

Feunte-Fernandex et al., 2000). The results of this study suggest two things, i) the 

observed  differences between the groups provides support for the ‘storage hypothesis’. 

This hypothesis states that loss of DA terminals, i.e unable to store and subsequently 

release DA for use,  in the nigrostriatal pathway is responsible for the motor 

complications observed in PD patients ii) The reported results may reflect an altered 

‘buffering’ capacity of the DA terminals in response to differences in the degree of 

nigrostriatal damage between groups. However, one limitation of the study relates to the 

considerable overlap between the two groups studied. This may be indicative of other 

factors playing a role, such as, postsynaptic mechanisms and increased turnover of DA in 

the synapse. Another study of presynaptic mechanisms in relation to LID which utilized 
11C-methylphenidate (DA transporter [DAT] marker) demonstrated that higher DAT 

levels were directly related to lower DA turnover and lower changes in the synaptic DA 

concentration (Sossi et al., 2007). DAT is crucially involved in maintaining consistent 

levels of DA in the synapse and terminals. Therefore, a decrease in DAT may lead to an 

increase in DA turnover and higher oscillations in synaptic DA concentration, thus 

potentially predisposing a PD patient to the occurrence of LID as the disease processes. A 

more recent study assessing PD patients with motor fluctuations (27/36 patients 

presenting LID) using 11C-methylphenidate (MP) and DHTBZ PET in combination, 

demonstrated that putaminal MP/DTBZ was decreased in the motor fluctuating group 

compared to PD patients with a stable response to L-DOPA (Troiano et al., 2009). These 

findings add further support for presynaptic alterations playing a role in the appearance 

of LID due to continued DAT downregulation leading to increased levels of extracellular 

DA.   

In order to assess the postsynaptic DA mechanisms 11C-SCH23390 and RAC have been used 

in combination to investigate the avaliability of the D1 receptor and D2 receptor subtypes 

respectively, in two groups of PD patients, one with LID and without LID (Kishore et al., 

1997; Turjanski et al., 1997). Findings from these studies suggest that postsynaptic DA D1 

and D2 mechanisms are possibly not involved in the pathophysiology of LID in PD. The 

results demonstrate that the mean D1 receptor availability is within normal range in the 

caudate nucleus and putamen and mean D2 receptor availability in the putamen during the 

baseline condition in both groups of PD patients. However, mean D2 receptor availability is 

reduced in both groups in the caudate nucleus by around 15% in each.  It may be that the 

reductions observed in the caudate are a result of disease progression and not due to the 

development of LID.  

However, utilisation of RAC PET in conjunction with L-DOPA challenge can be used in 

order to assess in vivo increases in synaptic DA by measuring decreases of D2 receptor 

availability (Tedroff et al., 1996; Endres et al., 1997; de al Fuente-Fernandez et al., 2001, 

2004). One of the early RAC PET studies revealed a decrease of RAC binding in the 

putamen by 23% following a single dose of L-DOPA administered IV compared to 10% 
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decrease in PD patients with a stable response to L-DOPA (Tortenson et al., 1997), which 

is suggestive of exogenous L-DOPA provoking greater DA release in the putamen of 

dyskinetic patients than stable responders. Moreover, Unified Parkinson’s Disease Rating 

Scale (UPDRS) scores in the ‘off’ medication state were inversely correlated with the 

reduction of putaminal RAC binding. From these data, it appears that as the disease 

progresses (as evidenced by the decline in motor function measured by the UPDRS), the 

regulation of DA release following exogenous administration of L-DOPA is impaired. The 

cause for this is suggested as the impaired regulation of DA back into the synapse after L-

DOPA administration is due to the remaining terminals increased DA synthesis and as 

such, DAT is unable to compensate by reuptaking the excess DA. Another RAC PET study 

reported that synaptic levels of DA in PD patients with motor fluctuations were three 

times higher than in those with a stable response to L-DOPA one hour following 

administration of an L-DOPA challange (de al Fuente-Fernandez et al., 2001). This result 

may explain the rapid response to the medication in the motor fluctuating group. 

Furthermore, stable responders maintained increased DA levels for four hours after L-

DOPA administration compared to patients with motor fluctuations, whose synaptic DA 

levels dropped to baseline (‘off’) state. More recently, another RAC PET study reported a 

positive correlation between the presence of LID with increased levels of DA in the 

synapse (Pavese et al., 2006). More specifically, dyskinetics cases showed significantly 

decreased levels of putaminal RAC binding reflecting greater levels of synaptic DA, 

following L-DOPA administration compared to non-dyskinetics. Moreover, the authors 

correlated L-DOPA induced increases in synaptic DA with corresponding motor scores. It 

was found that rigidity and bradykinesia but not tremor correlated with DA release in the 

putamen.  

5.2 Opioid system 

Opioid neuropeptides are abundant in the basal ganglia as well as the thalamus and 

association cortex (Haber et al., 1985). Opioid involvement in the pathophysiology of PD has 

been previously hypothesised from post-mortem studies, however many of these studies are 

inconsistent with inconclusive and conflicting findings (Rinne et al., 1983; Delay-Goyet et al., 

1987; Fernandez et al., 1994). Enkephalin and dynorphin are transmitted by the functionally 

distinct y-aminobutyric acid (GABA)ergic pathway transmits these neuropeptides to the 

globus pallidus (both external [GPe] and internal [GPi]) and have been suggested to play a 

neuromodulatory role in the control of movements (Austin and Kalavis, 1990). It has been 

suggested that LID may result due to a reduction in the inhibitory output from the thalamus 

to the GPi (Crossman, 1990). 6-OHDA-lesioned rats have demonstrated an increase of 

enkephalin in the GPe and striatum following L-DOPA administration (Engberg et al., 1991; 

Taylor et al., 1992) and MPTP-treated primates have demonstrated high levels of enkephalin 

gene expression in the putamen of primates exhibiting LID (Jolkkon et al., 1995). Altered 

opiod transmission in the development of LID has been investigated using 11C-

Diprenorphine PET (Piccini et al., 1997). This study demonstrated that dyskinetic PD 

patients had reduced binding in both striatal (caudate nucleus and putamen) and extra-

striatal (thalamus and anterior cingulate) regions compared to PD patients who had a stable 

response to L-DOPA and no LID. Little is known regarding impact of a dysfunctional opioid 

system on LID development, however, these results are suggestive that an involvement is 
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possible, considering it is established that the opiod system is involved in the 

pathophysiology of PD.  

5.3 NK1 receptors 
18F-L829165 is a selective marker of Neurokinin-1 (NK1) receptor availability. NK1 receptors 

belong to the family of neuropeptides called Tachykinins and can be found in both the 

central and peripheral nervous system. A more recent, although, preliminary study has been 

reported a reduction in  thalamic NK1 availability in dyskinetic PD patients while remaining 

within the normal range in PD with a stable response to L-DOPA (Whone et al., 2002). 

Overall, these in vivo findings are suggestive that the presence of elevated levels of 

endogenous neuropeptides in the basal ganglia of dyskinetic PD patients may be, in part, 

responsible for the development of LID. 

5.4 Adenosinergic system 

There is neurochemical evidence that A2A receptors functionally appose the action of D2 

receptors on GABAnergic striatopallidal neurons (Ferre and Fuxe, 1992; Ferre et al., 1993; Fuxe 

et al., 1993) raising the possibility that A2A antagonists may be able to contribute to the anti-

parkinsonian therapeutic benefit observed in DA replacement therapy. Indeed, animal studies 

have shown that lesioning one side of the DA nigrostriatal pathway by 6-OHDA revealed that 

blockade of A2A receptors markedly increased the number of contralateral rotations induced 

buy a threshold dose of L-DOPA or by stimulation of DA receptor stimulation (Pinna et al., 

1996; Pollack and Fink, 1996; Fenu et al., 1997; Le Moine et al., 1997). Thus blockade of A2A 

receptors and as such potentiating DA transmission may contribute to the restoration of motor 

impairment observed in animal models of PD.  

Early clinical data suggests that A2A agonists do not suppress LID in PD patients once LID is 

established (Hauser et al., 2003), however, preclinical data suggests that a possible role of 

A2A blockade in the reduction of initial LID emergence when combined with L-DOPA 

(Pinna et al., 2001). However, the potential therapeutic benefit of A2A agonists are yet to be 

fully delineated as conflicting evidence has been reported (Lundblad et al., 2003). 

To date only one preliminary imaging study has been undertaken to assess the potential role 

of A2A receptors in LID pathogenesis. The recent study utilised 11C-SCH442416 PET as a 

marker of A2A receptor function in six PD patients with LID, six PD patients without LID 

and three healthy controls (Ramlackhansingh et al., 2010). Both PD groups withdrew from 

medication prior to the scan. Spectral analysis was used to calculate regional volumes of A2A 

receptor binding distribution in the striatum and thalamus. Results showed a significant 

increase of striatal A2A binding in the PD patients with LID compared to the PD group 

without LID and healthy controls which demonstrated a similar degree of striatal A2A 

binding. Thalamic A2A binding was similar across all three groups. The authors concluded 

that their results provide a rationale for the use of A2A receptor agonists in the clinical 

management of LID. 

5.5 Glutamatergic system 

Glutamate is an excitatory neurotransmitter in the basal ganglia which acts through 

ionotropic, amino acid derivative, N-Methyl-D-aspartate (NMDA) and the non-NMDA 

trasnmembrane receptors for glutamate, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
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acid (AMPA) and kainite and G-protein coupled metabotropic receptor sybtypes. Within the 

striatum, NMDA receptors mostly contain the subtypes, NR1, NR2A and NR2B subtypes 

(Küppenbender et al., 2000). Animal models of PD, including the 6-OHDA-lesioned rat 

model and MPTP-treated primates, have demonstrated an increase of glutamate 

neurotransmittion in association with hyperphosphorylation of these receptor subtypes and 

the development and maintenance of LID.  

To date, only one study has attempted to investigate abnormal glutamate function in vivo in 

PD patients in relation to LID (Ahmed et al., 2010). 11C-CNS 5161 PET binds to the MK801 

site in the activated voltage-gated ion channels with high affinity (Biegon et al., 2007), and as 

such, striatal and cortical NMDA glutamate ion channel activity can be assessed in relation 

to LID. A recent study of 18 PD patients divided into those with LID and those with a stable 

response to L-DOPA underwent two 11C-CNS 5161 PET scans, one while ‘ON’ following 

administration of L-DOPA and another while functionally ‘OFF’ any DA medication. 

Results showed reduced binding in the caudate, putamen and motor cortex of the stable 

responders following administration of L-DOPA. This is in contrast to the LID PD group 

suggesting that there is a relatively enhanced glutamate receptor activity in the motor areas 

of this group. The authors suggest that their results justify a rationalization of glutamate 

antagonist use in the attempt to improve LID in PD patients. However, the authors accept 

the study is limited by the fact that 11C-CNS 5161 is a selective agonist for MNDA receptors 

therefore does not provide any information regarding other glutamate receptor subtypes. 

Although they do suggest that it is likely that other receptor subtypes also become sensitive 

to L-DOPA.  

5.6 Serotonergic system 

L-DOPA acts in the early stages of the disease by being taken up into the spared DA 

terminals, whereby it is converted to DA, stored in synaptic vesicles and then released in an 

activity-dependent manner. As the disease progresses, there are less DA terminals avaliable 

for this conversion and as such,  it has been suggested that other cell types may become 

involved in the decarboxylation of L-DOPA in the advanced disease. Serotonergic neurons 

express AADC and vesicular monamine transporter 2 (VMAT-2), which are involved in the 

conversion of L-DOPA and which is involved in the storage of DA respectively (Arai et al., 

1994, 1995, 1996). Moreover, serotonin neurons in the dorsal and median raphe nuclei 

innervate the striatum (Lavoie and Parent, 1990; Nicholson et al., 2002). The presence of 

AADC and VMAT-2 in serotonin neurons provides the possible opportunity for L-DOPA 

derived DA to be formed, stored and released, thus acting as a ‘false neurotransmitter’ in 

serotonergic terminals. However, serotonergic neurons are unable to handle DA release in a 

regulated manner. Auroreceptor-mediated feedback control and reuptake via DAT maintain 

extracellular DA levels within a narrow physiological range in the DA synapes. The process 

of DA reuptake allows effective elimination of excess DA from the synaptic cleft, with the 

D2 autoreceptor maintaining the release from DA terminals in response to changes in the 

extracellular DA levels (Venton et al., 2003; Cragg et al., 2004) within the desired range. As 

serotonin neurons do not possess this autoregulatory mechanism, any DA released from 

serotonergic terminals is likely to generate excessive swings in extracellular levels of DA in 

response to L-DOPA administration (Carta et al., 2007). To date, the possible role of 

serotonin in LID has been studied primarily in animal models of PD (Ng et al., 1970, 1971; 
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Hollister et al., 1979; Lavoie and Parent, 1990; ; Arai et al., 1994, 1995, 1996; Tanaka et al., 

1990; Brotchie et al., 2000; Luginer et al., 2000; Obeso et al., 2000; Nicholson et al., 2002;  

Maeda et al., 2005; Carta et al., 2007) with only one in vivo preliminary results being reported 

thus far (Politis et al., 2010b). 
Animal studies utilising 6-OHDA- lesioned rat (Carta et al., 2007; Munoz et al., 2009) and 
MPTP-trated primates (Munoz et al., 2008) has reported an almost-complete abolition of the 
dyskinetic movements induced by chronic L-DOPA treatment when DA release is blocked 
from the serotonin neurons using 5-HT1A and 5-HT1B autoreceptor agonists without 
compromisnig the therapeutic benefit of L-DOPA on motor symptoms. Furthermore, the 
authors demonstrated that the combination of 5-HT1A and 5-HT1B agnosits prevented the 
developemnt of LID in MPTP-tratemed primates (Munoz et al., 2008). Therefore, the authors 
suggets that combining 5-HT1A and 5-HT1B agonists may be a favourable treated strategy 
for PD patients.  
Clinical trials have been undertaken testing the 5-HT1A agonist, Sarizotan in more than 1000 
PD patients (PADDY-1 and PADDY-2). Unfortunately these trials were unable to meet their 
primary endpoint which may have been a result of the low dose (1mg) administered in the 
phase III study compared to the dose (2 – 5mg) administered and proven effective in the 
phase II study (Bara-Jimenez et al., 2005).  
Overall, it appears that there may be a competition for storage at the serotonergic synapse, 
between L-DOPA derived DA and serotonin. It is suggested that this competetion may lead 
to a depletion in serotonin content thus an over-activation of serotonin terminals which are 
attempting to compensate for the reduced binding to the presynaptic serotonin 
autoreceptors. Subsequently there is an excessive release of DA from these neurons, 
triggering the LID. 
To date only preliminary data has been reported relating the serotonergic system to the 
pathophysiology of LID in PD patients with PET (Politis et al., 2010b). The authors 
conducted a RAC PET study and medication challenges with suprathreshold doses of L-
DOPA and Buspirone (5-HT1A agonist) in 16 PD patients with LID and 12 PD patients with 
a stable response to L-DOPA therapy. The authors aimed to investiagte the possibility that 
relatively preserved striatal 5-HT terminals may cause or aggravate LID by mishandling 
exogenous L-DOPA and releasing DA as a false neurotransmitter. 
Dyskinetic patients demonstrated an 18% decrease in putaminal RAC binding compared to 
an 8% reduction in the stable PD responder group. This result reflects an increase of DA 
synaptic turnover in the dyskinetic group as also shown in previous studies (de la Fuente-
Fernandez et al., 2001;  Pavese et al., 2006). However, administration of 5-HT1A agonist, 
buspirone preceding the administration of L-DOPA in the dyskinetic PD group revealed a 
normalization of putaminal synaptic DA at comparable levels to those of the stable PD 
responders as this was judged by the 12% decrease of their putaminal RAC binding. The 
authors also demonstrated that clinically, the administration of L-DOPA and Buspirone in 
combination significantly attenuated LID. Therefore, the authors suggest that the use of 5-
HT agonists, which dampen the transmitter release from 5-HT neurons, alleviating excessive 
synaptic DA levels and thus attenuating LID, is justified. 

6. Dyskinesias following neural transplantation  

The progressive declination of the clinical course of PD and the resulting motor 

complications of LID has resulted in more sophisticated therapeutic approaches in 

tackling PD symptomatology and medication side-effects. One such approach has been 
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implemented in the way of DA-rich fetal ventral mesencephalic (VM) tissue 

transplantation in the striatum of PD patients. The rationale for such a procedure is based 

on the hypothesis that PD is the result of DA denervation in the nigostriatal pathway and 

striatum and that transplanation of DA neurons could restore DA levels and reverse 

motor disability. Clinical trials on VM transplantation have been undertaken in the past 

two decades. Unfortunately results regarding motor symptom relief have been 

inconsistent with many patients developing motor complications termed GIDs, whereby 

these patients appear to develop these involuntary movements whilst ’OFF’ their DA 

medication. It is not currently understood if GIDs share the same pathophysiology and 

pathogenesis as LID induced by L-DOPA therapy. It has been suggested that GIDs 

develop as a result of graft fiber outgrowth causing an increase in DA release (Freed et al., 

2001) or due to an underadequate degree of DA release as DA reinnervation has failed 

(Ma et al., 2002).  

Animal studies may have provided an insight in to the pathogenesis of GIDs in PD 

patients following VM tissue transplantaion. DA rich grafts have been shown to improve 

LID in animals (Lee et al., 2000). However, transplantation of fetal serotonergic neurons 

into the striatum of 6-OHDA-lesioned rats has been shown to exacerbate LID by up to 

70% compared to pre-transplantation scores (Carlsson et al., 2007, 2009). Considering the 

evidence that other cells may be involved in the conversion, storage and release of DA, it 

is possible that this effect occurs as a consequence of abnormal handling of DA. Recent 

work has shown that serotonin neurons are involved in the development of GIDs despite 

the successful recovery of motor function. Utilising  11C-DASB PET, a selective marker for 

serotonin tranporter (SERT) binding, in two patients who developed GID following 

neural transplantation, it has been demonstrated that PD patients developing GIDs 

following VM tissue transplantation, exhibited excessive serotonergic innervation in the 

grafted striatum (Politis et al., 2010c). Furthermore, following the administration of the 5-

HT1A buspirone, the GIDs were markedly reduced indicating that the motor complication 

arose from serotonergic hyperinnervation. It is not known, however, if the mechanisms 

underlying GID are the same for LID, but nonetheless, this study provides the first in vivo 

evidence for the serotonergic hypothesis in the development of motor complications in 

PD.  

7. Conclusion 

Risk factors of LID development appear to be relatively established including degree of DA 

denervation, L-DOPA dose and duration of L-DOPA therapy. The advent of PET imaging 

has enabled much progress in understanding the mechanisms underlying LID. LID likely 

results from a combination of factors including, alteration of various neurotransmitter 

systems, abnormal synaptic plasticity and an altered firing pattern within the basal ganglia.  

LID is a troublesome side effect of DA therapy and currently there is no treatment. As such, 

it results in decreased quality of life for PD patients and in increased health care costs. 

Although the DA system appears to be primarily implicated in the PD pathological process, 

results from animal and in vivo studies provide evidence that non-DA neurotransmitter 

systems may have a role in the pathogenesis of LID. Manipulation of these systems may 

offer an alternative therapeutic approach in abating LID and preventing their initial 
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development. Furthermore, as more sophisticated therapeutic approaches for alleviating the 

symptoms of PD are considered, it is imperative that these potential motor complications 

are fully understood in order to avoid their development. The use of PET imaging, although 

expensive and not widely available, provides an excellent tool for predictive validity of in 

vivo patient studies which will ultimately minimise the risk of failure in future clinical and 

cell therapy trials.  
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