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1. Introduction 

Development of massively parallel “next generation” sequencing technology (NGS) has 
dramatically revolutionized biological studies. Among the many applications of NGS, RNA-
Seq is one of the most important uses of this technology. RNA-Seq enables investigators to 
accurately probe the current state of a transcriptome and assess many biologically important 
issues, such as; gene expression levels, differential splicing events, and allele-specific gene 
expression. Compared with previous technologies (e.g., microarrays, etc.) NGS has the clear 
advantage of not being limited to experimental systems having well characterized genomes 
or transcript sequence libraries. This positions RNA-seq approaches as important and 
versatile techniques for experimental systems and species where specific genetic 
information may be limited or altogether lacking.  
A major goal of most transcriptomic studies is the identification and characterization of all 
transcripts within a developmental stage or specific tissue. NGS techniques have made the 
massive amount of data required to carry out such studies both inexpensive and available to 
an unprecedented extent. Clever computer algorithms have made the assembly of these 
massive data sets the work of one or two people with reasonably powerful workstations or a 
moderate analytical server.  
Once a reference transcriptome has been assembled, analyses can be carried out that involve 
several steps, such as; mapping short sequence reads to transcriptome, quantifying the 
abundance of genes or gene sets, and comparing differential expression patterns among all 
samples. Herein we outline the processes from obtaining raw short read data to advanced 
comparative gene expression analysis and we review bioinformatic programs currently 
available, such as Tophat, Cufflinks, DESeq, that are specifically designed to address each of 
the above steps. We will discuss both accuracy and ease of use of these tools by biologists 
beginning to pursue these types of analyses. In addition to individual programs, we will 
also discuss integration of multiple programs into pipelines for more rapid and complete 
expression analyses. Overall, the future applications of RNA-Seq will open new avenues for 
transcriptome analyses of less well-studied and/or wild caught species that could not have 
previously been approached. This will yield a wealth of new comparative data highlighting 
the many ways plants and animals have developed to survive in this rapidly changing 
environment.  
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2. De Novo sequence assembly and expression analysis with NGS data 

There are many phases to an NGS research project where the end goal is expression analysis 
in a non-model organism. This chapter is dedicated to the many phases and options 
available to the researcher. In general however, bioinformatic analyses at some point begin 
with gathering raw sequence data from a biological sample of interest and having it 
sequenced. The raw data will often need to be filtered for quality. If any pre-existing 
sequences are available from a closely related species, their use as a reference should be 
considered, but is not necessary. Assembling the short reads derived from one or more of 
the NGS platforms comes next, but should not be considered a definitive, terminal process. 
Most frequently assembly of short read data entails an iterative refinement phase in which a 
wide range of parameters are modified in the search for a sufficiently contiguous and 
complete assembly. Analyzing the assembly can entail searching for signatures of assembly 
errors and trying to identify the assembled contigs. Once a satisfactory group of transcripts 
is produced they are locked for the expression level analysis. Mapping the short reads to the 
assembled transcripts is the first step in assessing gene expression levels. The next is 
determining the expression levels of each contig based on the number of short reads 
mapped to it. Generally a comparative gene expression analysis will follow in which two or 
more samples are compared and alternate regulation patterns or profiles determined. We 
end the chapter with a specialized comparative expression study in F1 hybrid organisms in 
which differential expression may reveal evolutionary divergence in gene regulation 
mechanisms. 

2.1 Next-generation sequencing 

Next-generation sequencing (NGS) techniques produce millions of reads per run but each 
read may be as short as 25 bp. Using NGS allows one to apply complex samples (i.e., total 
DNA or RNA libraries) on the NGS instrument. These mixed samples contain fragments of 
larger molecule targets sheared to some pre-set fragment length distribution. NGS 
techniques allow the sequencing of completely unknown samples in a massively parallel 
fashion. In order to perform massively parallel sequencing most NGS instruments require a 
run time of days to weeks in carefully controlled conditions for complete data acquisition. 
There are many competing technologies, and new challengers are in constant development 
to increase both the speed and quantity of NGS per sample run. It is beyond the scope of 
this chapter to examine all of the current and upcoming techniques so we will briefly focus 
on two most common NGS instruments currently in use: the Illumina Genome Analyzer 
and ABI SOLiD platforms. Each of these platforms has its strengths and weaknesses that are 
very important to understand when designing research strategies. 

2.1.1 The ABI SOLiD platform 

The SOLiD system produces short sequencing lengths (i.e., termed “reads”) ranging from 35 
to 75 bp and has run times of between one and seven days depending on the amount and 
type of reads desired. Typically, instruments will have 6 or 12 independent lanes available 
per run and samples can be multiplexed in each of those for up to 96 unique barcodes. 
Product literature states the daily sequencing throughput is between 10-30 Gbp. 
The SOLiD sequencing process begins by fragmenting high molecular weight DNA into 
smaller fragments to be sequenced (Fig 1A). Fragments are size selected in a narrow range, 
typically around 200 bp, and primers are ligated to both ends of the fragments (Fig 1A). 
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Glass beads coated with complimentary primers are mixed with the fragments (Fig 1A) and 
emulsified in such manner that an aqueous droplet will contain a single bead and a single 
fragment along with the biochemistry necessary for PCR (Fig 1B). Several rounds of 
emulsion PCR later each bead is coated with sequences identical to the original fragment 
(Fig 1B). The DNA coated beads are then released from the emulsion, and washed into tiny 
wells in a plate sized to admit a single bead per well (Fig 1B). Finally the cyclic sequencing 
phase begins during which each position is iteratively read (Fig 1C). 
 

 

Fig. 1. A simplified outline of the ABI SOLiD sequencing procedure. A) Sample preparation 
and the addition of glass beads decorated with primers. B) Emulsion PCR amplifies a single 
template so that its copies are primed by primers bound to a glass bead. C) The sequencing 
reaction repeats through five extension cycles where the primers are offset by one position 
in each cycle so that each position in the template is interrogated twice. 

The most distinctive feature of SOLiD data is the fact that during the sequencing phase 
nucleotides are added in dinucleotide probes. In each cycle a nucleotide pentamer is added 
in which the two 5’ bases are determined by the attached dye (Fig 1C). Once the plate is 
imaged, the dye is removed leaving the newly added pentamer (Fig 1C). Each cycle therafter 
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interrogates two more bases offset by three positions from the previous cycle (Fig 1C). As 
the growing fragment reaches the desired length the entire fragment is washed off and a 
new primer bound at an offset of one so that a different set of bases are interrogated as this 
new strand grows (Fig 1C). This process is repeated five times, each one offset by one base 
from the last so that each position is ultimately interrogated twice (Fig 1C).  
Four fluorescent dyes are used but each dye can be carried by one of four nucleotide dimers. 
As each color is read, the recorded data corresponds to a sequence of colors coded by 0, 1, 2, 
or 3; this is called color-space. This arrangement means that for any given string of numbers 
there are four possible nucleotide sequences that it may encode. Given knowledge of the 
first base it is possible to determine the most likely nucleotide sequence encoded by the 
entire read. However, to do this prior to assembly of the reads into contiguous sequences 
(i.e., contigs) for comparison or alignment to a reference genome would result in losing the 
advantage of SOliD’s built-in error checking (afforded by reading each base twice). For 
example, If a read was determined to possess a position that does not match a consensus 
reference sequence, it would be ambiguous in other technology platforms whether it were a 
real difference or sequencing error. With the double-coverage afforded by SOLiD color-
space the same “error“ is not likely to be made twice in subsequent cycles and it is much 
more likely that a real variation has been identified instead of a sequencing error. 
It should be noted the SOLiD color-space, in which short reads are reported, can be difficult 
to work with for some assembly applications. Most assembly programs are initially 
designed to work with nucleotides and require special pre- and post-processing programs to 
properly assemble color-space reads and these are not always available. Many, but not all, of 
the specialized alignment programs that can align short reads to a reference library are also 
able to handle color-space reads but require special options to be enabled.  

2.1.2 The illumina genome analyzer platform 
The Genome Analyzer (GA) platform typically produces read lengths in the range of 35-150 
bp and requires 2 to 14 days for a sequencing run depending on the amount of data desired. 
Each flow cell contains 8 lanes each of which can produce 80 million reads or more. Daily 
throughput is estimated at 6.5 Gb for a run in which both ends of fragments (i.e., paired 
end) are sequenced to 100bp. 
The Illumina process also begins by shearing sample DNA (or cDNA) into fragments that 
are size selected in a target range, often around 200 bp (Fig 2A). These fragments then 
have short adaptors ligated to both ends of the sample fragments such that unique primer 
sequences are ligated to either end (Fig 2A). The fragments are then washed onto the flow 
cell that has sequences complimentary to the two unique primers bound to its surface (Fig 
2A). The concentration of fragments on the flow cell is controlled such that they bind 
sparsely enough on the surface to be optically distinguished from neighboring fragments. 
Template sequences are only bound by base-paring to primers covalently bound to the 
flow cell. An initial PCR step produces a complimentary copy of the template now 
covalently bound to the flow cell, and following this the original template is removed by 
washing. 
The next steps (Fig 2B) are repeated several times to produce a colony of copies of the 
sequence via ‘bridge’ PCR. The free end of the template pairs with one of the primers 
covalently bound to the flow cell and a PCR cycle produces a new copy bound by one end to 
the flow cell a short distance from the first. After several bridge PCR cycles, a cluster of 
copies is built up around the originally bound sequence. 
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Fig. 2. Simplified outline of the Illumina Genome Analyzer process A) Sample preparation 
and attachment to the flow cell. B) Bridge PCR amplifies each bound fragment producing a 
cluster of copies. C) The sequencing reaction extends the growing strand by one nucleotide, 
excites attached fluorophores which are read optically, and removes the terminator and 
fluorescent dye before repeating with the next nucleotide. 

When spots have reached sufficient density to produce clear signals (Fig 2C) the cyclic 
sequencing reaction can begin. One of the two unique primers is attached to the free ends 
and nucleotide addition cycles commence. Each nucleotide contains a different fluorescent 
reporter tag and a reversible terminator. During each cycle all four bases are flowed onto the 
reaction chamber, but since each contains a replication terminator only a single one can be 
incorporated into any elongating sequence (Fig 2C). Laser sources excite the fluorescent 
reporter of the added nucleotide and an optical sensor detects the wavelength of light 
emitted. The color of each spot is tracked with each cycle and interpreted directly as a 
nucleotide base (Fig 2C). This cycle is repeated until the reads reach the desired length and 
the entire sequencing process is then repeated using the other unique primer to sequence the 
complementary copies of the DNA. 
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We have briefly covered two popular NGS sequencing techniques to introduce the 
capabilities of the technologies and what types of data are produced. There are several other 
sequencing technologies and many recent reviews covering them are available (Metzker, 
2009; Voelkerding et al., 2009; Bräutigam and Gowik, 2010; Nowrousian, 2010). The reader is 
encouraged to seek out the latest reviews as these technologies are advancing with immense 
speed and published information quickly becomes outdated. 

2.2 Sequence assembly algorithms 

When the human genome project first began capillary sequencing base on Sanger 
technology was the primary sequencing tool employed (Lander et al., 2001). It was 
extremely labor intensive yet at the time an amazing amount of sequence data was being 
produced. The Sanger reads produced where about 700 bp in length. Some current NGS 
techniques are now able to produce reads close to this length, while others hold the promise 
of producing several hundreds to thousands of base pair length reads. 
 

Package Availability 

phrap www.phrap.org 

wgs-assembler (celera) sourceforge.net/apps/mediawiki/wgs-assembler/ 

ARACHNE ftp.broadinstitute.org/pub/crd/ARACHNE/ 

Phusion www.sanger.ac.uk/resources/software/phusion/ 

RePS Contact authors at: reps@genomics.org.cn 

PCAP seq.cs.iastate.edu/pcap.html 

Atlas www.hgsc.bcm.tmc.edu/cascade-tech-software_atlas-ti.hgsc 

Table 1. Several overlap assembly programs. 

The basic strategy for assembling sequences of this length is to use an overlap graph. In 
an overlap graph nodes represent whole reads and connections represent overlap 
between the reads. In this case the reads are large and a significant amount of unique 
information is held in each overlap. Many repetitive features and similar sequence 
properties that would stymie a short read assembler are easily resolved by long reads and 
an overlap strategy. Still, assembly problems are not trivial and many packages have 
continued to mature and acquire a variety of tools. A listing of overlap-based assemblers 
is given in Table 1. 

2.2.1 De Bruijn graph assemblers 

As NGS data became available it was quickly apparent that new algorithms were needed to 

assemble the very short sequences being produced. This problem was addressed by 

application of discoveries made independently by both De Bruijn and Good in 1946 (de 

Bruijn, 1946; Good, 1946). All of the most successful short sequence assembly programs in 

use today utilize the De Bruijn graph as a central data structure and then leverage other 

aspects of the data to improve upon the assembly process. 

The first step in a De Bruijn based assembler is to build the graph. To do so, each short read 
is broken into k-mers where k is a pre-defined integer length; each k-mer will be a node in 
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the graph (Fig 3A). The k-mers are defined by recording the sequence in a window of size k 
and sliding that window down by one position for the length of the short read – producing a 
new k-mer at each position (Fig 3A). If a short read has a length of L, it will contribute L-k+1 
k-mers to the graph. The number of occurrences of each k-mer is also counted and will come 
into play in a subsequent step. 
 

 

Fig. 3. Outline of a De Bruijn graph based assembler 

The edges (or connections between nodes) represent a k-1 overlap between the connected 
nodes. Thus, we see that each node can have 8 possible connections (Fig 3B). Connections 
are recorded as they are observed in the raw read data. As reads are passed into the graph 
building algorithm discrete seed graphs begin to expand and are joined as the reads 
connecting them are found. In the end several thousand discrete, internally connected 
graphs exist in the working memory of the computer. An idealized example of one is given 
in Fig 3C. This is a very simple example but several complicating features are represented 
here. At this stage a simplified graph can be constructed in which linear stretches 
(underlined in green in Fig 3C) are condensed into nodes and edges are still k-1 overlaps. 
The resulting simplified graph is given in Fig 3D, and some of the problems can begin to be 
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addressed. The leftmost is a ‘tip’; a dead end likely caused by a sequencing error near the 
beginning or end of a short read. A bubble is also present in the center of the graph 
indicating two alternative possible paths through the k-mer space are present in the short 
read data. This also could be the result of a sequencing error or a genuine sequence variant. 
The depth of coverage for each simplified node is indicated by a red number above each 
node. This information can be used to trim off any tips and remove bubbles with low 
coverage. Higher coverage anomalies may merit incorporation into alternately assembled 
contigs depending on the application.  
The right-most feature in this graph is a cyclic node. This creates a problem for short read 

assemblers when repetitive sequence regions are encountered. It could be the sequence has 

only 4 guanines in a row, or 40, it is impossible to tell from the information generated. This 

sort of assembly problem is more difficult to resolve by addressing coverage alone and 

usually results in breaks in contigs. Paired-end information can rescue some of these 

repetitive situations but scaffold contigs may be broken for many other reasons as well. 

However, if sufficient paired-end sequences are available that join two contigs it is possible 

to estimate the size of the gap between them given the expected fragment size (Fig 3E). 

One major practical drawback of De Bruijn graph based assemblers is the amount of 

memory (RAM) required to build, and traverse the graph during an assembly. For example, 

the Velvet assembler package may require use of 70-100 GB of physical memory to build a 

vertebrate transcriptome assembly from 100 million reads. Although single machines with 

such large amounts of memory are not as rare and expensive as they once were, they remain 

somewhat difficult to find and gain access to. There are several assembler packages that 

have attempted to address this requirement for large memory. For example, a distributed 

approach has been implemented in the Abyss assembler and this spreads the workload 

across several nodes in a computer cluster. Optimizations in the SOAPdenovo package first 

seek to reduce the amount of memory required by attempting to correct erroneous k-mers 

produced by sequencing errors. In one study, this approach allowed the number of 25-mers 

in an assembly of the human genome to be reduced from 14.6 billion to 5.0 billion (Li et al., 

2010a). 

An alternative to purchasing computer capability with very large memory is use of a cloud 

computing services, such as the Amazon Elastic Compute Cloud (aws.amazon.com/ec2/). 

For a fee, computer time is available in dynamically generated computing environments. 

Several instance types are available including some with up to 68.4 GB of memory and two 

cluster instance types optimized for traditional compute nodes or GPU nodes. While no 

assembly process has yet been reported as having used this resource several similarly 

complex analyses have reported favorable experiences (Afgan et al., 2010; Di Tommaso et 

al., 2010; Wall et al., 2010). 

 

De Bruijn Assemblers Availability 

EULER-SR euler-assembler.ucsd.edu/portal/ 

Velvet www.ebi.ac.uk/~zerbino/velvet/ 

ALLPATHS-LG ftp.broadinstitute.org/pub/crd/ALLPATHS/Release-LG/ 

Abyss www.bcgsc.ca/platform/bioinfo/software/abyss 

SOAPdenovo soap.genomics.org.cn/soapdenovo.html 

Table 2. Several De Bruijn graph based assemblers 
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2.3 Overview of sequence assembly process 
We have discussed the basic workings of assembly algorithms in order to provide a 
foundation for further discussion of assembly and the effects that different choices can have 
on the outcome. We now turn to a larger view of the practical assembly process. At each 
step we will give recommendations based on our experience and mention other sources for 
information and help. 

2.3.1 Sequence filtration 

Prior to NGS read assembly it can be beneficial to remove reads that are more likely to carry 
erroneous sequences. This is most important for De Bruijn graph based assemblers because 
each erroneous base call creates up to k erroneous nodes in memory. Thus, large data sets can 
very quickly exceed even very large memory systems. There are many types of sequencing 
errors that may need to be removed and some are unique to certain types of techniques. For 
example, sample DNA can become contaminated by bacterial or vector sequences and so 
screening reads against appropriate libraries can help to remove some of these contaminants.  
Short reads produced by the Illumina GA platform tend to decrease in quality as they are 
lengthened as well as have an increased error rate in the first few bases. To deal with this 
some tools (built in options in BWA and Bowtie short read alignment programs) will 
allow one to trim all reads by a certain length from either end in a set after measuring 
average quality scores across a read set. Other tools such as the FASTX-Toolkit 
(hannonlab.cshl.edu/fastx_toolkit/) are more adaptive and deal with each read 
individually. Another strategy that attempts to correct short reads is to enumerate all the 
k-mers defined by a set and modify those with very low occurrence frequencies (Schröder 
et al., 2009; Li et al., 2010b; Shi et al., 2010). Few papers primarily address this issue but 
the quality of the final assembly can only be as good as data you begin with. 
 

 

Fig. 4. Outline of an assembly process 
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2.3.2 Use of a reference library 
Reference sequences can be used in many ways to aid in assembly. The most straight 
forward is to map reads onto a set of closely related reference sequences (using a tool such 
as BWA, Bowtie, Tophat, etc. section 2.4), then derive a consensus sequence from the reads 
aligned to each reference sequence. Among others, the samtools pileup or mpileup tools can 
aid in this approach. This limits the resulting sequences to the set of previously known 
reference sequences but that is not necessarily a problem. The Cufflinks tool is a unique take 
on reference based assembly. It is specifically designed to find exons and intron-exon 
junctions by mapping transcript sequence to a reference genome. 
Reference sequences can also be used to guide a de novo assembly. It is possible there are 
other tools which enable this procedure but here we describe the use of the Columbus 
extension in the Velvet package. In this case short reads are again aligned with a separate 
tool to reference sequences which may be genome or transcript seqeunces. The resulting 
alignment file and reference sequences are then given as input to Velvet which will initially 
carry out its de novo assembly process as normal. The reference sequences are treated in a 
sense as long reads and are used to scaffold together appropriate contigs that resulted from 
the initial assembly process. This technique uses known sequences to extend assembled 
contigs while also allowing for the discovery of novel sequences.  

2.3.3 Sequence assembly 
While many NGS assembly packages utilize the De Bruijn graph to represent k-mer 
connectivity, each has a slightly different algorithm to traverse the graph, prune it, and 
extract contigs. Most of the freely-available, academically-developed assembly packages 
have extensive manuals and, more importantly, active communities of users and 
developers. An extensive listing of the settings and options that can be modified in even one 
of these packages is far beyond the scope of this discussion. Some considerations however 
transcend all of these software packages and are discussed here. 
The selection of k (k-mer size or hash length) will have a huge impact on assembly. Short k-
mers allow for the assembly of low coverage regions since for any two reads to be linked in 
k-mer space they must overlap by at least k-1. Conversely a too-short k-mer size could allow 
contigs to be linked in k-mer-space which are not truly linked; thus leading to a chimeric 
assembly. Very high k-mer sizes significantly cut down on chimeric contigs but impair the 
assembly of low expression level transcripts and reduce the contiguity overall. A good 
approach is to scan a range of k-mer sizes and compare the results of several assemblies to 
determine a k-mer size that gives the best balance.  
Another important parameter to consider is how the assembler uses the coverage levels to 
assemble contigs. In Velvet, for example, the minimum coverage cutoff and expected 
coverage parameters define a range of coverage levels to consider. This is fine for genomic 
sequences where coverage levels should be much more consistent, but is extremely 
problematic for transcript assembly. The Oases extension in Velvet is designed to adapt to 
varying coverage depth levels and is allowed to report alternative contigs instead of 
selecting only high coverage paths through the graph.  
The diverse range of De Bruijn graph-based assemblers each take different approaches to 
traversing the graph and pre- and post-processing the data. Software documentation is an 
excellent place to begin to understand the various assembly parameter modifications and 
settings allowed. As previously mentioned most of the academically developed packages 
have an associated community that communicate via e-mail listserv (many of which are 
archived online) or internet forum.  
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2.3.4 Assessing assembly quality 

This is likely to be the most challenging step in an assembly. A set of basic statistics that are 
often seen in literature are the N50 value, overall length, number of contigs, and largest 
contig. The N50 is the length-weighted median length. Another way to think about it is to 
say that at the N50 length, half of the length in the set of assembled contigs is in contigs 
equal to or shorter than this value. It is a measure of contiguity since the N50 length 
increases as sequence length is shifted into longer contigs. The overall length is simply the 
sum of the lengths of all contigs, and the number of contigs and largest contig are self-
explanatory. These are basic statistics often seen in literature but they are fairly limited in 
assessing assembly quality. 
It is generally desirable to quantify correctly assembled contigs, but this is a very tricky thing 
to do especially with novel transcriptomes. There is no one good approach to assess this easily 
so we will present several and discuss advantages and disadvantages of each. One approach is 
to use BLAST or other similarity search tool to compare the assembly to a well-annotated 
transcriptome of a closely related species if available or a large curated set like the non-
redundant (nr) database maintained by the NCBI. A tool like Blast2Go (Conesa et al., 2005; 
Conesa and Götz, 2008; Götz et al., 2008) can be used to analyze the BLAST results and select a 
good match for each contig. Trying to maximize unique hits may be a useful indicator but the 
annotation by BLAST may give different results for alternate splice forms.  
Another useful metric is to measure how completely a reference transcriptome from a 
closely related species is covered by the assembled contigs. This depends heavily on the 
quality of the reference transcriptome and may not tell very much about the contiguity of 
the assembled contigs. 
A third indication that contigs have been properly assembled is their ability to map to a 
reference genome. A tool like gmap (Wu and Watanabe, 2005; Wu and Nacu, 2010) can 
quickly map a large set of contigs to a large genome and report its results in a variety of 
formats including some basic statistics for each mapping. This would seem like the best 
method but some software development may be necessary to extract full meaning from such 
an alignment. 
Analyzing the assembly often leads to another round of refinement possibly reaching all the 
way back to doing more sequencing. More stringent or different filtering, replacing the 
reference with the assembled contigs, or modifying assembler settings can all help to refine 
an assembly. Usually this process continues until a ‘good enough’ transcriptome is reached 
and that is defined by each researcher for their specific needs.  

2.4 RNA short read mapping 

After a reference transcriptome or background genome sequence has been efficiently 
assembled, the next step in many experimental designs is to accurately map RNA-seq reads 
derived from specific cell or organisms states to it as a method to profile global gene 
expression (Fig 5). Generally speaking, programs designed for EST mapping [i.e., MUMmer 
and BLAT(Kent, 2002; Kurtz et al., 2004)] are suitable for reads generated from Roche 454 
platfoms, but are not nearly efficient enough for use with short reads generated by Illumina 
Gene Analyzer or ABI SOLiD NGS platforms. Alignment algorithms designed specifically for 
NGS short reads are necessary to map reads from latter two platforms. Over the past two 
years, a wide variety of different programs have been developed to meet the challenge of 
efficiently mapping millions of short reads and the number of available programs seems to be 
continuously growing. The challenge for biological scientists is how to choose the best 
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program that is optimally suited to their specific project. Table 3 shows five currently popular 
programs available for short read mapping that will be evaluated herein. 
 

 

Fig. 5. RNA-Seq project pipeline and commonly used programs. (see; 

http://en.wikipedia.org/wiki/List_of_sequence_alignment_software#Short-

Read_Sequence_Alignment) 

To evaluate these programs, we used an X. maculatus reference transcriptome [for 
description of the species see section 2.7 and (Walter and Kazianis, 2001; Kallman and 
Kazianis, 2006; Meierjohann and Schartl, 2006)] built from over 200 million paired-end reads 
sequenced from the brain, heart, and liver tissues of mature individuals using the Illumina 
GAIIx platform (Expression Analysis® Inc. Durham, NC). We used the Velvet assembly 
package (Zerbino and Birney, 2008) to integrate the combined read set with a hash length (k-
mer size) of 43. Oases (http://www.ebi.ac.uk/~zerbino/oases/) was used to perform the 
final assembly and resulted in a final transcriptome having 110,604 transcripts with an 
average length of 2,197 bp, and a total size of 243 Mb. In addition, we employed 34 million 
60 bp paired-end reads (GAIIx, no custom filtration) sequenced from RNA isolated from X. 
maculatus liver tissue and mapped them back to the reference transcriptome described above 
to test and compare all five programs in terms of RAM usage, computing time and mapping 
sensitivity (e.g., the percent of mapped reads).  
As shown in the Table 3, the five different programs required different amount of RAM and 
produced different mapping efficiencies. Bowtie is currently one of the most popular 
mapping programs and has a reputation for very rapid mapping speeds. It employs a 
Burrows-Wheeler Transform (BWT) and full-text minute-space index (for review of 
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alignment algorithms, see (Li and Homer, 2010), which greatly reduces both the memory 
usage and computational time. In our test, Bowtie proved to be the fastest mapping 
program and also used a modest amount of RAM. The small RAM usage and speed of 
Bowtie allows it to run on a standard desktop computer. However, Bowtie’s fast 
performance speed is not without cost. Bowtie only allows non-gapped alignments between 
reads and references, thus sacrificing some sensitivity for faster mapping speed. Therefore, 
it was not surprising that Bowtie had the lowest mapping percentage of all tested programs. 
In addition, using genomic sequences as the reference for mapping RNA-seq reads with 
Bowtie might not be appropriate since reads spanning two exons cannot be mapped without 
the support of gap alignment.  
 

Program 
Maximum 

RAM 
Usage 

Time 
%of 

mapped 
reads 

Feature Reference 

Bowtie 2.6G 40 min 42.51 Ultra fast aligner (Langmead et al., 2009) 

BWA 1.2G 64 min 52.05 
Support gap 
alignment 

(Li and Durbin, 2009) 

Novoalign 1.4G 41 hra 59.81 
High sensitivity 
and allows up to 8 
mismatches 

www.novocraft.com 

SHRiMP 7.0G 14 days 53.08 
A collection of 
mapping tools 

(David et al., 2011) 

Tophatb 63Gb 5.5hrb 52.92b 
Splice junction 
reads aligner 

(Trapnell et al., 2009) 

aOnly one thread is used for free version. Licensed user can use multi-threads feature of Novoalign.  
bTranscriptome is used as the reference in this case. Tophat is designed for using genome sequence as 
reference so the actual time and mapping efficiency may vary when genome is used. 

Table 3. Popular short-read alignment software.  

An alternative to Bowtie is BWA (Li and Durbin, 2009), which also uses a full-text minute-
space index based algorithm but supports gapped alignments. In our test, BWA used least 
amount of RAM and was comparable to Bowtie in computing time. The gapped alignment 
feature of BWA makes it more suitable should variations (i.e., small insertion/deletion or 
InDels) exist between the reference genome or transcriptome and the RNA-seq reads being 
mapped. This serves to increase the mapping sensitivity of alignments. In our test, BWA 
reported more reads properly mapped than Bowtie, suggesting BWA is more sensitive in 
identifying possible alignments between short reads and reference sequences.  
Two other programs tested were Novoalign and SHRiMP. They were both noticeably slower 
than Bowtie or BWA programs. Both Novoalign and SHRiMP programs use a hashing 
reference based algorithm, which can be traced back to BLAST searching but is optimized 
for alignment of short reads. For Novoalign, we tested the free version and thus only one 
thread was used while in all other cases four threads were used during the read mapping 
trials. Therefore it is likely the licensed version of Novoalign, employing fully multi-thread 
functions, will exhibit greatly reduced computation time. Novoalign showed the highest 
mapping percentage in all tested program, indicating the excellent sensitivity of the hashing 
reference based algorithm. Unlike Novoalign, SHRiMP employs a k-mer hashing index and 
Smith-Waterman algorithm which gives it robust mapping sensitivity and specificity (David 
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et al., 2011). However, SHRiMP requires large amounts of RAM and was the slowest 
program tested. The increased computational time and RAM requirements make SHRiMP 
less attractive for projects needing high-throughput data analyses.  
The final program we tested is Tophat (Trapnell et al., 2009). Tophat is a splice junction 
mapping program quite different from the previous four programs. Tophat is designed to 
align RNA-seq reads to a reference genome. Using Tophat, RNA-seq reads can be analyzed 
to identify novel splice variants of genes. Tophat first employs iterative rounds of Bowtie 
mapping to identify genomic regions with RNA-seq read mapping, and then to generate 
potential splice donor/acceptor sites flanking the sequence. Unmatched reads are then 
mapped to these splice junction sequences again by Bowtie to confirm possible splice 
junctions. Tophat prefers a genome sequence as a reference and mapping results may not be 
reliable if only a transcriptome reference is used. Of all five programs tested, Tophat 
required the most RAM for alignment processing. Thus, Tophat may be best used in a high-
performance computing environment.  
Overall, the choice of which alignment program to use should be based on both the 
available computer resources and experimental design. If the alignment process is to be 
performed on a standard desktop computer (e.g., about 4G RAM), SHRiMP and Tophat 
should be avoided due to memory constraints. However, Bowtie, BWA, and Novoalign can 
map reads efficiently on standard office computers. On the other hand, if a genome 
sequence is available for a reference, or the purpose of study is to identify InDel’s between a 
reference and reads, Bowtie may not be the best choice since it lacks gap alignment 
capabilities. Tophat is preferred when a genome sequence is present because it fully 
considers potential donor/acceptor sites in the genome and allows the alignment to cross 
splice junctions accurately, compared to the other programs. However, should a 
transcriptome be used as mapping reference, Tophat should be avoided as it is designed for 
use with genome sequence data. Finally, although all programs tested herein fully support 
both Illumina and SOLiD single or paired ends reads, SHRiMP and BWA (through its BWA-
SW module) also support mapping of mixed RNA-seq short reads with longer Sanger or 454 
Roche based reads. In such situations, where mixed reads are to be used, employing a single 
program saves both time and effort in the subsequent analyses.  
Overall, with the continuous increase in throughput for recently developed sequencing 
technologies, new algorithms are becoming available almost monthly; while older programs 
are continually refined to reduce computational time and memory demands. However, there 
is not a perfect program suited for all experimental designs and hardware requirements. The 
choice of programs will need to be reviewed and evaluated on a case-by-case basis.  

2.5 Quantification of gene expression level  
Currently most short read alignment programs adopt SAM (or its binary version, BAM) as 
the alignment output format. SAM (Sequence Alignment/Map format) is a tab-delimited 
text format designed for recording short read alignment information. Although it is human 
readable, a typical SAM file will consist of millions of lines of mapping information that is 
required for downstream analyses. In the next steps of data processing, most RNA-Seq 
projects aim to utilize read mapping as a means to quantify gene expression levels across 
entire reference transcriptomes or genomes (Fig 5).  
An early approach of using RNA-seq to quantify gene expression relied on simply counting 
the total number of reads mapping to each transcript in sample. However, since the total 
number of reads varied between each sample, read counts could not be use for direct 
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comparison or determination of differential expression between samples. In addition to total 
read count numbers between samples, the length of transcripts within each sample may 
vary and longer transcripts are generally more likely to have more reads mapped to them 
than shorter ones. Thus, performing tasks such as finding the highest expressed genes in a 
sample via direct read counting proved to be inaccurate. In an effort to normalize the 
sample size and transcript lengths for head-to-head read count comparisons, Mortazavi and 
coworkers (2008) developed the term Reads Per Kilobase per Million of mapped reads 
(RPKM) as a standard to compare different genes within or across different samples 
(Mortazavi et al., 2008). RPKM and its derived term FPKM (Fragments Per Kilobase per 
Million of mapped reads) for paired end reads, have been widely adopted in RNAseq 
studies employing various experimental systems.  
Since RPKM is easy to calculate and understand, it provides a platform to facilitate 
comparison of transcript levels both within and between samples. However, since the 
purpose of most studies involving RPKM is to compare differential gene expression, one 
must be aware that RPKM values may be affected by both experimental and computational 
issues. Experimental issues such as the quality of RNA, contamination of ribosomal RNA 
and length of output reads (Pepke et al., 2009; Costa et al., 2010) and computational 
influences including accuracy of gene modeling, and inclusion/exclusion of multiple 
mapped reads, may all affect the results obtained. One issue deserving special attention is 
the diminished statistical power one accepts when using RPKM to detect differential 
expression of longer transcripts (Oshlack and Wakefield, 2009). Employing RPKM, where 
the number of reads from a given transcript is divided by the length of the transcript, serves 
to deflate statistical power by producing a large sample size (more reads). To illustrate this, 
assume a 1000 bp gene (gene A) has 5 and 10 mapped reads in sample 1 and sample 2, 
respectively. In the same samples, a 10,000 bp gene (gene B) has 50 and 100 mapped reads, 
respectively. By definition of RPKM, since gene B is 10 times longer and has 10 times more 
reads mapped, both genes have identical RPKM values and fold changes in the two 
samples. Thus one would assume the confidence of gene A and gene B being differentially 
expressed is exactly same. However, since gene A has a much smaller sample size (15 reads 
in total) compared with gene B (150 reads), gene A is more prone to statistical error when 
trying to identify a 2 fold-change in expression between samples 1 and 2. Therefore, 
although RPKM is widely used to provide a scalable value to quantify gene expression 
levels, it is affected by variation in a transcript length dependent manner and should not be 
used to directly compare gene expression.  

2.6 Comparison of differential expression 
One common goal of many large-scale transcriptome studies is to identify differentially 
expressed genes between two or more samples. While microarrays have been widely used 
for over a decade to assess transcriptome-wide gene expression levels, RNA-seq 
technologies have displayed several advantages over microarrays, such as the ability to 
identify novel transcripts and to assess quantitative allele-specific gene expression. 
However, it is still debatable which tool is better to accurately assess gene expression values. 
In a recent study (Bloom et al., 2009), microarray and RNA-seq results were compared using 
quantitative RT-PCR (qRT-PCR) assays and it was determined that both methods performed 
similarly in measuring differential gene expression. The microarray had an advantage over 
RNAseq in better measure of low-abundance transcripts (Bloom et al., 2009); however, when 
results of microarray and RNA-seq were further assessed with 2D LC-MS/MS the 
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expression values estimated by RNA-Seq appeared to be better correlated with the 
proteomics data (Fu et al., 2009). Overall, these studies prove that RNA-Seq may serve as a 
reliable method to accurately estimate absolute transcript levels. 
Since both microarray and RNA-seq are used to quantify expression levels of transcripts, 
statistical methods developed for microarrays have been adopted to compare gene 
expression using RNA-seq. However, there are notable differences between the two 
technologies and methods successfully used for microarray analysis might not be 
appropriate for RNA-seq data (Costa et al., 2010). First, the gold standard for any microarray 
studies is to have at least three replicates in each condition while many RNA-seq projects 
lack the luxury of replicates due to the relatively expensive cost of sequencing RNA-seq 
libraries. Methods that have been used in microarray analysis range from simple t-testing to 
more complicated statistical modeling; but all these techniques rely on having multiple 
replicates to identify differentially expressed genes. The absence of multiple replicates 
greatly reduces the statistical power of RNAseq methods. Secondly, for microarray analysis, 
fluorescence intensity is utilized as the measurement of transcript levels and these data may 
be treated as continuous data. However, RNA-seq studies utilizing read counts (or RPKM) 
to gauge the expression of a particular transcript generate discrete data. Thus, statistical 
models developed for continuous data might not be effective when applied to data 
generated from an RNA-seq experiment.  
Many studies have utilized different statistical tools to identify differentially expressed 
transcripts in RNA-seq experiments. Simple approaches such as classical Z-test and 
Fishers exact test have been employed for this purpose (Bloom et al., 2009; Hashimoto et 
al., 2009). Although these methods are appropriate for hypothesis testing of discrete data, 
they do not consider the global variations of all genes, thus less robust than more 
advanced approaches discussed below. There are several studies reported where more 
sophisticated microarray based methods have been modified and made suitable for RNA-
seq projects. One of the pioneering reports involved RNAs extracted from liver and 
kidney of the same individual that were separated into seven aliquots for each sample 
and sequenced in individual lanes of a Illumina genome analyzer (Marioni et al., 2008). 
The variations of these technological replicates were then calculated and were found to fit 
the variance predicted by a Poisson model. Using the Poisson model allowed the authors 
to identify 30% more differentially expressed genes than a standard statistic analysis and 
employing microarrays with the same samples (Marioni et al., 2008). Based on the notion 
that a Poisson distribution can predict the variations in RNA-seq data, DEGseq, a 
Bioconductor software package, has been developed for examining differential expression 
of RNA-seq read count data (Wang et al., 2010). DEGseq modeled the number of reads 
derived from a gene into a Poisson distribution and used the Fisher’s exact test and 
likelihood ratio test to identify differentially expressed genes (Wang et al., 2010). 
However, it has been argued the Poisson distribution will underestimate actual variations 
in replicated samples and tends to predict smaller variations than are actually present in 
the data (Nagalakshmi et al., 2008). As a result, methods based on the Poisson distribution 
do not control false discoveries very well. In addition to Poisson distributions, two other 
Bioconductor packages, DESeq and EdgeR, both take read counts as input and use 
negative binomial distributions to estimate variations of RNA-seq data (Anders and 
Huber, 2010; Robinson et al., 2010). EdgeR employs negative binomial distributions to 
account for variability and assesses differential expression based on Empirical Bayes 
methods (Robinson et al., 2010). The DESeq package models distributions of read count 
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data by negative binomial distribution, with variance and mean linked by local regression 
(Anders and Huber, 2010). Compared with previous Poisson based program, both DESeq 
and EdgeR control the probability of false discoveries and produce good fits when the 
number of replicates is small (Anders and Huber, 2010).  
In addition to the Bioconductor packages discussed above, another standalone tool 
termed “Cufflinks”, written by same research group that developed Bowtie and Tophat, 
may be used to read SAM files produced from Tophat directly and compare differential 
expression in pair-wise manner (Trapnell et al., 2010). The program extracts read count 
information from SAM files and computes the entropy of the average distribution minus 
the average of the individual entropies [Jensen-Shannon divergence; see (Menendez et al., 
1997)] and the difference between abundances of transcripts in two conditions may be 
calculated as the square root of this divergence. Cufflinks can be easily integrated with 
Bowtie/Tophat workflow and outputs FPKM values for two samples and the significance 
level of the statistics tests. In addition to transcript expression, Cufflinks may also be used 
to find significant changes in transcript splicing and promoter usage between two 
samples.  

2.7 SNP identification and allele specific gene expression 

One major advantage of RNA-seq technology over microarray based approaches is that one 
may quantify not only total gene expression, but also allele specific gene expression (ASGE) 
at same time. To study allele specific gene expression using microarrays, one must have 
very detailed characterization of genome polymorphisms and then specifically design 
probes to assess the abundance of each allele independently on the array. Therefore, it is 
difficult to study ASGE in less well-characterized species or genetic models that possess 
little information of known polymorphisms. With rapid progress in next generation 
sequencing technologies (NGS), RNA-Seq has been shown to provide single-base resolution 
and quantitative information for thousands of genes simultaneously (Pastinen, 2010). 
Notably, this approach does not rely on previous knowledge of known variations and can 
be used for both identifying polymorphisms and quantifying ASGE. Using both 454 and 
Illumina sequencing platforms respectively, allelic expression imbalances have been 
assessed in Drosophila hybrids, Xiphophorus fishes, and in humans (Serre et al., 2008; 
Daelemans et al., 2010; Fontanillas et al., 2010; Shen et al., 2011).  
Here we demonstrate our recent ASGE study using Xiphophorus interspecies hybrid fishes. 
The genus Xiphophorus has at least 27 species of live-bearing fishes found from northern 
Mexico south into Belize and Guatemala (Kallman and Kazianis, 2006). The Xiphophorus 
genus couples extreme genetic variability among Xiphophorus species with the capability of 
producing fertile interspecies hybrids that have allowed chromosomal inheritance of 
complex traits to be followed into individual F1 and backcross hybrid progeny (Kazianis et 
al., 2001; Walter and Kazianis, 2001; Meierjohann and Schartl, 2006). Using interspecies 
hybrids provides a unique opportunity to reveal underlying mechanisms of genetic 
variation.  
We have assembled the transcriptome of X. maculatus Jp163 A, a highly inbred line species 
of Xiphophorus (Fig 6) using RNA-seq sequencing from brain, heart, and liver tissues (see 
section 2.5). We first investigate transcriptome-wide SNP polymorphisms between two 
highly inbred Xiphophorus species: X. maculatus Jp 163 B and X. couchianus. To do this RNA-
seq reads sequenced from X. maculatus Jp163 B were mapped to the reference transcriptome 
of X. maculatus Jp163 A by Bowtie (Langmead et al., 2009) and SNPs were called by 
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Samtools (Li et al., 2009). The density of intraspecific SNPs was about 1 SNP/49 kb of 
transcriptome [Figure 7; (Shen et al., 2011)].  
 

 

Fig. 6. Fishes used in this study. X. maculatus Jp 163 A carrying the Sd pigment pattern is the 
species utilized for deep transcriptome development and eventual assembly of the reference 
transcriptome. F1 interspecies hybrids utilized in these studies were produced by crossing 
the X. maculatus Jp 163 B (Sp pigment pattern) and X. couchianus parental species. RNA-seq 
reads analyzed in this study were sequenced from X. maculatus Jp 163 B, X. couchianus and 
their F1 interspecies hybrids respectively. 

We wished to ascertain ASGE between X. maculatus Jp 163 B, X. couchianus and an F1 hybrid 
produced from crossing these two species (Fig 6). Thus, we first determined that the 90,788 
SNPs, identified between the X. maculatus reference transcriptome and X. couchianus were 
also polymorphic between the X. maculatus Jp 163 B strain and X. couchianus. To improve the 
accuracy of ASGE analysis in the hybrid, we scored only genes that exhibited greater than 20 
SNP supporting reads. These constraints resulted in 38,746 SNPs between X. maculatus Jp 
163 B and X. couchianus that could be clearly assigned to one or the other parental alleles and 
were unambiguously mapped to 6,524 Xiphophorus transcripts in the reference 
transcriptome.  
After identification of SNPs, ASGE can be calculated as number of reads mapped to each 
allele in the F1 hybrid (for a diagrammatic illustration of the process, see Fig 7). Since most 
short alignment programs only allow a limited number of base mismatches (i.e., 2 in case 
of Bowtie) between reads and reference sequences, the reads representing the X. 
couchianus alleles possessed natural disadvantages in mapping efficiency since they 
carried an extra mismatch (i.e., the SNP) compared with X. maculatus reads. In the F1 

hybrid, we found many transcripts showed more X. maculatus mapped reads than X. 
couchianus ones when the mapping was back to the X. maculatus reference transcriptome. 
To eliminate this read mapping bias and create an environment where reads from both X. 
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maculatus and X. couchianus alleles had equal chances of mapping to the transcriptome, we 
first duplicated the X. maculatus reference and then introduced all X. couchianus specific 
SNP’s into it to produce an in silico X. couchianus reference transcriptome (based on X. 
maculatus transcriptome with masked SNPs). The induction of X. couchianus reference 
transcriptome allowed reads with X. couchianus alleles to have comparable likelihood of 
being mapped in ASGE study.  
 

 

Fig. 7. A diagrammatic example of identification of SNPs and measurement of ASGE in F1 

interspecies hybrids. Red bars represent RNA-Seq reads mapped to the reference 

transcriptome. Most reads from X. maculatus Jp 163 B match perfectly to the Jp 163 A 

reference transcriptome. RNA-seq reads from X. couchianus were also mapped to X. 

maculatus Jp 163 A reference transcriptome and SNPs sites were identified by comparing 

consensus bases of RNA-seq reads (C in this case) to the corresponding base in the 

reference transcriptome (A in this case). In the hybrid, reads mapped to SNPs sites are 

classified by the bases they carry and counted separately as the measurement of ASGE. In 

this SNP, 4 X. maculatus allele reads and 3 X. couchianus allele reads were counted in the 

hybrid. 

As shown in Fig 8, using the corrected reference transcriptome allowed both X. maculatus 

and X. couchianus alleles to exhibit a more balanced expression pattern (Fig 8b) in the hybrid 

genetic background than without normalization (Fig 8a). Without proper normalization, we 

found over 84% of genes in the transcriptome were biased toward over-representation of the 

X. maculatus allele (fraction > 0.5, Fig 8a). After production of the in silico reference 

transcriptome and tolerating 5 mismatches, analyses of the distribution of ASGE in F1 

hybrids indicate that most genes (5,980 of 6,524 genes or 92%) exhibit relatively balanced 

allele expression in the hybrid genetic background (<70% of preference of one particular 

allele, those between 0.3 and 0.7 in Fig 8b). Overall, employment of high throughput 

sequencing technology and proper normalization approaches allow direct and accurate 

assessment of ASGE in the interspecies hybrids. 
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Fig. 8. Allele distribution in F1 hybrid background. A: A histogram shows the distribution of 
F1 transcripts carrying different parental alleles before normalization. X axis is the fraction 
of reads carrying X. maculatus allele. 0.5 means in that gene, half of F1 hybrid reads can be 
identified from X. couchianus and another half are from X. maculatus. 1.0 and 0.0 means reads 
exclusively carrying X. maculatus and X. couchianus alleles, respectively. B: Fraction of X. 
maculatus in hybrid background after normalization. We masked X. maculatus reference with 
consensus bases from X. couchianus and allowing five mapping mismatches. 

3. Conclusion 

The bottleneck of large-scale NGS projects has shifted from obtaining experimental data to 
downstream bioinformatic analyses. With the continuous development of software 
infrastructure to suit the needs of RNA-Seq analyses, there are several competent programs 
in each of the analysis step; such as transcriptome assembly, read mapping, and 
identification of differential gene expression. The real challenge facing many biologists is to 
find the right tool to use and carefully weighing the strength and weakness of each tool. The 
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constant advance in sequencing technology will continue to increase the amount of data 
produced, urging the use of the most efficient tool within the capacity of available computer 
resources. The combination of the carefully designed experiment and right methodology 
utilizing NGS data will open a new era for studying species with little historical background 
genetic information available. 
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