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1. Introduction 

One of the most fascinating aspects of RNA interference (RNAi) is the non-cell-autonomous 
nature of silencing. Seminal studies on RNAi focused on the ability of transgene silencing to 
propagate systemically throughout an organism, such as from a single Agrobacterium 
infiltrated leaf to other parts of the plant, or from a grafted silenced stock into a non-silenced 
scion[1, 2]  
The discovery of RNAi was preceded first by observations of transcriptional inhibition by 
antisense RNA expressed in transgenic plants[3] and more directly by reports of unexpected 
outcomes in experiments performed by plant scientists in the U.S. and The Netherlands in 
the early 1990s[4] In an attempt to alter flower colors in petunias, researchers introduced 
additional copies of a gene encoding chalcone synthase, a key enzyme for flower 
pigmentation into petunia plants of normally pink or violet flower color. Soon after, a 
related event termed quelling was noted in the fungus Neurospora crassa [5], although it was 
not immediately recognized as related. Further investigation of the phenomenon in plants 
indicated that the downregulation was due to post-transcriptional inhibition of gene 
expression via an increased rate of mRNA degradation[6]. This phenomenon was called co-
suppression of gene expression, but the molecular mechanism remained unknown. 

Not long after, plant virologists working on improving plant resistance to viral diseases 
observed a similar unexpected phenomenon. While it was known that plants expressing 
virus-specific proteins showed enhanced tolerance or resistance to viral infection, it was not 
expected that plants carrying only short, non-coding regions of viral RNA sequences would 
show similar levels of protection. Researchers believed that viral RNA produced by 
transgenes could also inhibit viral replication[7]. The reverse experiment, in which short 
sequences of plant genes were introduced into viruses, showed that the targeted gene was 
suppressed in an infected plant. This phenomenon was labeled "virus-induced gene 
silencing" (VIGS), and the set of such phenomena were collectively called post 
transcriptional gene silencing [8][15].  
The spread of RNA silencing is not limited to plants or viruses: the first reported 
experiments of RNAi in Caenorhabditis elegans (C. elegans) demonstrated a systemic silencing 
response induced by locally injected or ingested double-stranded RNA (dsRNA) 
molecules[9, 10]. In plants, as in C. elegans, the systemic silencing signal acts in a sequence-
specific manner, invoking the involvement of an RNA component. Sequence-specific RNA 
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silencing that acts non-cellautonomously has tremendous implications, not only practically 
as an experimental tool but in biological processes as well. The long-distance movement of 
RNA silencing through the vasculature forms a crucial component of the antiviral defence 
system and has been implicated in microRNA (miRNA)-regulated stress responses[11] [12, 
13] RNA dependent gene silencing can also move from cell to cell to elicit short-range 
signaling responses, such as in the patterning of leaves and roots[14, 15]. 
After these initial observations in plants, many laboratories around the world searched for 
the occurrence of this phenomenon in other organisms[16] [16]. Craig C. Mello and Andrew 
Fire's 1998 Nature paper reported a potent gene silencing effect after injecting double 
stranded RNA into C. elegans [9]. In investigating the regulation of muscle protein 
production, they observed that neither mRNA nor antisense RNA injections had an effect on 
protein production, but double-stranded RNA successfully silenced the targeted gene. Fire 
and Mello's discovery was particularly notable because it represented the first identification 
of the causative agent of a previously inexplicable phenomenon. Fire and Mello were 
awarded the Nobel Prize in Physiology or Medicine in 2006 for their work. 
MicroRNAs are the most thoroughly characterized. These single-stranded RNAs are 
typically 19 to 25 nucleotides in length and are thought to regulate gene expression post-
transcriptionally by binding to the 3’ untranslated regions (UTRs) of target mRNAs, 
inhibiting their translation[17]. Recent experimental evidence suggests that the number of 
unique miRNAs in humans could exceed 800 [18], though several groups have hypothesized 
that there may be up to 20,000[19] [20] noncoding RNAs that contribute to eukaryotic 
complexity. 
RNA polymerase II transcribes miRNA genes, generating long primary transcripts (pri-
miRNAs) that are processed by the RNase III–type enzyme Drosha, yielding hairpin 
structures (pre-miRNAs). Pre-miRNA hairpins are exported to the cytoplasm where they are 
further processed into unstable miRNA duplexes by the RNase III protein Dicer. The less 
stable of the two strands in the duplex is incorporated into a multiple-protein nuclease 
complex, the RNA-induced silencing complex (RISC), which regulates protein expression. In 
mammalian cells, these RISCs, guided by the miRNA, interact with the 3’ UTR of target 
mRNAs at regions exhibiting imperfect sequence homology, inhibiting protein synthesis by 
a mechanism that has yet to be fully elucidated. 
Although hundreds of miRNAs have been discovered in a variety of organisms, little is known 
about their cellular function. Several unique physical attributes of miRNAs, including their 
small size, lack of polyadenylated tails, and tendency to bind their mRNA targets with 
imperfect sequence homology, have made them elusive and challenging to study. 
Endogenously expressed miRNAs, including both intronic and intergenic miRNAs, are most 
important in translational repression and in the regulation of development, especially the 
timing of morphogenesis and the maintenance of undifferentiated or incompletely 
differentiated cell types such as stem cells[21]. The role of endogenously expressed miRNA 
in downregulating gene expression was first described in C. elegans in 1993 [25]. In plants 
this function was discovered when the "JAW microRNA" of Arabidopsis was shown to be 
involved in the regulation of several genes that control plant shape[22]. In plants, the 
majority of genes regulated by miRNAs are transcription factors [23]; thus miRNA activity 
is particularly wide-ranging and regulated entire gene networks during development by 
modulating the expression of key regulatory genes, including transcription factors as well as 
F-box_proteins[24]. In many organisms, including humans, miRNAs disruption have also 
been linked to the formation of tumors and dysregulation of the cell cycle. Here, miRNAs 
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can function as both oncogenes and tumor suppressors[25]. Another example, miRNAs are 
aberrantly expressed in: liver, pancreatic, oesophageal, stomach, colon, haematopoietic, 
ovarian, breast, pituitary, prostate, thyroid, testicular and brain cancers[26] [27] [28] [29] 
[30]; central nervous system disorders (e.g. schizophrenia and Alzheimer’s disease) [31]; and 
cardiovascular disease[32] [33][36,37]. 
It is becoming clear that a comprehensive understanding of human biology must include 
both small and large non-coding RNAs, and that it is perhaps only through inclusion of 
these elements in the biomedical research agenda, including studies to determine the 
mechanistic basis of the causative variations identified by genome-wide association studies, 
that complex human diseases will be completely deciphered. 

2. Computational methods 

The discovery that microRNAs are synthesized as hairpin-containing precursors with 
many shared features has stimulated the development of several computational 
approaches to the discovery of new microRNA genes in various animal species. Many of 
these approaches rely heavily on conservation of sequence within and between species, 
while others emphasize machine learning methods to screen hairpin candidates for 
structural features shared by known microRNA precursors. The identification of animal 
microRNA targets is a particularly difficult problem because an exact match to the target 
sequence is not required. We discuss the most recently devised algorithms for microRNA 
and target discovery.  

2.1 Machine learning approaches to miRNA discovery 

Methods derived from the machine learning field have recently been applied to miRNA 
discovery with good success. Machine mearning depends on the development of algorithms 
and methods that allow a specific computer program to learn from data already collected on 
verified miRNAs. These algorithms require a training set for the learning process that 
consists of positive examples (that define the miRNA characteristics) and negative examples 
(the control set of non-miRNA sequences). The known microRNAs used as positive 
examples can be downloaded from the database miRBase [34, 35] and random sequences 
can be one choice of negative set. One of the most important tasks associated with the 
learning process is the identification of characteristics and the definition of the rules that 
define the positive class. This is especially important in this case as these characteristics are 
not always explicitly defined, Readers who wish to pursue machine learning in greater 
detail may consult a recent review [36].  
Examples of supervised machine learning algorithms include, naïve Bayes, support vector 
machines (SVM), hidden Markov models (HMM), neural networks and the k-nearest 
neighbor algorithm. Naïve Bayes is a classification model obtained by applying a relatively 
simple method to a training dataset [37]  A Naïve Bayes classifier calculates the probability 
that a given instance (example) belongs to a certain class. Support Vector Machines (SVMs) 
are  widely used  machine learning algorithms developed by Vapnik [38]. In this technique, 
the numbers describing each feature of a microRNA are combined into a single vector in an 
n-dimensional space. The algorithm compares the vectors from the positive class with those 
from the negative class, and finds a "hyperplane" which produces the best separation 
(margin) between the two classes. The "support vectors" are the samples from the two 
classes which are closest together but still separable--they "support" the separating 
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hyperplane, (See Figure 1). The performance of this algorithm, as compared to other 
algorithms, has proven to be particularly useful for the analysis of various classification 
problems, particularly when the two classes are closely related or non-uniform, and has 
recently been widely used in the bioinformatics field [39, 40].  
 

Negative  Class

Positive  Class

Separating Hyperplane

margin

margin

 

Fig. 1. The solid line is the Separating Hyperplane  and the dashed lines are the margins for 
a SVM trained with samples from two classes. Samples (point) on the margin are called the 
support vectors 

2.2 MicroRNA discovery tools 

Numerous computational approaches (in addition to machine learning) have been 
implemented for miRNA gene prediction using methods based on sequence conservation 
and/or structural similarity[41]; [42],[43] ; [44]; [45]. Some of these tools are listed in Table 1. 
Lim and others [41] developed a program for identification of miRNAs, called MiRscan, 
with 70% specificity at a sensitivity of 50%. MiRscan uses seven miRNA features with 
associated weights to build a computational tool, which assigns scores to hairpin candidates. 
The weights are estimated using statistics based on the previously known miRNAs from 
C.elegans. Grad, et al., (2003), developed a computational method using sequence 
conservation and structural similarity to predict miRNAs in the C.elegans genome. Lai, et al., 
(2003) used similar ideas to develop a different computational tool for the Drosophila 
genome, called miRseeker. These efforts were previously reviewed by Bartel [46]. Others 
have used homology searches for revealing paralog and ortholog miRNAs ([42]; [47]; [48]; 
[49]; [50]). Additionally, Wang and others[51] developed a method based on sequence and 
structure alignment for miRNA identification.  
ProMiR [52] is  based on  machine learning for miRNA discovery. ProMiR uses a highly 
specific probabilistic model (HMM) whose topology and states are handcrafted based 
on prior knowledge and assumptions, and whose exact probabilities are derived from the 
accumulated data. Pfeffer, et al., (2005) used support vector machines (SVMs) for 
predicting conserved miRNAs in herpesviruses. The features that defined the positive 
class were extracted from the sequence and structure features in the stem loop to form the 
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positive class. The negative class was generated from mRNAs, rRNAs, or tRNAs from 
human and viral genomes which should not include any miRNA sequences. The same 
approach was also applied to analysis of clustered miRNAs [53] using a tool named mir-
abela, while Xue, et al.,(2005) developed  a SVM classifier as  a 2-class tool that does not 
rely on comparative genomic approaches. They defined a negative class called pseudo 
pre-miRNAs. The criteria for this negative class included a minimum of 18 paired bases, a 
maximum of -15 kcal/mol folding free energy and no multiple loops. The tool is called 
triplet-SVM. BayesMiRNAfind [54] is a machine learning approach based on the Naïve 
Bayes classifier for predicting miRNA genes. This method differs from previous efforts in 
two ways: 1) they generate the model automatically and identify rules based on the 
miRNA gene structure and sequence, allowing prediction of non-conserved miRNAs and 
2) they use a comparative analysis over multiple species to reduce the false positive rate. 
This allows for a trade-off between sensitivity and specificity. The resulting algorithm 
demonstrates higher specificity and similar sensitivity to algorithms that use conserved  
genomic  regions to reduce false positives [41, 43-45]. Grundhoff, et al.,(2006) have 
developed an approach to identify miRNAs that is based on bioinformatics and array-
based technologies. The bioinformatics tool, VMir [55], does not rely on evolutionary 
sequence conservation. RNAmicro [56] is another miRNA prediction tool developed by 
Hertel and Stadler  that relies mainly on comparative sequence analysis rather then 
structural features using two-class SVM. 
Sheng, et al.,(2007)  describe a computational method, mirCoS [57], that applies three 
support vector machine models, based on sequence, secondary structure, and 
conservation, sequentially to discover new conserved miRNA candidates in mammalian 
genomes. 
Defining the negative class is a major challenge in developing machine learning algorithms 
for miRNA discovery. Two machine learning approaches have recently appeared for 
identifying microRNAs without the necessity of defining a negative class. Yousef, et al., 
(2008) presented a study using one-class machine learning for microRNA using only 
positive data to build the classifier (One-ClassMirnaFind [58]). Several different classifiers, 
including two classes SVM were used to compare the one-class approach to the 
corresponding two-class methods. Although the two-class procedure was generally found to 
be superior, it was more complex to implement.  
Xu, et al., (2008) recently developed a tool called miRank. MiRank [59] is a novel ranking 
algorithm based on a random walk through a graph consisting of known miRNA examples 
and unknown candidate sequences. Each miRNA is a vertex connected to its neighbor by an 
edge which is weighted by its similarity of the miRNA features.  The score or relevance of a 
vertex increases with the number of its connections. The vertices are then ranked by 
relevance score, and an arbitrary cutoff of the ranked list includes both the positive 
examples and the most similar of the predicted unknowns. The strength of miRank is its 
ability to identify novel miRNAs in newly sequenced genomes where there are few 
annotated miRNAs (positive examples). The authors found miRank to be superior to SVM 
classifiers, and attribute its success to the fact that it structures the list and ranks the 
candidate examples as well as the query sequences during the training and classification 
steps.  
We should note in passing that  high-throughput methods for sequencing isolated small 
RNAs provide a new tool  for discovering  new microRNA species [60] and a  new  method 
for amplifying low-concentration  microRNAs allows easier testing  of predictions [61] . 
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Algorithm Web link References 

MiRseeker   Lai et al., 2003 

MiRscan http://genes.mit.edu/mirscan/ Lim et al., 2003a,b 

miRank MiRank is programmed in Matlab     Xu, et al.,2008 

ProMiR II http://cbit.snu.ac.kr/~ProMiR2/ Nam et al., 2005 

PalGrade  Bentwich et al., 2005 

mir-abela http://www.mirz.unibas.ch/cgi/pred_miRNA_genes.cgi Sewer et al., 2005 

triplet-SVM http://bioinfo.au.tsinghua.edu.cn/mirnasvm/ Xue, et al., 2005 

Vmir http://www.hpi-hamburg.de/fileadmin/downloads/VMir.zip Grundhoff et al., 2006 

RNA micro http://www.bioinf.uni-leipzig.de/~jana/software/index.html Hertel and Stadler 2006 

mirCoS Based on LIBSVM library package [62] Sheng et al., 2007 

BayesMiRNAfind https://bioinfo.wistar.upenn.edu/miRNA/miRNA/login.php Yousef et al., 2006, 

One-ClassMirnaFind http://wotan.wistar.upenn.edu/OneClassmiRNA/ Yousef et al., 2008 

Table 1. Summary information about computational tools for miRNA predictions.  

3. Target identification  

Although recent findings [63] suggest MicroRNAs may affect  gene expression  by binding to 
either 5’ or 3’ untranslated regions of messenger RNA, most studies have found that 
microRNA mark their target mRNAs for degradation or suppress their translation by binding 
to the 3’-untranslated region (3’UTR) and most target programs search there . These studies 
have suggested that the microRNA seed segment which includes 6-8 nucleotides at the 5’ end 
of the mature miRNA sequence is very important in the selection of the target site (see  
Figure 2). Thus, most of the computational tools developed to identify mRNA target sequences 
depend heavily on complementarity between the miRNA seed sequence and the target 
sequence. Diana-microT [64] was one of the first computational tools for target prediction that 
identified specific interaction rules based on bioinformatics and experimental approaches.  
The tool successfully recovered all validated  C. elegans miRNA targets 
Several additional methods for the prediction of miRNA targets have been subsequently 
developed. These methods mainly use sequence complementarities, thermodynamic 
stability calculations, and evolutionary conservation among species to determine the 
likelihood of a productive miRNA:mRNA duplex formation [46, 65]. John et al., (2004) 
developed the miRanda [66] algorithm for miRNA target prediction. MiRanda uses 
dynamic programming to search for optimal sequence complementarities between a set of 
mature microRNAs and a given mRNA  MicroRNA.org (http://www.microrna.org) [67] 
is a comprehensive resource of microRNA target predictions and miRNA expression 
profiles. Target predictions are based on the miRanda algorithm while miRNA  
expression profiles are derived from a comprehensive sequencing project of a large set of 
mammalian tissues and cell lines of normal and disease origin. Another algorithm 
RNAhybrid [68] [69] is  similar to a RNA secondary structure prediction algorithm like 
the Mfold program [70] but it determines the most favorable hybridization site between 
two sequences. 
Bennecke and others [71] have recently suggested that the 3’ out-seed segment of the 
miRNA:mRNA duplex can compensate for imperfect base pairing of the target with the seed 
segment and a recent computational approach [72] has considered the contributions of both 
seed and the out-seed miRNA segments in target identification. Using sequence 
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conservation reduces false positive predictions but as a result some less-conserved target-
sites may be missed. This presents a dilemma, which is how to avoid rejection of these less 
highly conserved target sites while still reducing the very large numbers of predictions that 
are found when seed region conservation in the target is not required. In order to reduce the 
false positive predictions inherent in methods that heavily weight specific target sequence 
conservation, Lewis, et al.,(2005) developed TargetScanS [73]. TargetScanS scores target sites 
based on the conservation of the target sequences between five genomes (human, mouse, 
rat, dog and chicken) as evolutionarily conserved target sequences are more likely to be true 
targets. In testing, TargetScanS was able to recover targets for all 5300 human genes known 
at the time to be targeted by  miRNAs.  
PicTar [74] is a  computational method to detect common miRNA targets in vertebrates, C. 
elegans, and Drosophila. PicTar is based on a statistical method applied to eight vertebrate 
genome-wide alignments (multiple alignments of orthologous nucleotide sequences (3' 
UTRs) ). PicTar was able to recover validated miRNA targets at an estimated 30%  
false-positive rate. In a separate study PicTar was applied to target identification in 
Drosophila melanogaster  [75] . These studies suggest that one miRNA can target 54 genes 
on average and that known microRNAs are projected to regulate a large fraction of all D. 
melanogaster genes (15%). This is likely to be a conservative estimate due to the incomplete 
input data.  
TargetBoost [76] is a machine learning algorithm for miRNA target prediction using only 
sequence information to create weighted sequence motifs that capture the binding 
characteristics between microRNAs and their targets. The authors suggest that TargetBoost 
is stable and identifies more of the already verified true targets than do other existing 
algorithms.  
Sung-Kyu, et al., (2005), also reported the development of a machine learning algorithm 
using SVM. The best reported results [77] were 0.921 sensitivity and 0.833  specificity. More 
recent Yan and others, used a machine learning approach that employs features extracted 
from both the seed and out-seed segments [72]. The best result obtained was an accuracy of 
82.95% but it was generated using only 48 positive human and 16 negative examples, a 
relatively small training set to assess the algorithm. 
In 2006, Thadani and Tammi [78] launched MicroTar,  a novel statistical computational tool 
for prediction of miRNA targets from RNA duplexes which does not use sequence 
homology for prediction. MicroTar mainly relies on a quite novel approach to estimate the 
duplex energy. However, the reported sensitivity (60%) is significantly lower than that 
achieved using other published algorithms. At the same time, a microRNA pattern 
discovery method,  RNA22 [79] was proposed to scan UTR sequences for targets . RNA22 
does not rely upon cross-species conservation but was able to recover most of the known 
target sites with validation of some of its new predictions. 
More recently, Yousef, et al.,(2007) described a target prediction method, (NBmiRTar [80]) 
using instead machine learning by a Naïve Bayes classifier. NBmiRTar does not require 
sequence conservation but generates a model from sequence and miRNA:mRNA duplex 
information derived from validated target sequences and artificially generated negative 
examples. In this case, both the seed and “out-seed” segments of the miRNA:mRNA duplex 
are used for target identification. NBmiRTar technique produces fewer false positive 
predictions and fewer target candidates to be tested than miRanda [66]. It exhibits higher 
sensitivity and specificity than algorithms that rely only on conserved genomic regions to 
decrease false positive predictions.  
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Algorithm Web link References 

TargetScanS http://genes.mit.edu/targetscan  Lewis, et al., 2005 

miRanda http://www.microma.org John, et al., 2004 

PicTar http://pictar.bio.nyu.edu Krek, et al. 2005 

RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid Rehmsmeier, et al., 2004 

Diana-microT http://www.diana.pcbi.upenn.edu/cgi-bin/micro_t.cgi Kiriakidou, et al. 2004 

Target Boost https://demo1.interagon.com/demo SaeTrom, et al. 2005 

Rna22 http://cbcsrv.watson.ibm.com/rna22_targets.html Miranda, et al. 2006 

MicroTar http://tiger.dbs.nus.edu.sg/microtar/ Thadani and Tammi 2006 

NBmiRTar http://wotan.wistar.upenn.edu/NBmiRTar  Yousef, et al. 2007 

miRecords http://mirecords.umn.edu/miRecords/ Xiao, et al., 2009 

Table 2. MicroRNA Target prediction tools 

In a 2004 review Lai [65] noted that  there is almost no overlap among the predicted targets 
identified by the various methods and suggested that each tool captures a subset of the 
entire target class as a function of the specific features they have incorporated into their 
prediction models. More recently, Sethupathy, et al., (2006) conducted a comparison of the 5 
most used tools for mammalian target prediction. This study indicated that 30% of the 
experimentally validated target sites are nonconserved, supporting the need for the 
development of different or complementary computational approaches to capture new 
target sites. Furthermore, the large number of predictions that each of these tools is 
producing suggests that the heavy reliance on homology or comparative sequence analysis 
is not sufficient to generate accurate predictions with a high sensitivity and there are yet to 
be identified recognition parameters that must be considered.  

4. Databases for microRNA and targets  

There is a variety of very useful databases that provide a significant amount of 
information on miRNA and Target predictions,(Table 3). The most extensive database for 
both miRNA and target sequences is miRBase[34]. MiRBase contains both miRNA mature 
sequences, hairpin sequences of precursors and associated annotation. Release 12.0 of the 
database contains 8619 entries representing hairpin precursor miRNAs, expressing 8273 
mature miRNA products, in primates, rodents, birds, fish, worms, flies, plants and 
viruses. MiRBase also contains predicted miRNA target genes in miRBase Targets, and 
provides a gene naming and nomenclature function in the miRBase Registry. The miRNA 
target genes are predicted by  the miRanda tool  [66] and not necessarily experimentally 
validated.  
TarBase [81] contains a  set of experimentally supported targets in different species that are 
collected manually from the literature. TarBase version 5 has more than 1300 experimentally 
supported miRNA target interactions. The database has information about the target site 
described by the duplex of miRNA and gene. It also includes information on the 
experiments that were conducted to test the target, the sufficiency of the site to induce 
translational repression and/or cleavage, and a reference to the paper used to extract  the 
information. 
Argonaute [82] is  a compilation of comprehensive information on mammalian miRNAs, 
their origin and regulated target genes in an exhaustively curated database. The source 
information of Argonaute is from both literature and other databases. 
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The most recently released database,  miRecords [83], is an integrated resource for animal 
miRNA–target interactions. miRecords stores predicted miRNA targets produced by 11 
established miRNA target prediction programs.  
 

DataBase Web Link 

MiRBase http://microrna.sanger.ac.uk/ 

TarBase http://diana.cslab.ece.ntua.gr/tarbase/ 

Argonaute http://www.ma.uni-heidelberg.de/apps/zmf/argonaute/ 

miRecords http://mirecords.umn.edu/miRecords/ 

Table 3. Databases for microRNA and Targets 
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