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1. Introduction  

Sequencing of bacterial genomes has become a common technique of the present day 
microbiology. Thereafter, data mining in complete genome sequence is an essential step to 
uncover the uniqueness and evolutionary success of microorganisms. Oligonucleotide usage 
(OU or k-mer) statistics provides invaluable tools to get insight into genome organization 
and functionality.  
The study of genome OU signatures has a long history dating back to early publications by 
Karlin et al. 1995, 1997, 1998, who focused mainly on dinucleotide compositional biases and 
their evolutionary implications. Statistical approaches of OU comparison were further 
advanced by Deschavanne et al., 1999, who applied chaos game algorithms; and by Pride et 
al., 2003, who extended the analysis to tetranucleotides using Markov Chain Model 
simulations. Later, a number of practical tools for phylogenetic comparison of bacterial 
genomes (Coenye & Vandamme, 2004; van Passel et al., 2006); identification of horizontally 
transferred genomic islands (Mrázek & Karlin, 1999; Pried & Blaser, 2002; Nakamura et al., 
2004; Azad & Lawrence, 2005; Dufraign et al., 2005; Becq et al., 2007) and assignment of 
unknown genomic sequences (Abe et al., 2003; Teeling et al., 2004) based on OU statistics 
became publicly available. These approaches exploited the notion that genomic OU 
composition was less variable within genomes rather than between them, regardless of 
which genomic regions had been taken into consideration (Jernigan & Baran, 2002). A 
general belief was that if a significant compositional difference was discovered in genomic 
fragments relative to the core genome, these loci most likely can be assigned to horizontally 
transferred genetic elements (transposons, prophages or integrated plasmids). This 
approach was criticized by several researchers (Koski et al., 2001; Wang 2001), who pointed 
out that codon bias and base composition are poor indicators of horizontal gene transfer. 
Therefore, there is a need for more informative parameters which also take into account 
higher order DNA variation. An overview of the current OU statistical methods based on  
di-, tetra- and hexanucleotides has been published recently (Bohlin et al., 2008). The 
conclusion of the review was that all methods were context dependent and, though being 
efficient and powerful, none of them were superior in all applications. Thus, the major 
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motivation of our work was to develop more flexible and informative algorithms seamlessly 
integrating di- to heptanucleotides OU analysis for reliable identification of divergent 
genomic regions. 

2. Linguistic approaches for genomics and metagenomics 

Genome linguistics is respectively known as the analysis of frequencies of k-mers in genome 
wide DNA sequences. The basic hypothesis is that biased distribution of oligonucleotides in 
bacterial genome is genome specific and may serve as a signature. Each OU pattern may be 
characterized by a number of OU statistical parameters, namely: local pattern deviation (D), 
pattern skew (PS), relative variance (RV) and several others that will be explained below. 
The requirements for the OU statistics are as follows: i) distances between patterns of 
different word length (from di- through to heptanucleotides) calculated for the same 
sequence must be comparable; i.e. one may use longer word patterns to perform a large 
scale analysis and then switch to shorter word patterns for a more detailed view; ii) OU 
patterns calculated for sequences of different lengths must be comparable provided that the 
length of the sequence is longer than the specified thresholds; iii) alterations of OU patterns 
may be analyzed by different non-redundant parameters (D, PS and RV with different 
schemes of normalization by frequencies of shorter constituent words). Superimposition of 
these OU characteristics allows better discrimination of divergent genomic regions. 

2.1 Oligonucleotide usage pattern concept 

OU pattern was denoted as a matrix of deviations [1…N] of observed from expected counts 
for all possible words of length N. Oligonucleotides or words are distributed in sequences 
logarithmically and deviations of their frequencies from expectations may be found as follows:  
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where n is any nucleotide A, T, G or C in the N-long word; C[1…N]|obs is the observed count 

of a word [1…N]; C[1…N]|e is its expected count and C[1…N]|0 is a standard count 
estimated from the assumption of an equal distribution of words in the sequence: 
(C[1…N]|0 = Lseq  4-N). 

Expected counts of words C[1…N]|e were calculated in accordance to the applied 
normalization scheme. For instance, C[1…N]|e = C[1…N]|0 if OU is not normalized, and 
C[1…N]|e = C[1…N]|n if OU is normalized by empirical frequencies of shorter constituent 
words of length n. The expected count of a word C[1…N]|e of the length N in a Lseq long 
sequence normalized by frequencies of n-mers (n < N) is calculated as follows: 
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Where the F[1…n] values are the observed frequencies of a particular word of length n in the 

sequence and  is any nucleotide A, T, G or C. For instance, the expected count of a word 
ATGC in a sequence of Lseq nucleotides normalized by frequencies of trinucleotides would 
be determined as follows: 

 TGC
ATGC seq ATG

TGA TGT TGG TGC

F
C L F

F F F F
  

  
 (3) 

Two approaches of normalization have been exploited where the F values are calculated for 
the complete genome (generalized normalization) or for a given sliding window (local 
normalization).  
The distance D between two patterns was calculated as the sum of absolute distances 
between ranks of identical words (w, in a total 4N different words) after ordering of words 

by [1…N] values (equation 1) in patterns i and j as follows: 
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Application of ranks instead of relative oligonucleotide frequency statistics made the 

comparison of OU patterns less biased to the sequence length provided that the sequences 

are longer than the limits of 0.3, 1.2, 5, 18.5, 74 and 295 kbp for di-, tri-, tetra-, penta-, hexa- 

and heptanucleotides, respectively (Reva and Tümmler, 2004). 

PS is a particular case of D where patterns i and j are calculated for the same DNA but for 

direct and reversed strands, respectively. Dmax = 4N  (4N – 1)/2 and Dmin = 0 when calculating 

a D, or, in a case of PS calculation, Dmin = 4N if N is an odd number, or Dmin = 4N – 2N if N is 

an even number due to the presence of palindromic words. Normalization of D-values by 

Dmax ensures that the distances between two sequences are comparable regardless of the 

word length. 

Relative variance of an OU pattern was calculated by the following equation: 
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where N is word length; Δ2w is the square of a word w count deviation (see equation 1); and 
σ0 is the expected standard deviation of the word distribution in a randomly generated 
sequence which depends on the sequence length (Lseq) and the word length (N): 

 0
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2.2 Compositional polymorphism of bacterial genomes 

Biased distribution of k-mers may be explained by selective forces of DNA reparation 
enzymes of microorganisms, which may sense stereochemical properties of DNA 
fragments. A strong correlation was discovered between frequencies of oligonucleotides 
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and their physicochemical properties such as base stacking energy, propeller twist angle, 
bendability, protein deformability and position preference in the DNA helical repeats 
(Fig. 1) calculated by the additive scale approach proposed by Baldi & Baisnée, 2000. It 
looks plausible that proteins of the replication-reparation system may sense the 
stereochemical properties of the DNA molecule and allow higher mutation rates in 
atypical regions; however, it has not yet been proved experimentally. The latter may 
explain the pervasive properties of genomic signatures that are reported for bacterial 
genomes (Jernigan & Baran, 2002). Despite a significant conservation of the OU pattern in 
genomic core DNA sequences, every bacterial genome contains loci of DNA which differ 
significantly from the core sequence. These loci usually contain gene clusters for 
ribosomal RNA and ribosomal proteins, horizontally transferred genomic islands, DNA 
fragments with multiple repeats and some other features. Superimposition of different 
OU parameters allows discrimination of divergent genomic regions. Briefly: rRNA 
operons are characterized by extremely high PS and low RV; giant genes with multiple 
repeated elements have high or moderate PS and high RV; horizontally transferred 
genetic elements are characterized by increased divergence between RV and GRV 
accompanied by high D; and genes for ribosomal proteins show a moderate increase of D, 
PS and RV above genomic averages. In the examples given above D denotes the distance 
between a local pattern calculated for a sliding window and the global pattern determined 
for the complete genome; PS is local pattern skew; and RV and GRV are variances of local 
OU patterns normalized by GC-content of the sliding window and the complete genome, 
respectively. 
A Web-based applet SeqWord Genome Browser (SWGB) was developed and available on-

line at www.bi.up.ac.za/SeqWord/ to visualize DNA compositional variations in pre-

calculated bacterial and viral genomes. The SWGB is basically comprised of two views, 

denoted by the ‘Gene Map’ and ‘Diagram’ tabs. The ‘Gene Map’ tab offers a simple view of 

an entire genome at a glance and gives users access to a number of important pre-calculated 

OU statistics superimposed on the gene map (Fig. 2). The ‘Diagram’ tab allows flexible 

filtering of the underlying data based on the criteria chosen by users. Although the 

underlying data is pre-calculated, the user may, by simply changing selected parameters, 

generate many alternative plots, which give different insights into the natural genomic 

variation. On the dot-plot diagram, each genomic fragment selected by the sliding window 

is represented by a dot with X and Y coordinates, which correspond to values of OU 

parameters chosen from X and Y drop-down lists, respectively. The Z axis parameter may 

be set as well. In this case, the dots are coloured by values of OU parameters selected for the 

Z axis, and the colour range is displayed on the vertical colour bar on the left of the plot area 

(Fig. 3). 

Several routines have been developed to identify horizontally transferred genomic islands, 

genes for ribosomal RNA and proteins, non-functional pseudogenes and genes of other 

functional categories. All these routines are described in detail with illustrations in 

supplementary web-pages (use the ‘Help’ link in the applet window). Take for example the 

genome of Pseudomonas putida KT2440, a known mosaic genome with 105 genomic islands 

above 4000 bp in length (Weinel et al., 2002). Many of these features can be visualized at a 

glance using the SWGB without any in depth analysis (see Fig. 2). On the ‘Diagram’ view 

the parameters n1_4mer:RV, n1_4mer:GRV and n0_4mer:D were selected for the X, Y and Z 

axes, respectively, as we showed previously (see Fig. 3).  
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Plotting local relative OU variance (RV) against global relative variance (GRV) basically 
shows the effect of normalization by global mononucleotide content. The core genome is 

then represented on the dot plot as the positive linear correlation line where RV  GRV 
(Fig. 3). In other words, these fragments exhibit such compositional closeness to the core 
genome that normalizing by local mononucleotide content does not have any effect 
compared to normalizing by the global content. These genomic fragments also exhibit 
compositional similarity to the genomic average; and are therefore coloured blue. Scattered 
dots lying peripheral to the expected strong linear correlation do not belong to the core 
genome and also have a higher distance from the genomic average and are hence coloured 
green and red. 
 

 
 

 
 
 
 

Fig. 1. Tetranucleotide usage patterns calculated for genomes of four different organisms. 
The deviations Δw of observed from expected counts are shown for all 256 tetranucleotide 
permutations (16×16 cells) by a colour code (right bar) depicting overrepresented  
(red) and rare (blue) words. The words are grouped into 39 equivalence classes and 
ordered by decreasing base stacking energy row-by-row starting from the upper corner  
(class 39). 
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Fig. 2. Identification of divergent genomic regions on the ‘Gene Map’ view. Superimposition 
of different OU parameters such as GC (black line), GCS (pink), PS (green), D (blue), GRV 
(upper brown line) and RV (lower brown line) allows discrimination of divergent genomic 
regions. In this example a part of the chromosome of Pseudomonas putida KT2440  
(127-774 kbp) is displayed in the applet window. A genomic fragment was highlighted 
using the function ‘Select region’ and a giant gene, PP0168, was selected by ‘Select gene’.  
A pop-up window ‘Gene Details’ was opened by double-clicking the gene on the map. 
Genes are indicated by red and grey (for hypothetical) bars. The black horizontal line 
separates genes by their direction of translation. 

Changing of the set of parameters as shown on Fig. 4 allows separation of core 
housekeeping genes from clusters of genes encoding ribosomal proteins and ribosomal 
RNA, vestigial regions with pseudogenes and giant genes with multiple repeats. 
SWGB is linked to a database of pre-calculated OU patterns of bacterial genomes (2243 
complete sequences, including bacterial chromosomes, plasmids and some viruses were 
available at the time of writing of this chapter and new sequences are regularly being 
added). The SWGB allows tentative annotation of the various divergent regions and 
provides overviews for use in comparative genomics. Users may download the command 
line version of the OligoWords program to analyze locally their own sequences. A packaged 
version of the SWGB allows users to view and manipulate their OligoWords results locally 
using a compatible web-browser. 
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Fig. 3. The ‘Diagram’ view. In this example n1_4mer:RV, n1_4mer:GRV and n0_4mer:D 

were selected for the X, Y and Z axes, respectively. Every dot on the dot-plot corresponds 

to a genomic fragment selected by the sliding window. Dots are spread and coloured in 

accordance with their values of the selected statistical OU parameters. Information for 

each dot may be found by one of the following methods: i) information for a dot pointed 

by the mouse is shown in the ‘Message’ bar; ii) double clicking a dot returns us to the 

‘Gene map’ tab with the corresponding genomic fragment highlighted; iii) framing the 

dots and clicking the ‘Get’ button opens a new applet window with the information about 

all selected regions. In this example the genomic regions of Salmonella typhimurium LT2 

(NC_003197) which correspond to horizontally transferred genetic elements were 

selected. 
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Genes for ribosomal proteins

Complex modular genes: cytochrome

biogenesis and large repetitive proteins in 
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other bacterial genomes  
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its ecotope.  

Core sequence

Foreign gene islands: pathogenesis

islands, transposones, integrated

phages, IS elements and so on.

Red dots correspond to genes

for ribosomal RNAs
 

Fig. 4. The ‘Diagram’ view. In this example n0_4mer:D, n1_4mer:RV and n0_4mer:PS were 
selected for the X, Y and Z axes to identify genomic areas of interest. 

2.3 Signature words and identification of environmental sequences 

In genomic and metagenomic literature the occurrences of 2 to 7 bp oligonucleotides have 
been studied extensively. Patterns of short oligomers (words) have been used successfully 
for DNA read clustering (Chatterji et al., 2008; Kislyuk et al., 2009; Saeed & Halgamuge, 
2009). However, short oligonucleotide patterns usually do not provide enough information 
for binning DNA reads to bacterial species or higher taxonomic units. Longer words of 8 to 
14 nucleotides generally are more specific. Nevertheless, it was illustrated that the approach 
based on the analysis of frequencies of all the permutations of oligonucleotides of a given 
length such as discussed above is not effective for analysis of 8 to 14 letter words (Bohlin et 
al., 2008). Furthermore, an analysis of all possible permutations of 8 to 14 bp words would 
be computationally expensive because the total number of possible permutations of words is 
4L where L is the word length. For words of length 8 to 14 bp, this quantity becomes very 
large. Additionally, the random changes in the frequencies of such a large number of words 
obscure the genome specific information present in a few signature words. According to 
Kirzhner et al., 2005, less than 1% of 10-mers are informative in a large-scale comparison of 
bacterial genomes. 
A first investigation into exploiting the information present in 8 to 14 letter words in 13 
strains from the genus Pseudomonas was made by Davenport et al., 2009. It has been shown 
as well that certain profiles of signature words may help to distinguish DNA fragments that 
originated from different genomes (Saeed & Halgamuge, 2009).  
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In this work an attempt was made to standardize the linguistic approaches of binning 
metagenomic DNA reads by creating a database of signature words of Eubacteria and 
Archaebacteria represented in GenBank. The first step was to develop methods for 
summarizing the large amounts of data associated with these words. To avoid using the 
words that do not provide any taxonomic information, the most divergent words were 
selected and stored in the database. Currently, the frequencies of 172,636 signature words 
calculated in 768 bacterial chromosomes are stored in a binary database file available for 
download from the SeqWord project Web-site at www.bi.up.ac.za/SeqWord/oligodb/. 
Furthermore, scoring functions were designed, which measure the likelihood that a given 
DNA fragment originated from a given taxonomic group. 
This tool also may be used to identify the origin of DNA sequences or whole clusters of 
DNA sequences. There are a number of programs such as LikelyBin (Kislyuk et al., 2009), 
CompostBin (Chatterji et al., 2008) and some others that cluster DNA sequences, but there is 
no default methodology for inferring the taxonomic affinity of these clusters. Typically, 
BLAST is used to compare these clusters to the databases of DNA sequences. Frequently 
these clusters consist of several short sequences that cannot be easily assembled, which 
makes using BLAST complicated. TETRA identifies long unknown DNA sequences by 
comparison of the whole patterns of frequencies of tetranucleotides (Teeling et al., 2004). A 
tool based on occurrences of 8 to 14 letter words is expected to work equally well both on 
clusters of sequences and single long sequences. 

2.3.1 Statistical background of selection of signature words 

To identify prospective signature words, the distribution score coefficients were calculated 
for each 8 to 14-mer permutation as follows: 

 
22

100000

 
DS

 
(7)

 

where µ indicates the average length of spans (in base pairs) between the repeated words in 
the sequence (i.e., µ = sequence_length/number_of_words); and σ is the standard deviation 
of the span lengths. The DS for a word increases in value when there is a high frequency of 
occurrence (µ is minimal) and the words are evenly distributed (σ tends to 0). The DS 
coefficient assigns low scores to infrequent words and to local repeats while giving higher 
scores to words occurring frequently and evenly distributed throughout the genome. The 
words that have DS above the threshold value of 0.3 in at least one genome were included in 
the template of signature words. Furthermore, their frequencies were recalculated for all 
genomes. The threshold value was empirically determined to ensure that the template 
contained similar numbers of words for each different word length and that an appropriate 
ratio between template size and word specificity is obtained. The final template contains 
172,636 signature words; that is approximately 0.1% of the total number of all possible 
permutations of 8 bp to 14 bp oligonucleotides. Note that in this work each oligonucleotide 
and its reverse complement were considered as the same word so that the two different 
strands of the DNA molecule will be assigned identical scores. 
To improve maintenance and operational flexibility of the database, the numeric frequencies 
of words may be replaced by percentile values without any significant loss of information. 
The empirical cumulative distribution of the frequency of occurrence of the words in the 
template was studied and the following non-linear regression model was fitted to the data: 

www.intechopen.com



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

36

 

 
5.4

93exp

L

p
f




 
(8)

 

where f is the frequency of a word per 100 Kbp, L is the word length and p is the probability 

that the word occurs at a frequency less than or equal to f. For example, according to 

equation 8 for 50% of words of the length 8 bp (p = 0.5; L = 8) the frequency f is in the range 

from 0 to 3.13 words per 100 Kbp of the given sequence; and 90% (p = 0.9) of 8-mers have 

frequencies from 0 to 10.41. Four categories were designated for rare (p < 0.1), common (0.1 

≤ p <0.5), frequent (0.5 ≤ p < 0.9) and abundant (0.9 ≤ p) words. The borders of the percentile 

categories calculated by equation 8 are shown in Table 1. 

The performance of a signature word to separate DNA reads of different origins or to bin a 

cluster of reads to a taxonomic unit depends on the set of taxonomic units to be 

differentiated and the task formulation. Several scoring algorithms were used in this study. 

All the scores were normalized to a range from 0 to 10. The scores were used to order the 

words in the database and to select the ones with the highest scores. 

Word divergence is scored by the variance of percentile values (see Table 1) in the selected 

genomes normalized by the maximum possible variance. The most diverse word would be 

rare in one half of the selected genomes and abundant in the other half of the genomes. 

To select the words, which are rare or abundant in all selected genomes, the following score 
was used: 

 Score = 10 × (Av – 0.05)/0.9 (9) 

where Av is the average of the percentile values calculated for a word in selected genomes. 

To select rare words (10 – Score) was used. 

The perfect word to distinguish between taxa is one that is similarly distributed in genomes 

belonging to the same taxon but is differently distributed in different taxa. The scores were 

assigned in the spirit of ANOVA by computing the ratio of the sums of square deviations 

over the average values between taxa and within every taxon. 

Another practical task may consist in distinguishing one taxon (outgroup) from a number of 

other taxa (counterparts) by diverse, abundant or rare words. In our study this approach 

was termed as confronted comparison. Three scoring algorithms were used: 

 
nVarAvAvcoreDiversityS g 00 1

 
(10)
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(11)

 

 
  nVarAvAveScarceScor g 00 1210 

 
(12)

 

where Av0 and Avg are average frequencies of the word in genomes of the outgroup and 
counterpart taxonomic units, correspondingly; Var0 is the variance of the word 
frequencies in the outgroup genomes and n is the number of genomes in the outgroup 
taxonomic unit. 
Computer simulation of metagenomic datasets was done by the MetaSim program (Richter 

et al., 2008). DNA reads were clustered by the LikelyBin algorithm (Kislyuk et al., 2009). The 

database of signature words and the OligoDBViewer program are available for download 

from www.bi.up.ac.za/SeqWord/oligodb/. 
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Word length 

Percentiles 

Rare 
– (0.0)* 

Common 
+ (0.25) 

Frequent 
++ (0.75) 

Abundant 
+++ (1.0) 

8 bp < 0.94† ≥ 0.94 and < 3.13 ≥ 3.13 and < 10.4 ≥ 10.4 

9 bp < 0.56 ≥ 0.56 and < 1.85 ≥ 1.85 and < 6.13 ≥ 6.13 

10 bp < 0.35 ≥ 0.35 and < 1.15 ≥ 1.15 and < 3.81 ≥ 3.81 

11 bp < 0.23 ≥ 0.23 and < 0.75 ≥ 0.75 and < 2.48 ≥ 2.48 

12 bp < 0.15 ≥ 0.15 and < 0.51 ≥ 0.51 and < 1.68 ≥ 1.68 

13 bp < 0.11 ≥ 0.11 and < 0.35 ≥ 0.35 and < 1.17 ≥ 1.17 

14 bp < 0.08 ≥ 0.08 and < 0.25 ≥ 0.25 and < 0.84 ≥ 0.84 

*Rare, common, frequent and abundant words are marked as –, +, ++ and +++, respectively. The 
numeric values representing each percentile category are used for score calculations. 
† These are f-values calculated by equation 8 for the cumulated likelihoods (p) 0.1, 0.5 and 0.9, 
respectively. 

Table 1. The percentile border frequencies calculated for the words of different length. 

2.3.2 OligoDBViewer and the database of signature words 

The main window of OligoDBViewer is shown in Fig. 5. The functionality of the 
OligoDBViewer is described in detail on the project Web site. The program allows selecting 
genomes or taxonomic units from the list and searching for the best discriminative words by 
using the program functions accessible through the toolbar and the ‘Command’ menu. The 
resulting list of ordered words will be shown in the pop-up panel on the right hand side as 
in Fig. 6. In this example the diverse words were searched with the goal of separating the 
genomes of Mycobacterium avium k10 [NC_002944] and M. tuberculosis F11 [NC_009565]. The 
divergence scores are shown in column ‘C’. The number of times an oligomer falls into the 
categories of rare, common, frequent or abundant words is shown respectively from left to 
right in column ‘Stat’. 
The list of the words returned by OligoDBViewer may be highly redundant. For example, 
words that only differ by a single nucleotide may be expected to have similar distributions 
in genomes. To reduce the redundancy of the selected words, several filter options may be 
set. The filter settings in Fig. 6 removes all the words that differ from the words with the 
highest scores by less than 30 % similarity (another option is available to set the minimal 
number of mismatches) as well as the words that are left or right shifted sub-words or 
shorter constituents of longer words that have higher scores. Then the list is cut off so that 
only the top 10 words remain. Additionally, the list of selected words may be filtered by the 
word length and the score threshold. All word filtering settings is reversible. 
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Fig. 5. The main window of OligoDBViewer. 

To facilitate large scale calculations and the database updates on remote servers, several 
command line utilities are available for download. They are fully described on the project 
Web site. 

2.3.3 Algorithms of binning of clusters of DNA reads to taxonomic units 

To estimate the similarity of a cluster of DNA reads to bacterial taxonomic units the 
percentile values were used (Table 1). All DNA reads of the cluster were concatenated in an 
artificial sequence and the frequency of the words normalized per 100 Kbp were counted (f-
value). Then the f-values were converted to percentiles: 

 

   
3

9ln5.4ln 


Lf
p

 
(13)

 

Note that equation 13 is the inverse of the equation 8. The meanings of the coefficients were 
explained above. 
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Fig. 6. The top 10 most diverse words which separate M. tuberculosis from M. avium. The 
filter was set to reduce the redundancy of the selected words. 

Next, the distance values D between an unknown sequence and the taxonomic units were 
calculated as follows: 
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


 (14) 

where pi is the percentile value from the OligoDB database for the word i in a bacterial 
genome, or the average of the percentile values for the genomes of a taxonomic unit; pi' is 
the percentile value of this word in the query sequence as calculated by equation 13; and mi 
is an indicator variable equal to 0 if pi ≥ 0.5 and equal to 1 if pi < 0.5. Thus, the denominator 
is the maximum possible distance. D values fall in the range from 0 to 10. 
Consider the following example: let the 10-mer TTAAAGAAAA be distributed in the 
concatenated cluster sequence with the frequency 2.81 words per 100 Kbp and let the 8-mer 
TCTTTTAA occur 6.35 times per 100 Kbp. According to equation 13, the percentile value of 
the word TTAAAGAAAA is: 

 
ln(2.81) 4.5ln(10) 9

.79
3

p
 

   (15) 

and for the word TCTTTTAA the percentile value is: 

 
ln(6.35) 4.5ln(8) 9

.74
3

p
 

   (16) 

Next D is calculated by equation 14. The motivation for using D values rather than Euclidian 
distances is based on the fact that the observed frequency of occurrence of words in the 
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clustered reads is frequently lower than in the original genome due to asymmetric 
distribution of word frequencies. Another factor that contributes to this observation is that 
the clusters of metagenomic DNA reads often contain fragments from more than one 
organism. This leads to false similarity of metagenomic sequences to taxa where the 
signature words are uncommon. To remove this bias, the equation 14 was constructed so 
that the difference between pi’ and pi is given less weight if pi’ is smaller than pi than if pi’ is 
larger than pi. 
To evaluate the discriminative power of the algorithms, several simulated metagenomic 
datasets were prepared using MetaSim. Then DNA reads were clustered by LikelyBin. 
The first set was a simple random selection of 50 DNA fragments of the chromosome of 
Bacillus subtilis 168 [NC_000964]. The total length of all the fragments was 691 Kbp. The 
OligoDB program was used to compare the compositional similarity of these randomly 
selected sequences with the original chromosome and the closely related organisms of the 
genus Bacillus and class Firmicutes. The obtained distances are shown in Table 2. 
 

Genome D* 

B. subtilis [NC_000964] 1.74 

B. amyloliquefaciens [NC_009725] 2.22 

B. licheniformis [NC_006270] 2.23 

B. pumilus [NC_009848] 3.43 

B. clausii [NC_006582] 3.70 

Lactobacillus brevis [NC_008497] 3.83 

B. halodurans [NC_002570] 4.05 

B. pseudofirmus [NC_013791] 4.49 

B. anthracis [NC_003997] 5.60 

B. cereus [NC_004722] 5.68 

*In this and the following tables the filter settings for the program were as follows: only the top 100 

words of 8 to 12-mers with the sequence similarity ≤ 30 % were considered. Further, one nucleotide 

shifted words and one nucleotide shorter constituent words were filtered out as in the filter setting 

window in Fig. 6. 

Table 2. Identification of DNA fragments generated from the B. subtilis chromosome. 

For the next test, two quite distant organisms were selected: Burkholderia cenocepacia AU1054 

[NC_008062] and Psychrobacter arcticus 273-4 [NC_007204]. 552 genomic fragments with an 

average length of 500 bp were generated randomly by MetaSim from the B. cenocepacia 

chromosome and 448 fragments of the same average length were obtained from the 

P. arcticus chromosome. All these fragments were mixed together and used as the input for 

LikelyBin. These randomly generated genomic fragments were then grouped by DNA 

composition similarity into 13 clusters. The two biggest clusters contained DNA fragments 

that were generated exclusively from one origin: 347 of the fragments generated from 

B. cenocepacia were grouped into cluster A and 437 of the fragments from the P. arcticus 

chromosome were in cluster B. Now, the OligoDB algorithm was used to identify the 

organisms most similar to the cluster. For the comparative analysis several representatives 

of - and -Proteobacteria were selected (Table 3). 
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Cluster A (172 Kbp) D Cluster B (220 Kbp) D 

B. cenocepacia [NC_008062] 2.07 P. arcticus [NC_007204] 1.59 

B.ambifaria [NC_010557] 3.05 P. cryohalolentis [NC_007969] 1.66 

B. mallei [NC_006348] 3.51 P. haloplanktis [NC_007481] 1.92 

B. phymatum [NC_010622] 6.69 P. atlantica [NC_008228] 2.25 

B. xenovorans [NC_007952] 6.73 P. ingrahamii [NC_008709] 2.28 

R. solanacearum [NC_003295] 7.67 S. baltica [NC_009052] 2.72 

R. eutropha [NC_007347] 7.94 S. enterica [NC_003198] 7.06 

C. metallidurans [NC_007974] 8.59 E. pyrifoliae [NC_012214] 7.72 

P. arcticus [NC_007204] 8.59 B. cenocepacia [NC_008062] 8.67 

R. pickettii [NC_010682] 8.66 P. putida [NC_002947] 8.90 

Table 3. Identification of DNA fragments generated from B. cenocepacia (cluster A) and 
P. arcticus (cluster B). 

 

Cluster A (87 Kbp) D Cluster B (99 Kbp) D 

P. haloplanktis [NC_007481] 3.00 S. enterica [NC_003198] 2.66 

P. cryohalolentis [NC_007969] 3.06 E. pyrifoliae [NC_012214] 3.21 

P. ingrahamii [NC_008709] 3.06 P. putida [NC_002947] 3.50 

P. mirabilis [NC_010554] 3.10 S. baltica [NC_009052] 7.00 

P. arcticus [NC_007204] 3.29 P. atlantica [NC_008228] 7.57 

P. atlantica [NC_008228] 4.25 P. arcticus [NC_007204] 7.92 

S. baltica [NC_009052] 4.80 P. cryohalolentis [NC_007969] 7.99 

S. enterica [NC_003198] 7.49 P. ingrahamii [NC_008709] 8.03 

E. pyrifoliae [NC_012214] 7.57 P. mirabilis [NC_010554] 8.09 

P. putida [NC_002947] 8.04 P. haloplanktis [NC_007481] 8.17 

Table 4. Identification of a chimerical cluster A that contains DNA fragments from 
P. haloplanktis and S. enterica, and a monophyletic cluster B containing fragments of the 
S. enterica genome. 

The clusters were identified correctly; however, the separation of genomic fragments of 

P. arcticus (Cluster B) from other close relative organisms of genera Psychrobacter, 

Psychromonas and Pseudoalteromonas was not reliable. An additional round of identification is 

needed where the signature words are selected specifically to distinguish between these 

organisms. 

The next set of DNA fragments was generated from two genomes of -Proteobacteria: 

Pseudoalteromonas haloplanktis TAC125 [NC_007481] and Salmonella enterica CT18 [NC_003198]. 

LikelyBin clustered the fragments into 49 clusters. Half of the clusters contained sequences 

generated from both chromosomes. The two biggest clusters were selected for analysis by the 

OligoDB algorithm. Cluster A contains 166 fragments of the P. haloplanktis chromosome and 9 

sequences originating from S. enterica. Cluster B contains 195 DNA fragments generated from 

S. enterica only. Results of the identification are shown in Table 4. 

Both of these clusters were identified correctly. The mix of two organisms in Cluster A 

yields D values that are higher than all other examples in this paper. D values calculated for 

more complex chimerical clusters were around 5; indicating that it will be difficult to 

associate such a set of sequences with a specific taxonomic unit. 
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2.4 Stratigraphic analysis of bacterial genomes 

DNA molecules encoding functional enzymes, transcriptional regulators and virulence 
factors are fluxing through the bacterial taxonomic walls. They endow environmental and 
clinical strains of bacteria with new unexpected properties. Lateral genetic exchange, 
particularly of drug tolerance genes has been recognized for a long time; however the 
ontology of genomic islands and their donor-recipient relations remain generally obscure 
because of methodological problems. Horizontally transferred genes are highly mutable and 
the mobilome entities having been inserted into host chromosomes undergo multiple events 
of fragmentation, partial duplications and deletions. Even prediction of insertion sites in 
host chromosomes remained to be a challenge. 
Genome linguistics methods are applicable to study and visualize intrinsic relationships 
between mobile genetic elements in bacterial genomes. Mycobacterium tuberculosis, a 
bacterial pathogen which is a leading cause of human death worldwide, was selected as a 
subject for this study. Emergence and evolution of this deadly pathogen are still ambiguous 
and not fully understood even after having done the sequencing and comparative studies on 
multiple strains of this genus. 

 

Fig. 7. GIs identified in Mycobacterium genomes and other organisms share compositional 
similarity. GIs identified in Mycobacteria are represented by white nodes and species of 
other genera by grey nodes. Each node represents one GI tagged by NC number of the host 
organism as in NCBI followed by the reference number of GIs as in GEI-DB. The edges 
depicted by green halo link GIs sharing similar DNA sequences longer than 100 bp 
identified by blast2seq. The layout was created by an in-house Python program that 
incorporates executable files of Graphviz 2.26.3 for Windows. 
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2.4.1 Identification and grouping of mycobacterial genomic islands 

Linguistic methods were applied to study the distribution of genomic islands (GIs) in 
complete genome sequences of Mycobacterium. GIs were identified by SeqWord Gene Island 
Sniffer (SWGIS available at www.bi.up.ac.za/SeqWord/sniffer/). The identified GIs were 
grouped by compositional similarity of oligonucleotide usage (OU) patterns (Fig. 7). They 
were further pair-wise compared by blast2seq and the proteins encoded by GIs’ genes were 
searched by BLASTp through the local databases of bacterial, plasmid and phage proteins. 
The latter analysis was performed to check if the GIs that cluster together share syntenic 
genes and to also deduce the types of genes that are most frequently transferred 
horizontally across species and genus borders. 
In genomes of virulent and environmental Mycobacterium multiple genomic islands were 

identified which share both sequence and OU similarity (Fig. 7). An exception is M. leprae 

which genomic islands were unrelated to GIs of other Mycobacteria (data not shown but check 

http://anjie.bi.up.ac.za/geidb/geidb-home.php). In Fig. 7 GIs identified in M. tuberculosis, M. 

bovis, M. marinum, M. vanbaalenii, M. abscessus and M. smegmatis are represented by white 

nodes and those of species of other genera by grey nodes. Each node represents one GI tagged 

by NC accession number of the host organism as in NCBI followed by colons and reference 

numbers of GIs as in GEI-DB (http://anjie.bi.up.ac.za/geidb/geidb-home.php). Furthermore, 

six GIs identified in M. tuberculosis, M. bovis and M. marinum (framed in Fig. 2) share similarity 

in both DNA sequence and OU with GIs distributed among -Proteobacteria, particularly to 

those of Rhizobium and Agrobacterium. 

2.4.2 Stratigraphic analysis of genomic inserts 

To determine the relative time of GI insertions, the similarity in OU patterns of GIs and 

corresponding host chromosomes was calculated for all organisms. The results are 

depicted by grey gradient colors in Fig. 8. GIs that significantly deviate from their hosts 

(recent inserts) are shown dark grey; and those that already underwent genomic 

amelioration (Lawrence & Ochman, 1997) are shown light grey. Most mycobacterial GIs 

revealed to be ancient inserts that is in consistence with the fact that they are shared by 

different species. Few of the GIs that showed to be in possession of OU patterns similar to 

GIs of Rhizobium and Agrobacterium are relatively recent acquisitions. Comparison of the 

patterns of the GIs and host genomes was revised in order to determine donor-recipient 

relationships between these organisms (Fig. 9). The analysis revealed that these 

mycobacterial GIs are compositionally more similar to the chromosomes and mobilomes 

of Agrobacterium and that they are most likely originated from this source as indicated in  

Fig. 9. 

43 Mycobacterial GIs (unframed in Fig. 2) contain 910 annotated genes among which 386 

were hypothetical or unknown. Functional genes are listed in Table 5. Predominance of 

phage related genes suggests that these GIs are mostly prophages. Genes that are harboured 

by the GIs of the -Proteobacteria origin (framed in Fig. 2) encode several transferases, 

esterases, mmcH proteins and hypothetical proteins organized into operon structures 

(Fig. 10), which may be involved in the biosynthesis of some yet unknown compounds. 

Shaded areas in Fig. 10 link regions sharing DNA sequence similarity determined by 

blast2seq. The compared genomes are NC_000962 (M. tuberculosis H37Rv); NC_002755  

(M. tuberculosis CDC1551); NC_008769 (M. bovis BCG str. Pasteur 1173P2); and NC_010612 

(M. marinum M). Lengths of GIs are also indicated.  
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Fig. 8. Stratigraphic analysis of GIs. The edges depicted by green halo link GIs sharing 
similar DNA sequences longer than 100 bp identified by blast2seq. The layout of nodes is 
the same as in Fig. 7. 

 

 

Fig. 9. Donor-recipient relationships between GIs and host organisms of Agrobacterium 
and Mycobacterium. Dark green circles indicate OU patterns of the host organisms. Light 
green shaded areas represent half-distances between chromosomal OU patterns. OU 
patterns of genomic islands of M. tuberculosis NC_002755 and A. tumefaciens NC_003062 
(blue and red circles respectively) were plotted according to the calculated distances 
between them and OU patterns of the chromosomes. Plotting was done by an in-house 
Python program. 
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Gene categories Number of genes 

Phage related proteins, integrases and 
transposases 

91 

Dehydrogenases 31

Transcriptional regulator 23

Peptide synthetase and polyketide 13

Membrane proteins 23

Monooxygenase 11

Glycosyl transferases 11

Oxidoreductase 10

Dioxygenase 9

PE-PGRS proteins 7

Esterases 5

Table 5. Proteins encoded by genes in ancient GIs of Mycobacterium. 

Protein BLAST analysis of Mycobacterial GIs retrieved similarities in proteins shared with a 
great variety of bacterial plasmids and phages, particularly in the plasmid pSOL1 from 
Clostridium acetobutylicum ATCC 824. Acquisition of genetic materials from intracellular 

parasitic and symbiotic species of -Proteobacteria by an ancestral strain of Mycobacterium 
may be an event that had triggered the evolution of former saprophytic organisms towards 
the parasitic lifestyle. 
 

 

Fig. 10. Homologous genes and operons in GIs shared by Mycobacterium. GIs are referred by 
NC number of the host organism in the NCBI database followed by the reference number of 
GIs in GEI-DB. 

2.4.3 Overview of the horizontal gene transfer in the bacterial world 

The exchange of genetic material was found to have occurred in different domains of life: 
Archaea, Bacteria, and Eukarya (Choi and Kim, 2007). Horizontal gene transfer, defined as a 
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mechanism that promotes the transfer of foreign genomic segments between lineages was 
found to be relatively common in prokaryotes and less common in higher-order organisms. 
The transfer of operational genes is a continual process and is far more important in 
prokaryotic diversity of different sources (Jain et al., 1999; Ochman, 2000). For horizontal 
gene transfer to become a success, the acquisition of foreign DNA segments must be 
counterbalanced by DNA loss. Acquired DNA providing functions that are beneficial to the 
host may be maintained, while DNA providing less beneficial functions may be lost 
(Lawrence, 1999). Mobile genetic elements possess genes that contribute to bacterial 
speciation and adaptation to different niches, but also carry with them factors that 
contribute to the bacteria’s fitness traits, secondary metabolism, antibiotic resistance and 
symbiotic interactions (Dobrindt et al., 2004; Mantri & Williams, 2004) that are of medical 
and agricultural importance.  
The transfer of GIs occurs through three mechanisms: transformation, conjugation and 
transduction. These mechanisms mediate the movement and transfer of DNA segments 
intercellularly. Conjugation and transduction are the common players in genetic transfer. 
They require mobile elements such as plasmids and bacteriophages to transfer genetic 
elements along with the sequence features of their donor to recipient cells (Hacker & 
Carniel, 2001). Upon transfer, these genetic elements get established into the recipient cell 
either as self replicating elements or by getting integrated into the chromosome either by 
homologous or illegitimate recombination techniques (Dutta and Pan, 2002; Beiko et al., 
2005). Transformation, unlike conjugation and transduction does not require any form of a 
vector to transport genomic elements between bacteria. It is mediated by the uptake of a 
naked DNA in the environment. The uptake usually takes place upon the release of DNA 
from decomposing and disrupted cell, or viral particles, or even excretions from living cells 
(Thomas & Nielsen, 2005).  
DNA composition comparisons between lineages have uncovered that genes acquired by 
the above mechanisms display features that are distinct from those of their recipient 
genomes (Hacker and Carniel, 2001; van Passel et al., 2006). Genes acquired by horizontal 
transfer can often display atypical sequence characteristics and a restricted phylogenetic 
distribution among related strains, thereby producing a scattered phylogenetic distribution 
(Ochman et al., 2000; Dutta and Pan, 2002). Bacterial species are variable in their overall GC 
content but the genes in genomes of particular species are fairly uniform with respect to 
their base composition patterns and frequencies of oligonucleotides (Ochman et al., 2000). 
The phylogenetic aspect of similarity in base composition among closely related species 
arises from their common origin. Similarity is also influenced by genome specific mutational 
pressures that act upon their genes to promote the maintenance of composition stability. 
Native or core genes in a given organism exhibit homogeneous OU content and codon 
usage, while foreign genes display atypical characteristic features shared with their 
mobilomes (phages and conjugative plasmids) or previous host organisms for the genetic 
segments which were mobilized and integrated by mobilomes (Davenport et al., 2009). 
Compositional specificity of GIs allows their precise identification by the SWGIS program 
(see above in this chapter). In this work SWGIS was used to search each prokaryotic genome 
for foreign inserts based on the comparisons of tetranucleotide usage patterns, whereby the 
frequencies of particular tetramers are compared with expected occurrences of the same 
tetramers throughout the whole genome. Identified GIs were stored to GEI-DB 
(http://anjie.bi.up.ac.za/geidb/geidb-home.php) that contains a set of 3518 precalculated 
GIs identified in 637 prokaryotic genomes. All these GIs were clustered by the 
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compositional OU pattern similarity that is believed to represent their common ancestry. 
Similarity between GIs was calculated as 100 – D(%), where D(%) was found by the equation 
4. GIs which share more than 75% of similarity were grouped together. Groups of GIs and 
their distribution among bacteria are shown in Fig. 11. 
GIs were identified in all bacterial classes. There are more GIs from E. coli and other 

Enterobacteria and -Proteobacteria that partially may be explained by a biased 
overrepresentation of these microorganisms among other sequenced genomes in the 
GenBank database. E. coli, Shigella and Salmonella share GIs of one common origin but GIs 
found in other species often showed to have originated from several different origins. For 

example, GIs from Pseudomonas form several separate clusters associated with either other -
Proteobacteria or -Proteobacteria. GIs of -Proteobacteria and Firmicutes show extreme 
diversity. Brucella, Agrobacterium and Rhizobium share several unrelated pools of their 
mobilomes. Relations which were found between GIs of Mycobacterium and those of 
Agrobacterium and Rhizobium have been discussed above in detail. GIs of Prochlorococcus and 

Nostoc cyanobacteria most likely originated from marine -Proteobacteria, but GIs of 
Synechococcus are very specific and share no similarity with any other microorganisms. 
 

 

Fig. 11. Groups of GIs joined by compositional OU pattern similarity. Each node 

represents one GI. Genera of -Proteobacteria are shown in light blue (enterobacteria 

Escherichia, Shigella and Salmonella), cyan (Pseudomonas) and dark blue (marine bacteria 

Shewanella, Hahella, Pseudoalteromonas and Alcanivorax); -Proteobacteria Agrobacterium, 

Brucella, Neisseria, Rhizobium and Synorhizobium are depicted by magenta nodes; 

Firmicutes (Bacillus, Clostridium, Geobacillus and Streptococcus) – orange; Actinobacteria 

(Corynebacterium and Mycobacterium) – yellow; Cyanobacteria (Prochlorococcus, Nostoc and 

Synechococcus) – green. Nodes representing other organisms are white. Black edges link 

nodes which share strong OU similarity above 75% and grey edges represent weaker 

similarity below 75%. 

www.intechopen.com



 
Systems and Computational Biology – Molecular and Cellular Experimental Systems 

 

48

It may be concluded that GIs indeed may flux through the bacterial taxonomic walls but not 
in a random fashion. Several species and genera share pools of horizontally transferred 
genetic elements, which include pathogenicity, antibiotic resistance, O-antigen synthesis and 
catabolic GIs, whereas the genetic exchange between other groups of microorganisms is 
seemed very unlikely. Detailed analysis of gene exchange pathways among microorganisms 
will shed light on the roles played by the horizontal gene transfer in the evolution and 
pathogenicity of bacteria.  
26732 proteins encoded by GIs’ genes used in this study were pair-wise compared by 
BLASTp. The bit-score results were used to produce clusters of proteins by Markov 
clustering algorithm (MCL) (Vlasblom & Wodak, 2009). MCL with an inflation parameter of 
1.8 produced 10837 clusters, however, many of them were of a single hypothetical protein. 
Due to the large amount of hypothetical and unknown genes in the database not all of these 
clusters would present biologically significant data. Top 24 clusters containing more than 50 
proteins were chosen as significant to represent categories of proteins which are most often 
mobilized and transferred horizontally among bacteria. Besides phage related proteins 
which are in a majority, the most frequently bacteria acquire ABC-transporters, 
transcriptional regulators including GGDEF diguanylates, polysaccharide and O-antigen 
biosynthesis proteins, dehydrogenases and outer membrane proteins (Table 6). 
 

Functional group 
Nr of proteins 

identified in 3518 GIs 

Phage related proteins, IS-elements, transposases; 792 

Transcriptional regulators; 599 

Polysaccharide and O-antigen biosynthesis proteins; 352 

ABC-transporter; 252 

Outer membrane proteins; 241 

Dehydrogenases; 67 

RHS-family proteins; 64 

Table 6. Predominant categories of horizontally transferred proteins. 

3. Conclusion 

Comparative genomics exploits the methods of two major categories based on the analysis 

of composition and sequence similarity. Having been developed at the beginning of the 

genomics era, sequence similarity comparison by BLAST (Altschul, 1990) and FASTA 

(Pearson, 1995), and sequence composition simulation by Markov Chain Models (Schbath, 

2000) remain the algorithms of first choice. The algorithms for sequence similarity 

comparison are widely used because of speed, more straightforward statistics and a clearer 

biological relevance of sequence alignment based considerations. However, a number of 

practical tools based on OU statistics have become publicly available. Several novel OU 

analytical tools of the SeqWord project for genome visualization, genomic island detection 

and identification of unknown sequences have been presented in this chapter.  

Composition based methods are termed genome linguistics as they deal with frequencies of 
words written as chains of given alphabets of nucleotides or amino acids of variable lengths. 
Genome linguistic approaches may complement or even outperform the sequence similarity 
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comparison in clustering DNA reads (Kislyuk et al., 2009) and detecting inserts of genomic 
islands (Hsiao et al., 2003). These approaches have also been shown to be instrumental in 
viral metagenomics (Delwart, 2007). During composition based analysis, longer DNA 
sequences are rather preferred to shorter ones for the word distribution statistics to be 
reliable. 
DNA similarity vanishes much faster in phylogenetically distant organisms than the OU 
composition does, especially in highly variable virus, phage, plasmids and genomic islands. 
Protein similarity may mislead binning or identification of unknown sequences for it mostly 
reflects the functional conservation of protein domains rather than the taxonomic unity. 
Another common limitation of the similarity based methods is that the sequence 
identification is possible only if a homologous DNA or protein sequence is present in the 
searched database. On the contrary, the genome specific OU pattern is a pervasive property 
of the whole genome (Jernigan & Baran, 2002) that allows binning of DNA reads to their 
putative origin even if they do not share any significant sequence similarity.  
The advancement in genome sequencing technologies made large scale sequencing 
affordable for many laboratories. An attractive approach of alignment-independent 
phylogenetic studies based on the comparison of OU patterns was discussed in several 
publications and a number of web-based services were proposed (Chapus et al., 2005). We 
suggest rather a cautious use of these methods as a significant convergence of OU patterns 
was observed between unrelated organisms. For instance, Pseudomonas and Mycobacterium 
share similar OU patterns. Furthermore, a wider application of OU patterns is hindered by 
the absence of any noteworthy mathematical models simulating the evolutionary changes in 
OU patterns between organisms in contrast to sequence similarity methods which provide 
plenty of models of nucleotide and amino acid substitutions. Development and testing of 
such models is the task that urgently needs to be looked into to advance applicability of 
genome linguistic approaches. 
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