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1. Introduction

In the post-genomic era, the ability to predict the behavior, the function, or the structure of

biological entities (such as genes and proteins), as well as interactions among them, plays

a fundamental role in the discovery of information to help biologists to explain biological

mechanisms.

In this context, appropriate characterization of the structures under analysis, and the

exploitation of combinatorial properties of sequences, are crucial steps towards the

development of efficient algorithms and data structures to be able to perform the analysis

of biological sequences.

Several functional and structural properties, and also evolutionary mechanisms, can be

predicted either by the comparison of new elements with already classified elements, or by

the comparison elements with a similar structure of function to infer the common mechanism

that is at the basis of the observed similar behavior. Such elements are commonly called motifs.

Comparison-based methods for sequence analysis find their application in several biological

contexts, such as extraction of transcription factor binding sites, identification of structural

and functional similarities in proteins, and phylogeny reconstruction. Therefore, the

development of adequate methodologies for motif discovery is of undoubt interests for

several different fields in computational biology.

In motif discovery in biosequences, it is common to assume that statistically significant

candidates are those that are likely to hide some biologically significant property. For this

purpose all the possible candidates are ranked according to some statistics on words. Then

they are presented in output for further inspection that need to be carried out by a biologist,

who identifies the most promising patterns. These, in turn, are tested in laboratory to confirm

their biological significance. Therefore, when designing algorithms for motif discovery,

besides obviously aim at time and space efficiency, particular attention should be devoted

to the output representation. In fact, even considering fixed length strings, the size of the

candidate set becomes exponential if exhaustive enumeration is applied. This is already true

when only exact matches are considered as candidate occurrences, and worsen when the

intrinsic variability of biological sequences is taken into account.

Alternatively to methods based on exhaustive enumeration, heuristics could be used.

However, heuristics cannot guarantee to find the optimal solution. Therefore some degree

12

www.intechopen.com



2 Will-be-set-by-IN-TECH

of uncertainty remains whether motifs, that are statistically as significant as those reported in

output, have been left out.

Computational power of nowadays computers can partially reduce the effects of exhaustive

enumeration approaches, in particular for short length candidates. However, if the size of the

output is too big to be analyzed by human inspection the risk is to provide biologists with

very fast tools that produce mostly useless output.

A possible solution to these problems relies on compact approaches. Compact approaches are

based on the partition of the search space into classes.

The final user can then be presented with an output that has the size of the partition, rather

than the size of the candidate space, with obvious advantages for the human-based analysis

that follows the computer-based filtering of the pattern discovery algorithms.

Compact approaches find applications both in searching and discovery frameworks. They

can also be applied to several motif models: exact patterns, approximate patterns, position

matrices, etc. And under both independent and identically distribution (i.i.d.) and Markov

distributions.

The purpose of this chapter is to describe the basis of compact approaches, to provide the

readers with the conceptual tools for applying compact approaches to the design of their

algorithm for biosequence analysis. This will be achieved by overwieving examples of

compact approaches that have been successfully developed for several motif models that will

be illustrated with the sustain of examples and experiments to discuss their power.

2. Background

The methodologies to study the Science of Life dramatically changed during the past years.

The advent of the web made it possible for the scientific community to share the massive

quantity of data produced by high throughput techniques, thus accelerating the analysis of

the available data and the discovery of related properties and associations. The development

of high throughput technologies has as a consequence not only an increase in the amount

of data, but also a diversification of the type of data available, opening new perspectives of

investigations. Disciplines such as Bioinformatics and Computational Biology try to combine

the efforts and competency of the communities of biologists and computer scientists in a

single more powerful combination of human knowledge and efficiency, thanks to automatic

approaches to data analysis.

2.1 DeÝnition of the problem
One of the key aspects in the analysis of biological sequences is the identification of interesting

patterns. “Interestingness” is a wide concept that may embrace very different definitions

depending on the contexts in which the analysis is carried out. At an higher level we can

define an interesting pattern as a pattern that shows an unusual behavior from what it is

expected in terms of presence within the sequence under analysis.

More in details, searching for shared or over-represented patterns is motivated by a simple

commonly accepted principle: if two or more sequences perform the same functions or have

the same structure, then the common elements among the sequences might be somehow

responsible for the observed similarity.

The problem of finding biologically significant patterns is then moved to the problem of

finding statistically significant patterns.
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solid word
wildcards-mismatches

insertion-deletion
generalized patterns

alignments
position weight matrices
hidden Markov models

Table 1. Various choices to model motifs in biological sequences. Starting from solid words
the level of sensibility increases (allowing for variations), but the level of specificity
consequently decreases, thus making more difficult the process of detection of the signal.

The problem of searching for similar regions among biological sequences faces several issues.

First of all, the genetic code must be fault-tolerant to deal with errors that may occur during

transcription or are due to random mutations, so that an intrinsic variability characterizes

biological motifs. This variability has as a consequence the possible explosion of the size of

the search space under study, due to the rich underlying combinatorics. Searching the whole

pattern space then is feasible only for very short patterns. Note that this is also true for exact

words, because their number increases exponentially with the length. On the other hand,

heuristics are not guaranteed to find a globally optimal solution.

A critical step of the process is the choice of an appropriate structure to model the motifs.

In some cases, deterministic patterns do not have enough expressive power to describe the

specificity of the contributions of each symbol in any position of the site. Statistical matrices

or graph-based models might offer a better framework in these cases. Several options have

been considered during the past decades to model signals in biosequences, and to take into

account for this intrinsic variability. Some of these models of choice are listed in Table 1, sorted

in increasing order of expressive power (and consequent increase of difficulty in the design of

related algorithm, and of their intrinsic complexity).

The choice of an appropriate model to describe motifs is a trade-off between the

expressiveness of the model to describe particular biological properties, and the efficiency

of the algorithms that can be applied when that model is chosen.

The scoring function chosen to evaluate the output also plays an important role in the

identification of the searched sites. However, simple statistics are often unable to discriminate

interesting motifs from motifs that are likely to occur by chance, so that different measures of

statistical significance need to be considered. In summary, for a given choice of a statistical

measure S of a motif m, one could ask three questions:

• What is the value of S(m)?

• How surprising is to measure S(m) with respect to the value that was expected according

to some background distribution?

• How likely is it for the recorded values to occur by chance?

These three questions can be answered by the means of different computations. The first one,

for example, can be answered by exact counts or estimates. To answer the second, we need

some score that measures over-representation, such as the z-score. Finally the third one is solved

by resort to so called p-value of a statistic.

Once the model and the scoring function have been fixed, the next step is the development

of efficient approaches to extract the searched information. There is a vast literature about
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algorithms for motif discovery. However, most of them either have been developed to solve

very specific instances of the problem, such as the Motif Challenge Problem (Pevzner & Sze,

2000), or are based on exhaustive search of the pattern space (among which (Queen et al.,

1982; Staden, 1989; Tompa, 1999; van Helden et al., 1998; Waterman et al., 1984)), or rely on

heuristics (for example (Hertz & Stormo, 1999; Stormo & III, 1989)). Comparison of several

techniques in fact showed how performances substantially depend on the underlying model

of the motif to discover (Tompa et al., 2005).

3. Compact scoring

Despite the intrinsic possible explosion of the size of the search space, it is possible to conceive

a compact representation of the patterns such that only representative patterns are scored, and

no critical information is lost in the process.

The classes must be designed in such a way that the score used to rank the candidates has

a monotone behavior within each class. This allows the identification of a representative of

each class, which is the element with the highest score. Consequently, it suffices to compute,

and to report in output, only the score for the representatives. In fact, we are guaranteed that

for each element that has not been ranked there is another one (the representative of the class

it belongs to) that is at least as significant.

In such a framework, the output size would depend upon the number of classes in which

patterns can be grouped, rather than on all the existing patterns that belong to the search

space. This approach can also be used as a filter to detect unusual classes of strings that need

to be scrutinized further.

The compact scoring needs two important steps to be carried out with critical attention:

1. definition of the search space

2. efficient partitioning

The definition of the search space clearly depends implicitly on the motif model, as discussed

above. Nevertheless there are also two working frameworks in which one can pose his search

(Brazma et al., 1998).

In the pattern-driven framework the search space consists of all possible patterns (of a given

size) that can be generated over a given alphabet Σ. The input sequence is then tested for

occurrences of each and every motif in a family of a priori generated, abstract models (for

example (Keich & Pevzner, 2002)). Although more correct in principle, this method may pose

severe computational issues.

In the sequence-driven framework the search space consists of strings that actually occur

at least once in the given input, or to some more or less controlled neighborhood of those

substrings (for example (Lawrence et al., 1993)). This may be less firm methodologically, but

leads to time and space savings.

The choice of techniques and data structures that can be used to perform the partition are

strictly related to the definition of the model and search space. In turn they affect the space

complexity reduction that can be achieved by the partitioning, as it will be clear in the

following discussion.

220 Systems and Computational Biology – Molecular and Cellular Experimental Systems

www.intechopen.com



Motif Discovery with Compact Approaches - Design and Applications 5

4. Solid words

In this section we describe a methodology for compact representation and scoring of single

solid words, and pairs of solid words. We will outline the basic concepts used in the approach.

Details of formulas and proofs of theorems can be found in (Apostolico et al., 2003).

4.1 Compact indexes for single words
Let us consider the problem of extracting frequent substrings from a string x of length n. The

number of substrings in x is equal to the number of possible choices of starting and ending

indexes that univocally identify the substring. These are obviously O(n2). There are several

observations that can be done with respect to this output size:

• for very long strings (consider genome wide analysis) the computation of all the

occurrences of all these substrings might become prohibitive in terms of both time and

space needed;

• the list of candidates might be too long to allow deep inspection by the final user;

• some substrings, of increasing length, occur the same number of times and in the same

exact position: the output set might hide some notable redundancy.

In order to overcome these issues a compact approach might be applied. The compact

representation and scoring of solid words can be achieved by exploiting the characteristics of

appropriate data structures, such as the suffix tree, and by an in-depth analysis of the properties

of monotonicity for some measure of over- or under-representation.

4.1.1 SufÝx trees
A suffix tree is a data structure used to efficiently store and retrieve information about all

the substrings of a given text. Given a text x of length n defined over an alphabet Σ, and a

symbol $ /∈ Σ, the suffix tree associated with x is the digital search trie of all the suffixes of

x. There are two versions of suffix tree: the expandend suffix tree (also called suffix trie), and

the compact suffix tree. In the expanded version each arc is labelled with a symbol, except

for the leaves that are labelled with the corresponding suffix. The space required to store an

expanded suffix tree is O(n2) in the worst case (Aho et al., 1974). On the other hand, in the

compact representation chains of nodes with one outgoing edge are collapsed together in a

single arc. The symbol $ guarantees that each node in the compact suffix tree (except the

leaf nodes) is branching. This property, together with the observation that there are n leaves,

corresponding to the n suffixes, implies that there are O(n) nodes in the suffix tree. Each arc

is labeled with two indexes, the start and the end positions of the corresponding substring

in the text (or, equivalently, the start position and the length of the path from the root node

to the node at which the arc ends). With such a representation, the overall space needed

to store a compact suffix tree is O(n). The brute force construction of a suffix tree requires

O(n2) time. However, more clever algorithms allow for linear time construction of the tree

(McCreight, 1976; Ukkonen, 1995; Weiner, 1973). The word spelled by a path from the root to

a node α is indicated with w(α), and α is called the proper locus of w(α). The locus of a word

w is the unique node β of the suffix tree such that w is a proper prefix of β, and f ather(β) is

a proper prefix of w. The frequency of a word w can be obtained in time proportional to the

length of w and to the number of its occurrences. For this purpose we reach the locus β of
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w and then visit the subtree rooted at β to count the number of its leaves. Alternatively, one

could annotate the nodes of the tree in a bottom-up fashion with the count of their children.

Then, to know the frequency of any query word w, only the time to reach its locus is needed.

Alternatively to the suffix tree, one could use a suffix array (Manber & Myers, 1993). As it is

shown in (Abouelhoda et al., 2004) these two data structures are equivalent. The advantage

of the suffix array is that it usually takes less space. This comes at expenses of an increase of

the difficulty in the designing of related algorithms.

4.1.2 Example

For a string x = AGCTAGCTAAA of length 11, the number of substrings is
n(n+1)

2 = 66

(number of choices of starting and ending position for a substring). In the specific case of the

string in our example, if we remove duplications there will remain 52 different substrings. By

building the suffix tree (see Fig.1), and considering only the strings corresponding to nodes

the number of candidates reduces to 15.
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Fig. 1. The suffix tree for the string x = AGCTAGCTAAA. The numbering of the leaves
indicates the corresponding suffix in x, i.e. their starting position.

4.1.3 Compact representation for the frequency of single words
An interesting property of the suffix tree is that all the words that end within an arc have the

same frequency, equal to the frequency of the word corresponding to their locus. Thus a suffix

tree partitions the Θ(n2) subwords of a text in O(n) classes, such that the words that belong

to the same class have the same locus. Take, for example, the strings “C”, “CT”, and “CTA”

in the suffix tree of Fig.1. They all occur at positions 3 and 7 in x, as it can be easily verified

by eye inspection of the string. Therefore they start at the same positions in the text, and have

the same frequency.

The word w(β), corresponding to the locus β of the class Cβ can be considered as maximal in

length, since any extension of w(β) will have a different frequency, and thus would not belong

to the class Cβ. These words are called representatives.

In Table 2 we enumerate all the classes identified by the partition induced by the suffix tree of

Fig.1.

The compact output related to the frequency analysis of the substrings of x is represented by

the following Table 3. It is easy to note by eye inspection that this output gives a much clearer

and immediate representation of the frequency distribution of substrings of x with respect to

a full enumeration of all 66 possible substrings in it.
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{A} = [1, 5, 9, 10, 11]
{AG, AGC, AGCT, AGCTA} = [1, 5]
{AGTCAG, AGTCAGC, AGTCAGCT, AGTCAGCTA, AGTCAGCTAA, AGTCAGCTAAA} = [1]
{AGTCAA, AGTCAAA} = [5]
{AA} = [9, 10]
{AAA} = [9]
{C, CT, CTA} = [3, 7]
{CTAG, CTAGC, CTAGCT, CTAGCTA, CTAGCTAA, CTAGCTAAA} = [3]
{CTAA, CTAAA} = [7]
{G, GC, GCT, GCTA} = [2, 6]
{GCTAG, GCTAGC, GCTAGCT, GCTAGCTA, GCTAGCTAA, GCTAGCTAAA} = [2]
{GCTAA, GCTAAA} = [6]
{T, TA} = [4, 8]
{TAG, TAGC, TAGCT, TAGCTA, TAGCTAAA} = [4]
{TAT, TATA, TATAA, TATAAA} = [8]

Table 2. The maximal partition that is obtained with a suffix tree for the string
x = AGCTAGCTAAA. Each row enumerates the strings of each class, and their occurring
positions. The representative of each class is in bold. The set of starting positions for all the
strings in the class are listed within square brackets.

A 5
AGCTA 2
CTA 2
AA 2
GCTA 2
TA 2
AGTCAGCTAAA 1
AGTCAAA 1
AAA 1
CTAGCTAAA 1
CTAAA 1
GCTAGCTAAA 1
GCTAAA 1
TAGCTAAA 1
TATAAA 1

Table 3. The compact output for the frequency count of the substrings in x.

4.1.4 Compact representation for single words statistics
In some kind of analysis the frequency count might be insufficient to extract “interesting”

patterns, since some of them might occur often simply by chance. In these cases an evaluation

of over- or under- representation can give a better solution to the problem of the extraction

of interesting patterns. It has been shown in (Apostolico et al., 2003) that the compact

approach can be extended to over-representation scores, such as z-scores. Z-scores have

the characteristic to compare the counted frequency with the frequency expected assuming

a given background distribution. Some examples are
f
e , f − e,

f−e
e , where f and e are the

counted and expected frequency respectively.

The partition induced by the suffix tree is such that the words that belong to a class are

prefixes of increasing length of the representative substring. The expected frequency of words

decreases with word length. We show this with a simple example. Consider the case of i.i.d.

hypothesis, with an uniform distribution, i.e. all the symbols in the alphabet have the same

223Motif Discovery with Compact Approaches - Design and Applications
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probability p to occur. The probability of a word of length l is then pl . Since 0 < p < 1,

we have that the term pl decreases with l. The reasoning can be extended and proved for a

general distribution and under both i.i.d. and Markov chain hypothesis.

Within each class two conditions hold:

1. the counted frequency is constant;

2. the expected frequency is monotonically decreasing and reach its minimum at the

representative.

Hence z-scores with a constant frequency f and decreasing frequency e will have

a monotonically increasing behavior within each class, and reach their maximum in

correspondence of the representative of the class. Using over-representation to extract

interesting patterns allows to use a threshold to filtering the results further. The threshold can

be arbitrarily fixed (for example we are interested in patterns that occur at least the double of

what we expect), or by fixing a p-value (that it is a probability of seeing a pattern by chance)

and computing the corresponding absolute threshold for the score (Staden, 1989).

In Table 4 we can see an example of compact output of the z-score
f
e , for a uniform distribution

and for a general distribution. We still refer to the string x of the previous examples. It can be

seen that the two background distribution produce a slightly different order in the output, and

a quite different score associated to the strings. By setting a threshold Th = 1000 we obtain

a further reduction of the output size that in the case of the uniform distribution maintains 9

strings, while in the case of the considered general distribution it maintains 12 strings.

Substring Score (uniform) Substring Score (general)
AGTCAGCTAAA 4194304 AGTCAGCTAAA 694444444
GCTAGCTAAA 1048574 GCTAGCTAAA 69444444
CTAGCTAAA 262144 CTAGCTAAA 41666667
TAGCTAAA 65536 TAGCTAAA 4166667
AGTCAAA 16384 AGTCAAA 833333
GCTAAA 4096 TATAAA 250000
TATAAA 4096 GCTAAA 83333
AGCTA 2048 CTAAA 50000
CTAAA 2048 AGCTA 16667
GCTA 512 GCTA 1667
CTA 128 CTA 1000
AAA 64 AAA 1000
AA 32 AA 200
TA 32 TA 100
A 20 A 50

Table 4. The compact output for the over-representation score of the substrings in x. In the
first two columns the substrings are scored according to a uniform distribution. In the last
two columns the substrings are scored according to the following distribution:
pa = 0.1, pc = 0.1, pg = 0.6, pt = 0.2

4.2 Compact indexes for co-occurrences
The suffix tree property of partitioning the set of substrings of a string in O(n) classes can be

exploited also for the computation of co-occurrences between substrings of an input string.

In (Apostolico et al., 2004) the compact approach was extended to the efficient computation

of a table to hold the number of co-occurrences of substrings within a text. In this context
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the problem is: given two words y and z, and a distance d, compute the number of times

that z follows y at a distance at most d. In (Apostolico et al., 2004) further restrictions

were set so that z must follow an occurrence of y but it must occur before the next

occurrences of y. Moreover, if many occurrences of z are found at the right side of the

same occurrence of y, only the closest one is counted. In Fig.2 it can be seen how the

co-occurrence count can vary. A simple count, without restriction would give a value of 4:

{(pi, qk), (pi, qk+1), (pi, qk+2), (pi+1, qk+2)}. If no interleaving occurrences of y are allowed the

count would reduce to 3: {(pi, qk), (pi, qk+1), (pi+1, qk+2)}. If also no interleaving occurrences

of z are allowed the count would drop to 2: {(pi, qk), (pi+1, qk+2)}.

y

z

x

z z

d

d

i
qp q

k k+1
p q

i+1 k+2

y

Fig. 2. Illustration of co-occurrences between two substrings y and z.

A naive approach would count the number of co-occurrences between all O(n2) substrings of

x, thus requiring O(n4) time and space. In contexts other than bioinformatics some algorithms

have been developed, on related, even though more general problems (Arimura et al., 2000;

Wang et al., 1994). However, they can also solve the given problem in time O(d2n3 log n) and

O(n3) respectively. Here we focus on the description of the algorithm in (Apostolico et al.,

2004) that solves the problem of computing the simple frequency. Eliminating multiple

occurrences in fact comes at no extra cost but also does not change the space complexity,

that is the focus of compact approaches.

The algorithm exploits the suffix tree property described in Sec. 4.1.3 to partition the O(n2)
substrings in an O(n) classes corresponding to the nodes, and computes the co-occurrence

count only for words corresponding to node pairs. The key observation is that if a pair (y′, z′)
is left out, then the following conditions hold:

1. there exists already a corresponding pair (y, z) such that y′ and z′ are prefixes of y and z

respectively;

2. the score of (y, z) is at least equal to the score of (y′, z′).

These facts follow from the property of the suffix tree that all the substrings ending within

an arc have the same starting positions of the string corresponding to their locus. Since the

distance d is measured from the beginning of the first component, this implies that classes of

substrings that share the same set of starting positions will occur, within distance d, the same

number of times. Again, the strings corresponding to the proper loci of the suffix tree can be

selected as representative of the classes, and indexed. In Fig.3 the pair (ACG, T) co-occurs the

same number of times of the pair (ACGTA, TA).
There are O(n) nodes in the suffix tree, and each of them can be chosen as first component.

A second suffix tree is used to store the number of co-occurrences between the fixed first

component, and all other nodes in the suffix tree. The annotation is made as follows:

1. assign a null weight to all nodes of the suffix tree used for the counting of co-occurrences

2. let y be the first fixed component, and {p1 . . . pk} its set of occurrences;
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Fig. 3. Illustration of co-occurrences classes.

3. add 1 to all the leaves that correspond to positions {p1, p1 + 1, . . . p1 + d}, {p2, p2 +
1, . . . p2 + d}, . . . {pk, pk + 1, . . . pk + d};

4. annotate the tree bottom-up, so that internal nodes have a weight corresponding to the

sum of the weights of their children.

After the annotation the suffix tree will hold the number of co-occurrences between the fixed

y and any string z with a proper locus in the tree. The annotation of the tree is performed in

linear time. Since this must be repeated for every possible choice of the first component y, the

resulting complexity is O(n2).

4.2.1 Example
Turning back at the example in the previous section, the co-occurrences will be counted only

for 15 × 15 = 225 pairs of substrings of x. If an exhaustive index would have been build

instead, the number of entries of the output would have been 4356, or 2704 if duplication was

removed. In the former case we achieved a 95% reduction of the table size, in the latter a 92%

reduction.

5. Compact approaches for words with mismatches

Co-occurrence counts are useful for the detection of motifs that are particularly conserved

at the sides and allow for high variability in the middle, i.e. so called dyads. However,

other distributions of variability are possible and compact approaches to deal with them have

also been developed. However, dealing directly with variability implies an higher order of

complexity in the solution of the problem. It is possible to identify in literature two main

frameworks in which compact approaches have been developed:

1. the candidate motifs occur at least once exactly in the input string; the errors (mismatches)

can occur in any position of the motifs;

2. the candidate motifs might never occur in the input string exactly; the position of the errors

(wildcards) are fixed in the motif template.

5.1 Compact approaches for motif with mismatches
In (Apostolico & Pizzi, 2007) a compact approach for the extraction of motifs with mismatches,

with an i.i.d. background, was proposed. The approach was next extended to deal with a
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markovian background distribution (Pizzi & Bianco, 2009). The assumptions are that: the

motif must occur at least once exactly in the sequences; its instances can appear with exactly,

or at most, k mismatches; the mismatches can occur in any position of the motif.

We first observe that, because of the introduction of mismatches, it is not possible to use

a suffix tree to partition the search space. In fact if we consider a string w with exactly

k mismatches, and its extension wa, with a ∈ Σ, with exactly k mismatches we are not

guaranteed that the frequency of wa is the same of w, even if both have the same locus. In

fact, in the count of wa with k mismatches we would add the number of occurrences of w with

k mismatches followed by an a, and the number of occurrences of w with k − 1 mismatches

followed by a symbol b �= a, and finally subtract the number of occurrences of w with k

mismatches followed by a symbol b �= a. Depending on how the symbols occur in the text the

number of occurrences of wa might be less, equal, or greater than those of w.

Hence, to compact the output, one has to isolate intervals of words of increasing length with

the same frequency (with mismatches. However, this is not sufficient. The next step is to

verify that within those intervals the expectation with mismatches has indeed a monotone

behavior.

In (Apostolico & Pizzi, 2007; 2008), besides the proposal of polynomial algorithms for the

computation of the expected frequency, a full study about the score behavior of motifs with

mismatches has been presented. We redirect the readers to the original papers for proofs and

report here only the main results.

1. the word length is increased, and the number of mismatches is fixed: the expected

frequency with mismatches decreases;

2. the number of mismatches is increased, keeping the word length fixed, counting an exact

number of mismatches: the expected frequency with mismatches increases (at least until a

number of mismatches equal to half of the length of the motif, then it might decrease);

3. the number of mismatches is increased, keeping the word length fixed, counting at most a

given number of mismatches: the expected frequency with mismatches increases.

The case 1) is that of interest for the intervals of increasing length and constant counted

frequency with mismatches. In fact, in these intervals we have that the z-scores are monotone,

and we can take as a representative of the interval the corresponding string.

Experiments to measure the effectiveness of the interval definition can be carried out in the

following way. Let us consider words of length m ± δ, for a given m and δ and compute the

score for runs of words with the same frequency (with mismatches) only once.

Tables 5 and 6 report the percentage of entry savings, with respect to a full enumeration, when

the frequency is counted for exactly or at most k mismatches respectively. The input string was

a sample 10k bases from the yeast genome.

5.2 Compact approaches for words with wildcards
In case of regular patterns the words are defined over an alphabet Σ′ = Σ∪ {“.”} that includes

also the wildcard “." symbol. The classes of equivalence are identified by the subwords that are

generated by the corresponding grammars. Moreover, the property of maximality must hold

both in length and in composition. A pattern is maximal in composition if the substitution of

any of its wildcards with a given symbol of the alphabet Σ alters the number of occurrences

of the pattern. Maximal regular patterns have been used to devise combinatorial algorithms
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k m =12 m =13 m =14 m =15 m =16 m =17 m = 18

0 avg length 6.74 6.91 6.96 6.98 6.98 6.98 6.99
% saving 84.21 85.17 85.49 85.58 85.63 85.65 85.67

1 avg length 2.33 2.35 2.38 2.54 2.74 2.92 2.97
% saving 17.71 23.04 26.51 29.41 36.41 45.07 50.37

2 avg length 2.30 2.32 2.35 2.37 2.40 2.48 2.61
% saving 9.46 13.14 18.36 23.43 26.29 28.26 31.67

3 avg length 2.14 2.21 2.28 2.31 2.36 2.40 2.44
% saving 4.85 7.29 9.98 13.75 18.79 23.53 27.34

4 avg length 2.02 2.07 2.15 2.23 2.28 2.31 2.34
% saving 1.01 2.91 5.39 7.84 10.69 14.70 19.50

Table 5. Average run length and table size reductions for frequency with exactly k
mismatches (δ = 3).

k m =12 m =13 m =14 m =15 m =16 m =17 m =18

0 avg length 6.74 6.91 6.96 6.98 6.98 6.99 6.99
% saving 84.20 85.17 85.49 85.59 85.63 85.65 85.67

1 avg length 5.02 5.86 6.50 6.82 6.93 6.97 6.98
% saving 68.24 77.92 82.75 84.65 85.33 85.53 85.60

2 avg length 3.29 3.96 4.72 5.55 6.27 6.70 6.88
% saving 37.84 51.70 65.09 75.47 81.32 83.98 85.04

3 avg length 2.32 2.68 3.21 3.84 4.57 5.39 6.19
% saving 12.43 23.74 36.76 50.53 63.84 74.31 80.65

4 avg length 2.03 2.14 2.34 2.69 3.20 3.83 4.55
% saving 1.05 4.80 12.61 23.75 36.73 50.44 63.46

Table 6. Average run length and table size reductions for frequency with at most k
mismatches (δ = 3).

for the detection of frequent patterns in biosequences (Califano, 2000; Rigoutsos & Floratos,

1998). In both works, the extracted patterns can be said to be a compact representation for

motifs in which variability is allowed, but only at specific positions.

Although the number of maximal motifs with wildcard can be exponential, in (Parida et al.,

2000) the authors present a way of extracting the inner structure that characterize such type

of motif so that the output size could be further reduced. This can be obtained by defining a

basis of motifs. A basis B is a subset of all the motifs from which it is possible to recover all the

other motifs. More in details a motif is characterized by its list of occurrences, and all motifs

not in the basis can be obtained by a combination of the location lists of some of the motifs in

B. The motifs that belong to the basis are called irredundant. Several works have been done

on such motif representation, among which (Apostolico & Parida, 2004; Pelfrêne et al., 2003;

Ukkonen, 2009). In (Apostolico, Parida & Rombo, 2008) the concept of irredundant basis was

further extended to 2D patterns.

In the context of patterns with wildcards, a pattern is taken into consideration if it occurs for

a number of time that is defined by a quorum q ≥ 2. In (Pisanti et al., 2005) an in dept study

about the complexity of the number of irredundant motif showed that there exists a family of

motifs for which the number of motifs in the basis is Ω(n2) for q = 2. In the same paper the

authors propose a new definition for a basis, that is stronger than that in (Parida et al., 2000).

Therefore their basis is smaller and included in the previous one. Motifs that belong to the
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new definition are called tiling. For basis on tiling motifs the number of elements is linear in

the size of the input string for q = 2. However, it has been proved that for all basis there is an

exponential dependency in the quorum when q > 2, so that no polynomial algorithm exists

to extract a basis in this case.

Basis are clearly a compact representation of the motifs space, hence a powerful tool for

the analysis of biological sequences when variability is taken into account in the form of

wildcards.

6. Position weight matrices

Positions weight matrices are one of the most widely used models for biological signals, being

used both in genomic and proteomic studies.

A position weight matrix is a scoring matrix M, where each row represents a position and each

column a symbol from the alphabet Σ (in literature it is common to find also the vice versa).

The score of the matrix against a segment xjxj+1 . . . xj+m−1 of a sequence x = x1x2 . . . xn , is

given by:

S(M, j) =
m−1

∑
i=0

M[i][xj+i]

Given a threshold T, the matrix M is said to have an hit at position j of x if S(M, j) ≥ T.

The threshold can be given as an absolute value or as a p-value or MSS score T′, and then

converted in terms of absolute score with respect to the matrix M (Staden, 1989).

The hits of a matrix M in the sequence x can be found naively by an O(mn) algorithm that

for each position j check if S(M, j) is above the threshold. The computation of the score takes

O(m) steps, and need to be computed for n − m + 1 possible starting positions, hence the

claimed complexity.

6.1 The look-ahead technique
The look-ahead technique (Wu et al., 2000) can be used to stop the computation of the

score whenever one is sure that the threshold will never be reached. Let Sk(M, j) =

∑
m−1
i=k+1 M[i][xj+i] be the score of the segment xj . . . xj+k−1 with respect to the matrix M, the

condition to stop the comparison is:

Sk(M, j) +
m−1

∑
i=k+1

max
s∈Σ

M[i][s] < T

i.e. even if in the rest of the comparison we will add the maximum score of the matrix for

those positions, the final score will be below the threshold.

It is easy to compute an array tla of size m that holds the value of the partial thresholds that

need to be reached in order to have the chance to reach the threshold. The entries of the array

are given by:

tla[i] = T − Sk(M, i + 1)

These can be computed in linear time in m, by setting tla[m − 1] = T, and recursively

computing the other entries by the formula:
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tla[i] = tla[i + 1]− max
s∈Σ

M[i + 1][s], for i = m − 2 . . . 0

6.2 The Minimum Gain
A dual concept to that of look-ahead score is given by the Minimum Gain (Pizzi et al., 2011).

The minimum gain relative to a position j in the matrix is the minimum score that can be

obtained by summing the scores from positions j + 1 to m.

The minimum gain can be used similarly to look-ahead to stop the comparison of the matrix

against a segment earlier. In this case the condition to be verified is:

Sk(M, j) +
m−1

∑
i=k+1

min
s∈Σ

M[i][s] ≥ T

If this is the case, then no matter what the following m − k symbols are, there will be a hit to

report at position j.

Similarly to look-ahead, we can build a minimum gain array tmg corresponding to the partial

thresholds that need to be reached to ensure that the hit. Starting from tmg[m − 1] = 0, we

have:

tmg[i] = tmg[i + 1]− min
s∈Σ

M[i + 1][s], for i = m − 1 . . . 0

6.3 Compact approach to automaton construction
In (Pizzi et al., 2011) an algorithm with optimal O(n) searching time was proposed to solve

the problem of profile matching (i.e. given a string x, a threshold T and a matrix M, find all

the hits of M in x).

This algorithm is based on the classic multi-pattern matching algorithm based on the

Aho-Corasick automaton (Aho et al., 1974). In summary, an automaton is built that contains

all the words that are a match for the given threshold and matrix.

The look-ahead technique can be used in this context to generate all and only the words of

length m that are hits. The words are generated directly in a trie, that will later be annotated

with failure links to build the Aho-Corasick automaton. Starting from the empty trie, only

symbols which score is above tla[0] are expanded. Each node will take track of the partial

score of the path from the root to the node itself, and will recursively expand further levels in

a similar way with comparison with the look-ahead partial thresholds.

Depending on the given threshold, and on the distribution of the score within the matrix, the

size of the trie is very variable, but can become prohibitive. In fact by decreasing the threshold

(e.g. increasing the p-value), the number of words that are hits for the matrix increases, and

can possibly reach an exponential number (the worst case given by |Σ|m).

The minimum gain can then be used to substantially reduce the size of the automaton,

implementing the compact approach philosophy. The idea is to limit the length of the words

that are hits for the matrix whenever a prefix of the word is enough to establish that there will

be a hit. While building the trie this means that we do not need to build the subtree of this

prefix. The cost of the further comparison with tmg at construction time is irrelevant compared

to the time saved by avoiding to build the subtree. Moreover, there could be considerable

space savings. See, for example what happens when we consider matrix M00003 from the
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Jaspar database (Sandelin et al., 2004), and the threshold score , corresponding to MSS=0,85

(see Table 7). The entries of the matrix have been already multiplied by the factors needed to

compute the score relative to MSS (Quandt et al., 1995).

The matrix entries have been sorted in ascending order, so each table entry on the first four

columns contains a pair (symbol,score), and the last two columns hold the look-ahead and the

minimum gain score, respectively.

0 1 2 3 LA MG
A,0 C,0 T,0 G,18500 8799 53914
A,0 T,0 G,0 C,18500 27279 53914
A,0 T,0 G,0 C,18500 45779 53914

A,110 T,230 G,230 C,355 46134 54024
A,95 T,240 C,285 G,305 46439 54119

T,114 C,264 A,330 G,402 46841 54233
T,176 C,480 A,848 G,1456 48297 54409
T,494 C,608 A,722 G,5266 53503 54903
A,180 T,380 C,1560 C,1580 55083 55083

Table 7. Computation of scores for the matrix M00003 of the Jaspar database.

When we build the trie using the look-ahead technique, we have that at the first level only

the symbol G has a score that is above the partial threshold tla[0]. Hence we will have only

one child node for the root, with partial score 18500. At the second level we have again that

only the score of one symbol, (C,18500) summed up with the current partial threshold 18500,

will give a score (37000) above the partial threshold 27279. Again we add a single child to the

previous node, and label the edge with C. At the third step only C have a score that summed

up with the path partial score (37000) will give a value (55500) that is above tla[2] = 45779.

The trie is then extended a further level using only symbol C. From now on we can notice that

the partial threshold of this path is already above any following look-ahead partial thresholds.

This means that all symbols will be considered at each level, thus obtaining a full subtree of

high 6. This implicity means that the prefix GCC is enough to establish whether there is an hit

or not. If when building the trie we compare the value of the path partial threshold with the

minimum gain partial threshold we can stop early the computation, and set as the final state

of the Aho-Corasick automaton the current node.

The minimum gain basically defines classes of equivalence within the space of hits of the

matrix. Hits that share the same prefix do not need to be totally inserted in the trie. It suffices

to insert their common representative prefix.

In case of matrix M00003, we will save the construction of ∑
6
i=1 4i nodes, that is the number

of nodes of the full subtrees rooted at the common prefix. This means that instead of having

5464 nodes we just have 4 (including the root).

C

C

G

A
C G

T

CA TG

Fig. 4. Space saving with the compact approach for the matrix M00003 of the Jaspar database.

231Motif Discovery with Compact Approaches - Design and Applications

www.intechopen.com



16 Will-be-set-by-IN-TECH

In terms of a compact approach, the minimum gain partitions the set of words that are a hit

for a given matrix and threshold in classes in which the representative is the shortest prefix

with a score that, summed up with the minimum sum of score that can follow, is above the

threshold.

7. Conclusion

In this chapter we discussed the compact approach for the discovery of significant signals

(motifs) in biological sequences. Compact approaches are characterized by a significant

reduction of the size of the output, without loss of crucial information. Compact approaches

that have been developed in these years for several different motif models have been

illustrated and discussed, also with the help of practical examples.
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