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Non-Instantaneous Adiabats in Finite Time 

Delfino Ladino-Luna and Ricardo T. Páez-Hernández 
Universidad Autónoma Metropolitana-A 

México 

1. Introduction  

Since the pioneer paper of Curzon and Ahlborn (1975), the so called finite time 
thermodynamics has been in development. Curzon and Ahlborn proposed a model of 
thermal engine called endoreversible cycle or Curzon and Ahlborn cycle, shown in Figure 1, 
with the so called Curzon-Ahlborn-Novikov efficiency,  

 1 /CAN C HT T   ,   (1) 

where CT  is the cold reservoir temperature and HT  is the hot reservoir temperature. This 
endoreversible cycle is an engine in which the endoreversibility condition, 

/ /H HW C CWQ T Q T , is fulfilled and the entropy production during the exchange of heat, 

HQ  and CQ , between the system and its reservoirs of heat is only taken into account. The 
temperatures of working substance are HWT  and CWT . The relation between these 
temperatures in the cycle is C CW HW HT T T T   . 
 
 

 

 

Fig. 1. Curzon and Ahlborn cycle in the entropy S vs temperature T plane.  
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As we can see, Carnot efficiency, C , is obtained when the temperatures of reservoirs are the 
same as engine temperatures, which means HW HT T  and C CWT T  in Figure 1, namely,  

 1 1C CW
C

H CH

T T

T T
          (2)  

Equation (1) was previously advanced by Chambadal (1957) and  Novikov (1958), among 
others, and has been recovered by some procedures (Salamon, et al., 1976; Rubin, 1979a, 
1979b, 1980; Bejan, 1996; Gutkowicz-Krusin et al., 1978 among others). Particularly, the 
optimal configuration of heat engines was studied (Rubin, 1979a), and it was introduced a 
procedure in which the power output of cycle is taken as a function of the compression ratio 
by using the parameter  ~   1

max minln lnV V
 , where maxV  and minV  are the maximum 

and the minimum volumes spanned in the cycle, respectively (Gutkowicz-Krusin et al., 
1978). More recently, this subject has been also studied by other authors (Badescu, 2004; 
Amelkin, et al., 2004, 2005; Song et al., 2006, 2007). Even more Angulo-Brown (1991) 
introduced an optimization criterion of merit for the Curzon and Ahlborn cycle taking into 
account entropy production, the ecological criterion, through the function,  

 CE P T   ,  (3) 

where P is the power output, CT  is the temperature of cold reservoir an   is the total 
entropy production.  The function in (3) is known as ecological function, and at maximum of 
this function the efficiency of Curzon and Ahlborn cycle can be written as,  

 21 ( ) / 2E     .  (4) 

A comparison of values obtained with the previous expressions of efficiency, for some 
plants reported in the literature of finite time thermodynamics, is shown in Table 1. 
Notice that the ecological criterion proposed by Angulo-Brown for finite-time Carnot heat 
engines, Equation (3), represents a compromise between the high power output P and a loss 
power output, CT  . However Yan (1993) showed that it might be more reasonable to use 

0 0E P T    if the cold reservoir temperature CT  is not equal to the environments 
temperature 0T  because in the definition of E two different quantities, exergy output, P, and 
a non-exergy CT  , were compared together. The criterion with function 0E  is more 
reasonable than that presented by Angulo-Brown. Nevertheless, since 0E E  when 

0 CT T  it can be used as the optimization of E without loss of generality. 
Recently, following the procedure of Gutkowicz-Krusin et al (1978) the form of the 
ecological function and its efficiency was found using the Newton heat transfer law and 
ideal gas as working substance (Ladino-Luna & de la Selva, 2000), and using Dulong-Petit 
heat transfer law for ideal gas as working substance (Ladino-Luna,2003).  
It is important to remark that Curzon and Ahlborn efficiency is an adequate approximation 
for conventional power plants, and ecological efficiency is the adequate approximation for 
modern power plants (nuclear and others), as it is shown in Table 1.  
On other hand, in nature there are no endoreversible engines. Thus, some authors have 
analyzed the non-endoreversible Curzon and Ahlborn cycle. Ibrahim et al. (1991), and Wu 
and Kiang (1992) proposal include a non-endoreversibility parameter to take into account  
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Plant HC TT /
C CAN E  obs  

West Thurrock  (coal fired steam plant), U K 298/838 0.64439 0.40367 0.50905 0.360 
Lardarello (geothermal steam plant), Italy 353/523 0.32505 0.17845 0.24818 0.160 
Central steam power station, U K  298/698 0.57307 0.3466 0.44809 0.280 
Steam power plant, U S A  298/923 0.67714 0.43179 0.55447 0.400 
Combined-cycle (steam and mercury),   
U S A 

298/783 0.61941 0.38308 0.48744 0.340 

Doel 4 (nuclear pressurized water reactor), 
Bélgium 

283/566 0.50000 0.29289 0.38763 0.350 

Almaraz II (nuclear pressurized water 
reactor), Spain 

290/600 0.51667 0.30478 0.40127 0.345 

Sizewell B (nuclear pressurized water reactor), 
U K 

288/581 0.50430 0.29594 0.39114 0.363 

Cofrentes (nuclear boiling water reactor), 
Spain  

289/562 0.48577 0.28290 0.37603 0.340 

Heysham (nuclear advanced gas cooled 
reactor), U K  

288/727 0.60385 0.37060 0.47413 0.400 

Table 1. Values of different efficiency expressions for the cycle in Figure 1. T is in Kelvin 
scale. 

internal irreversibilities in the cycle. Later, Chen (1994, 1996) analyzed the effect of thermal 
resistances, heat leakage and internal irreversibility with these parameter definite as, 

 /S C HI S S   ,     (5) 

where CS  is the entropy change during heat exchange from the engine to the cold 
reservoir, and HS  is the entropy change during heat exchange from the hot reservoir to the 
engine. Chen et. al. (2004, 2006) carried out the ecological optimization for generalized 
irreversible Carnot engine with heat resistance, heat leakage and internal irreversibility for 
newtonian heat transfer law. Zhu et. al (2003) used a generalized convective heat transfer 
law ( )nQ T  , and generalized radiative heat transfer law  ( )nQ T  . More recently the 
ecological optimization for generalized irreversible universal heat engine, including Diesel, 
Otto, Bryton Atkinson, Dual and Miller cycles, with heat resistance, heat leakage and 
internal irreversibility was carried out for newtonian heat transfer law (Chen et al., 2007). 
The non-endoreversible Curzon and Ahlborn cycle model is shown in Figure 2. The 
efficiency of Curzon and Ahlborn cycle using the parameter in Equation (5), at maximum 
power output was found as (Chen, 1994, 1996),  

 1 , 1m S SI I    .  (6) 

On other hand, Angulo-Brown et al (1999) showed that a general property of endoreversible 
Curzon and Ahlborn cycle demostrated previously (Árias-Hernández & Angulo-Brown, 
1997) can be extended for a non-endoreversible Curzon and Ahlborn cycle. Besides, Velasco 
et. al. (2000) follow the idea in Chen (1994, 1996), and they found expressions to measure 
possible reductions of non-desired effects in heat engines operation. They pointed out that IS 
is not depending of   and re-wrote Equation (6) as, 

www.intechopen.com



 
Thermodynamics – Physical Chemistry of Aqueous Systems 

 

134 

 1 / , 1 / , 0 1m SI I I I      .  (7) 

Even more, Angulo-Brown et. al. (2002) applied variational calculus to show that both the 
saving function (Velasco et. al., 2000) and a modified ecological criterion are equivalent.  
These previous results have been found assuming an ideal gas as working fluid. However, 
in a real context, a thermal engine works with a non-ideal gas.  The performannce of a finite 
time cycle with a van der Waals gas as working fluid was analyzed among others by 
Agrawal & Menon (1990), and more recently by Ladino-Luna (2005). 
 
 

 
 

Fig. 2. Non-endoreversible Curzon and Ahlborn cycle in the S-T plane. IQ  is the generated 
heat by internal processes. 

In the present work it is shown that some of internal irreversibilities can be taken into 
account for a more general expressions of both power output and ecological function, with a 
non-linear heat transfer law like ( )dQ k

dt
T  , assuming the Curzon and Ahlborn cycle with 

non-instantaneous adiabats. Approximate efficiencies curves at maximum power output 
and at maximum ecological function are shown for 5

4k  , that is in case of the Dulong and 
Petit heat transfer law. Comparative tables of values of efficiencies are shown for certain 
power plants reported in some papers, (Árias-Hernández & Angulo-Brown, 1997; Velasco et 
al., 2000 and more recently Ladino-Luna, 2008). The cycle analysis shall be treated assuming 
both ideal gas and van der Waals gas as working fluids. Also, we show that power output 
and ecological function have a similar property when the compression ratio is taking into 
account, e. g. the efficiency obtained at maximum of each of objective function with the 
definition /C HT T    is a bound for efficiencies, when an engine is modeled as a Curzon 
and Ahlborn cycle working at maximum of each objetive function and the time of all the 
processes in the cycle is took into account (Ladino-Luna & de la Selva, 2000; Ladino Luna, 
2003). All of quantities have been taken in the International Measurement System.  
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2. Non-instananeous adiabats with Newton´s heat transfer law 

From classical thermodynamics, the efficiency of a reversible thermal engine working 
between two temperatures HW CWT T  is known when heat exchanged is also known.  In 
this description, the temperatures of working gas in the isothermal processes, HWT  and 

CWT , are assumed to be the same as that of the corresponding reservoirs. As a consequence 
the process associated with the heat transfer between the engine and the reservoirs is 
ignored. The upper limit of the efficiency of any heat engine corresponds to the Carnot 
cycle, C , in which the temperatures of the reservoirs are the same as the temperatures of 
the heat engine in Figure 1, as it was shown in Equation (2). Thus, the definition of efficiency 
of an engine working in cycles leads to the Carnot efficiency, fulfilling, 

 1H C CW

H HW

Q Q T

Q T


    (8) 

It is important to note that the following expressions, with the change /C HT T  , Carnot 

efficiency 1C   , Curzon and Ahlborn-Novikov efficiency 1CAN    and ecological 

efficiency 21 ( ) / 2E     , and using the Newton heat transfer law, appear as a 

function of   , so they can be written in general as,  

 1 ( )z   ,  (9) 

Thus, the problem of finding the efficiency of a heat engine modeled as a Curzon and 
Ahlborn cycle, and using either of two alternatives, maximizing power output or 
maximizing ecological function, becomes the problem of finding a function ( )z z  , as 

complicated or simple as to allow the heat transfer law being used and the chosen 
procedure. So, substituting ( )z z   in expression (9) the efficiency is obtained as   

 ( )   .    (10) 

So we can use the Newton’s heat transfe law, and also we can assume the same thermal 
conductance   in two isothermal processes of Curzon and Ahlborn cycle. The heat 
exchanged between the engine and its surroundings can be expressed as, 

 ( )H
H HW

dQ
T T

dt
   and  ( )H

C CW

dQ
T T

dt
  . (11) 

2.1 The Gutkowics-Krusin, Procaccia and Ross model 

With the previous ideas, to make the present paper self-contained we include in this section 
a brief explanation and some results of model used by Gutkowicz-Krusin et al (1978), and 
others that we need for our present purposes. In their model Gutkowicz-Kru et al. consider 
a working substance inside of a cylinder with a movable piston as engine, and also they 
considered an ideal gas as working fluid, contained in the cylinder and the mass of piston 
not negligible. The inertia of the movable piston does not affect the endoreversible character 
of Curzon and Ahlborn cycle to consider the expansion of gas, and because the volume 
occupied by the gas in the expansion and compression can be written as     
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 V l A  ,  (12) 

where V is the volume occupied by the gas, A is the cross section area (constant) of the 
cylinder and l is the distance traveled by the piston in the expansion or compression of gas. 
The acceleration of the piston during the processes is 

 
2 2

2 2

1d l d V

Adt dt
  ,  (13) 

so that, from the pressure definition,  

 
force

pressure
area

 ,  (14) 

and with the Newton’s second law, namely ( ) ( )force mass acceleration  , we can write,  

 
2

2

1 forced l
m pressure

A areadt

 
   

 
.  (15) 

For the gas+piston system, the difference in internal and external pressures is expressed by 

 
2

2ext

m d V
p p

A dt
  .  (16) 

On other hand, conservation of energy law of the system can be written as 

 
2

2ext

dU dQ dV m d V dV
p

dt dt dt A dtdt
   ,   (17) 

where the last term represents the power output during the movement of piston to take 
volumen V. Substituting (16) in (17) it is obtain 

 ( )ext ext

dU dQ dV dV
p p p

dt dt dt dt
       ó   

dU dQ dV
p

dt dt dt
  ,    (18) 

which means that the system is in mechanical equilibrium with its surroundings. Now, we 
can find the form of time for each process using the Newton’s heat transfer law, Equation 
(11). For isothermal processes, using an ideal gas we have U = U(T)=constant, indicating that  
(18) is reduced to the expression,  

 
dQ dV

p
dt dt

 .  (19) 

Due to the equation of state for ideal gas, (19) can be written as 

 (ln )
dQ RT dV d

RT V
dt V dt dt

  ;  (20) 

The power, defined by the quotient of the total work output W and the total time tott  is as, 
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 

 
3

1

3

1

1
1( ) ln ln

ln

CW

HW

HW CW

H HW CW C

V T
HW CW V T

T T V
tot

T T T T V

T TW
P

t

 

 

 
 


.   (21) 

  is the thermal conductance, /P VC C  ; tott  is the cycle period and the adiabatic 

processes are not instantaneous.  In fact, 

 1 2 3 4TOTt t t t t       (22) 

where the times for the isothermal processes have been found to be, 

 2

1
1 ln

( )
VHW
V

H HW

RT
t

T T



 and  4

3
3 ln

( )
VCW
V

CW C

RT
t

T T



  (23) 

and the times for the adiabatic processes have been assumed to be: 

 3

2
2 1 ln V

V
t f  and 4

1
4 2 ln V

V
t f ,  (24) 

with 

 1 ( )
HW

H HW

RT
f

T T



 and 2 ( )

CW

CWw C

RT
f

T T



,   (25)  

where R is the general constant of gases. The heat flows, HQ and CQ  are assumed to be 
given by Newton's heat transfer law, as (11). The power output is written in terms of the 
variables /HW Hu T T  and /CW HWz T T  from which we obtain ( , )P P u z  as, 

 
 

1
1

(1 ) 1 lnH

z
u uz

T z z
P



 

 

 


 ,   (26) 

and its maximization conditions / 0P u    and  / 0P z    allow to obtain 

 
2

z
u

z


 ,   (27) 

and 

 2( )(1 ln ) ( )(1 )z z z z        ;  (28) 

where   represents the external parameter,  

 
3 1

1
( 1)ln( / )V V





    (29) 

meaning that 

 max max( ( ), )P P u z z ,  (30)  
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that is maxP  is a projection on the ( , )z P  plane.  It is also found that at the maximum power 

condition z is given by a power series in  : 

 2 2 2 2 31 1
2 4(1 ) (1 ) (1 ) / 2 ln ( )Pz O                      (31)  

Upon substiting Equation (31) in Equation (9) and because the terms in the series (31) are 
positive, an upper bound for the efficiency is obtained when 0  , i.e. when the engine size 
goes towards infinity, it is the following one: 

 max 1 ( 0)P CANz         (32) 

In the next section we construct the equation analogous to (31) for the ecological function 
following the Gutkowicz-Krusin, Procaccia and Ross model outlined here. 

2.2 The ecological function 

In the ecological function, Equation (3), we take P from Equation (26) and the entropy 
production term   as  / totS t   , where S  represents the entropy change caused at the 
isothermal processes because of the heat transfers Equation (11),  

 
1 C H

tot C H

Q Q

t T T


 
  

 
.   (33) 

tott  is given by Equations (22) to (25), and in terms of the variables ( , ,u z  ),     becomes, 

   
 3

1

3

1

1
11
1

2 1

ln ln ( )

ln

V

V

V z
V u zu

z zT

T






  

 

 


  
,  (34) 

where, thanks to the endoreversibility condition, we have used the thermostatic results  

2 1 3 4/ /V V V V  and  
1

1
2 3 /CW HWV V T T   , where   is given by Equation (29). 

With Equations(26) and (34) the expression for the ecological function becomes 

 1 1
1

(1 2 )(1 ln )
z

u zu

z z
E T



 
 

  



   (35) 

Figure 3 shows the behavior of / HP T , / HT   and / HE T  in the u constant plane, at 
0   and   a given constant value. It is apparent that the maximum power output is 

achieved with high production of entropy, it is also apparent that zero entropy production is 
achieved with zero power output, while the function E represents the maximum possible 
power output with the minimum possible entropy production. 
Upon maximizing the two variables function ( , )E E u z  (   defined positive and   defined 
semipositive, being external parameters), we obtain for / 0E u    and / 0E z   , at first 

( )u u z , as in case of maximizing power output, and later the following relation between 
the variables z  and u, 

  2(1 ln ) (1 2 ) ( )( ) (1 2 )(1 ln )(1 )z z z z zu z z u z                  .    (36) 
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Fig. 3. Behavior of power output, entropy production and ecological efficiency. Here, 

400 , 0.75, 0HT K     .  

Substituting u from (27) in Equation (36) it is obtain the equation that z obeys at the 
maximum of the ecological function, namely, 

  2(1 ln ) (1 2 ) ( ) (1 2 )(1 ln )z z z z z z               .  (37) 

If we suppose ( )z z   given by the power expansion, 

 2 3
0 1 2 3Pz b b b b       ,  (38) 

we find, upon taking the implicit successive derivatives of Pz  with respect to   in Equation 

(37) and equating them with the coefficients ib  in Equation (38),  

 


  
2

1
2 2161 1 2 1

2 4 2 2 2

2 2 31
2

(1 3 ) 1 2
( ) 1 (1 3 ) 1 ln ( )

2

1 3 4 ( ) ( )

Ez

O

 


     

   

    



                  

   

   (39)  

Furthermore, using (39), we can write the efficiency as a power series in  , 

 1 ( , )Ez   
E

   (40) 

In the particular case when 0   we find the value  

 
2( )

( , 0)
2EOz

   
  ,  (41) 

and the corresponding value for the ecological efficiency with instantaneous adiabats is as: 

 21
21 ( , 0) 1 ( )EO EOz          ,  (42) 
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which is the maximum possible one, since all the terms in Eq.(39) are positive.   

2.3 The linear approximation 

As we can see in Equations (31) and (39), it can be taken a linear approximation for the 
efficiency   in terms of compression ratio, namely max min/V V , and of the ratio /C HT T , 
obtaining an expression like max min( , , ) 0C HF V V T T  , with the same form regardless it 
was obtained by maximization of power output or maximization of ecological function. It 
permits analyze the behavior of compression ratio in respect  to /C HT T . It can verified that 

Cr   and 0   lead to the Curzon-Ahlborn-Novikov efficiency, now written as 
( 0)CAN P PO      . From (31) the linear approximation can be obtained, 

 21
2( ) 1 (1 )PL        ,  (43) 

and the corresponding linear approximation of ecological efficiency is as,  

 2 21 1 1
2 4 2( ) 1 ( ) (1 3 ) ( )

EL
                

.  (44) 

As can be seen, the linear approximation of efficiency, maximizing power output or 
ecological function, has the form, 

 
( )

( , ) ( ) ,
( 1)ln

J
JL JO J JO

C

b
b

r


      


   


   (45)  

where Jb  is de coefficient of linear term in  , being   1( 1)ln Cr    , and the subscript J  
is substituting by P or E, for each of  cases: maximization of power output or maximization 
of ecological function. That is, for maximum power output we have PL , P  and Pb ; and 
for maximum ecological function we have EL , E  and Eb . So, for a particular value of 
efficiency we have ( )C Cr r  . The general expression of ( )Cr  , from (45),   is obtain as,  

 exp
( 1)( )

J
C

JO JL

b
r

  

    
   

.  (46) 

Taking JO  as Curzon and Ahlborn-Novikov efficiency or ecological efficiency, it is true, 

 0 JL JO   .  (47) 

A particular value of efficiency JL  permits find the interval 0 1   in which Cr  satisfies, 

 1Cr  ,  (48) 

and Equation (48) permits find, from (46),  

 0
( 1)( )

J

JO JL

b

  


 
,  (49) 

which leads to inequality        
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 ` JL IO  ,  (50) 

as a necessary condition because JO  must be an upper bound for JL . For monoatomic 
gases 1.67  , with JL  as a variable parameter, the variation of Cr  can be obtained, and 
we can see that Cr   when JL JO  , as it should be. For each temperatures in Table 1 
the variation of Cr  is obtained from (46). By example in the West Turrock plant,  838HT K  
and 298CT K , with 0.403367PO CA   . Figure 4 shows the behavior of Cr  respect to 

PL . Using the ecological function for the same plant, 0.50905EO  , and Figure 5 shows the 
behavior of Cr  respect to EL . There is a minimum value of compression ratio greater than 
1. On other hand for a particular value of Cr  and for values of the used parameters in 
Figures 4 and 5, the behavior of JL  can be considered as function of C HT T  , where  we 
can be see the correctness of (50), so JL JO   only when 1  , as it is shown in Figure 6,  
for the ecological function with 10Cr  , closer to compression values found in 
thermodynamics textbooks (among others Burghardt, 1982). In addition, the values of 
efficiency obtained naturally with the linear approximation are closer to real values than the 
corresponding values of CA , and E . The physically possible values of Cr  take places 
when the values of    that comply 0 1  . 

 

Fig. 4. Behavior of Cr  in respect to variation of PL  in the interval [0,0.403367) . 
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Fig. 5. Behavior of Cr  in respect to variation of EL  in the interval [0,0.50905) . 

In real compressors, named alternative compressors with dead space, percent of volume in 
the total displacement of a piston into a cylinder is named dead space ratio, defined as   

( ) /( )c volume of dead space volume of displacement , (Burghardt, 1982). In case of a Curzon 
and Ahlborn cycle (min ) /(max )c imum volume imum volume  is the reciprocal of Cr . 
Experimentally it is found that 3% 10%c  , so 100 / 3 100 /10Cr  , or 33 10Cr  .  
Compression ratio is a useful parameter to model the behavior of a thermal engines, but it is 
not easy to include this parameter in design of power plants, would be interesting find a 
model in which Cr  could be explicitly incorporated in design power plants. 
 

 

Fig. 6. Comparison between ecological efficiency at zero order and at linear order. 


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Supposing these plants are working as a Curzon and Ahlborn cycle, we found that linear 
approximation of efficiency, Equation (45), permits us to find intervals of efficiency values 
near to experimental values of efficiency than others. Table 2 shows a comparison between  
real values and linear approximation values, assuming ideal gas as working fluid ( 1.67  ), 
making clear the need for a closer approximation, nevertheless table shows the closeness of 
the linear approximation.   
 
 
 
 

Nuclear power plant ( )CT K ( )HT K obs  EL , 10 33Cr   

Doel 4 (Belgium),  283 566 0.35000 0.37944 to 0.38224 

Almaraz II  (Spain) 290 600 0.34500 0.39234 to 0.39539 

Sizewell B, (U K) 288 581 0.36300 0.38277 to 0.38563 

Cofrentes  (Spain)  289 562 0.34000 0.36844 to 0.37103 

Heysham (U K)  288 727 0.40000 0.46036 to 0.46506 

 
 

Table 2. Comparison of values of experimental efficiencies and values of linear ecological 
approximation. 

3. Non-instantaneous adiabats with Dulong-Petit’s heat transfer law 

The ecological efficiency has also been calculated using Dulong and Petit's heat transfer law 
(Angulo-Brown & Páez-Hernández, 1993; Arias-Hernández & Angulo-Brown, 1994), 
maximizing ecological function. Their numerical results have shown that the efficiency 
value changes with the heat transfer law one assumes. Velasco et al. (2000) studied both the 
power and the ecological function optimizations, using Newton’s heat transfer law. It is 
worthwhile to point out that in all of the above quoted calculations the time for the adiabatic 
processes is not taken into account explicitly. 
In the present section the power output P, and ecological function E  are chosen to be 
maximized. Use is made of the more general Dulong and Petit heat transfer law, and the 
time for all the processes of the Curzon and Ahlborn cycle is explicitly taken into account, to 
see if the construction of a function ( , )PDP PDP     and ( , )EDP EDP     is possible.  That 
the time for the adiabats can in principle to be an arbitrarily chosen function of the time of 
the isothems, here however it is chosen in the same way as in previous section for the 
purposes of comparison. The Dulong and Petit law has been chosen because the main 
ocurring heat transfers are conduction through the wall separating the working fluid from 
the thermal bath, and convection takes place within the working fluid. Radiative heat 
transfer is of smaller magnitude (O’Sullivan, 1990). With the optimization of the power 
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output of a Curzon and Ahlborn engine, it is shown an approximate expression for 
efficiency by means of also the Dulong and Petit's heat transfer law, and the corresponding 
zero order term in a power series of the parameter   above cited. We follow the procedure 
employed in the previous section.  

3.1 The power output efficiency 
Let us assume a gas in a cylinder with a piston as a working fluid that exchanges heat with 
the reservoirs like in previous section, and let us use a heat transfer law of the form: 

 ( )k
f i

dQ
T T

dt
     (51) 

where 1k  ,    is the thermal conductance which is assumed  the same for both reservoirs, 
/dQ dt  is the rate of heat Q  exchange and iT  and fT  are the temperatures for the heat 

exchange process considered. From the first law of thermodynamics applied to gas under 
mechanical equilibrium condition, i.e., extp p , we obtain 

 
dU dQ dV

p
dt dt dt

   , (52) 

and assuming an ideal gas as working substance ( )U U T . One has in case of isothermal 
processes 0dU dU dV

dt dV dt
  . Using Eq. (51) we obtain, for the isothermal processes that  

 
dQ dV

p
dt dt

    or   ( )k i
f i

RT dV
T T

V dt
   .   (53) 

Equation (53) implies that the time of the process along the first isothermal process is  

 2
1

1

ln
( )

HW
k

H HW

RT V
t

VT T



   (54) 

and analogously, the time along the second isothermal process is 

 3
3

4

ln
( )

CW
k

CW C

RT V
t

VT T



,   (55) 

The corresponding heat exchanged HQ  and CQ  become, respectively, 

 2

1

lnH HW

V
Q RT

V
 ,    4

3

lnC CW

V
Q RT

V
 ,   (56) 

where, R  is the general gas constant and  1 2 3 4, , , ,V V V V  are the corresponding volumes for 
the states 1,2,3,4 in Figure 1. 
While it is true that the speed for the adiabatic branches is independent from the speed of 
the isothermal ones in the cycle, but with a non null value, in order to obtain a more realistic 
result it will be assumed that their speed follows a similar law to the isothermal ones.  
The previous assumption means that the rate of change of volume in the first adiabat is the 
same that in the first isotherm. Under this assumption, the time along the adiabatic 
processes is respectively,   
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 2 ln ,
( ) ( 1)

HW HW
k

CWH HW

RT T
t

TT T 


 
 and 4 ln

( ) ( 1)
CW CW

k
HWCW C

RT T
t

TT T 



 

.  (57) 

where /P VC C   has been used. With these results we can now compute the form for the 
power output, given by  

  1 2

tot tot

W Q Q
P

t t


  ,   (58) 

where 1 2 3 4tott t t t t    . Power output is written as 

 3

1
ln

( ) ( )
VHW CW

TOT k k V
H HW CW C

T TR
t

T T T T
 

  
   

,  (59) 

by using 2 1 3 4/ /V V V V  and  
1

1
2 3 /CW HWV V T T   ; so that after making the exchange of 

variables as in Equation (26), P   becomes, 

 1
1

(1 ) ( )

(1 )(1 ln )

k k

k

z

u zu

T z z
P



 

 

 



,  (60) 

with the same parameters as in previous section. By means of / 0P u    and / 0P z    
we obtain, 

 
2

1

2
1

k

k

z
u

z z









   (61) 

and,  

    (1 ln )( ) (1 )( ) (1 )(1 ln ) ( ) (1 )k kz z zu z zu zku z z zu z u                    

  1(1 )(1 ln )( ) ( ) (1 ) 0k kz z z zu uk zu u               (62) 

Substituting the variable u in Equation (62) with the help of Eq. (61), the resulting expression 
is the following one, which shows the implicit function ( , )z z   , for a given k,   

  
22 2

1 1 1( ) (1 ) (1 ln ) ( )(1 )(1 ln ) ( )
k

k k kz z z z z zk z z z z z                 
  

 
2 2

1 12(1 )(1 ln ) ( ) 0
k

k kz z z z z z z            
.  (63) 

Because the solution of Eq. (63) is not analytically feasible when k is not an integer, the case 
discussed here is 5 / 4k  , the Dulong and Petit's heat transfer law. So one can take the 
reasonable approximations only for the exponents in Equation (63), 

 
2

1
1k



 and  

2
1

1
k

k



  (64) 
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obtaining   

 (1 )(( )(1 ) ( )) (1 )(1 ) (1 ln )(1 ) 0k zk z z z z z z z                 .  (65) 

Equation (65) allows to obtain the explicit expression for the function ( , )z z k  for 0  ,   

 
2 2 2( 1)(1 ) ( 1) (1 ) 4

( , )
2OP

k k k
z k

k

  


     
 .  (66)  

Taking now 5 / 4k   in Equation (66) we obtain the following value for the physically 
acceptable solution of (63), namely,  

 
21 98 1

10OPDPz
     

 .  (67)  

The numerical results for 1OPDP OPDPz    are shown in Table 3, compared with CAN  and 
the observed efficiency obs , where can be seen that are in good agreement with the 
reported values. Figure 7 shows the comparison between OPDP  and CAN  with the 
temperatures of the reservoirs in real plants (Angulo-Brown & Páez-Hernández, 1993; 
Velasco et al., 2000). 
 
 
 

 
 
 

Fig. 7. Comparison between  OPDP   obtained here and CAN ,  in real plants.  
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Power plant CT  HT  CAN  OPDP  OBS  

Steam power plant, West Thurrock , 
U K 

298 838 0.40367 0.33577 0.360 

Geothermal steam plant, Lardarello,  
Italy 

353 523 0.17845 0.1453 0.160 

Steam power plant, U S A 298 923 0.43179 0.36006 0.400 

Combined cycle plant (steam-
mercury), U S A 

298 783 0.38308 0.31804 0.340 

Table 3. Comparison of Curzon and Ahlborn and observed efficiencies with the here 
approximated obtained efficiency. 

Now assuming that z obtained from equation (65) can be expressed as a power series in the 
parameter  , we have the following expression for PDP , 

 2 3
1 21 ( , ) 1 [1 ( ) ( ) ( )PDP PDP OPDPz z B B O              .  (68) 

We can find the coefficients jB , 1,2,.... .,j etc  through successive derivatives respect to  . 

The two first ones coefficients are: 

 1
16(1 )( )

( )
(5 4 40 )

OPDP OPDP

OPDP OPDP

z z
B

z z




 


 
   (69) 

and 

2 2

4( 1)( ) [(1 10 )ln 8 4 4]( 1 10 )
1 9 10(1 9 10 )

OPDP OPDP OPDP OPDP OPDP OPDP

OPDPOPDP

z z z z z z
B

zz

   


         
   

  

  40( 1)( )
(9 1 10 )ln 4 4 8

1 9 10
OPDP OPDP

OPDP OPDP OPDP
OPDP

z z
z z z

z

  


        
  

   (70) 

which are positive for   values in the interval 0 1  , as we can see in Figure 8. 
 

 
Fig. 8. First and second order coefficients, 1 1( )B B  , 2 2( )B B  , of (2.21) for 0 1  . 
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3.2 Ecological efficiency 

Now we consider the entropy production given by 

 
1

( )CH

tot tot H C

QS Q

t t T T
 
       (71) 

which becomes, 

 
1

(1 ) ( )

(1 ln )( )
( )k k

k
H

z
C u zu

T z z

T


  
 

 



;  (72) 

so that the ecological function for Curzon and Ahlborn engine takes the form,     

 
1

(1 ) ( )

(1 ln )(1 2 )
( , )

k k

k
H

z

u zu

T z z
E x z



  

 

  



.  (73) 

As in the previous sections we find the function ( )z   that follows from the maximization of 
function ( , )E u z , which permits obtain the corresponding efficiency for the value 5 / 4k  , 
namely, the Dulong and Petit heat transfer law, previously defined. Upon setting 

/ 0E u    and / 0E z   , we obtain from the first condition that 

 

2
k 1

2
k 1

z
u

z z





 


,  (74) 

and from the second one, 

 
((1 2 ) 2 (1 ln ))( ) (1 )

0
(1 ln )(1 2 )( ) ( ) (1 )

k

k k

z z z zu u

z z zu kuz z zu z u

   
   

     
 

        .   (75) 

Substituting now Equation (74) for u  in Equation (75) we are led to the following 
expression, 

 
3 3 32
1 1 1 12( 2(1 ln ) (1 2 ) )( )( ) (1 ln )(1 2 )( ( ) ).

k k k
k k k kz z z z z z z z z z z z z k       
  
                   (76) 

The analytical solution of Eq. (76) is not feasible when the exponents of z  are not integers, 
which is the present case, because with 5 / 4k  , Dulong and Petit's heat transfer law,  one 
has ( 3) /( 1) 17 /9k k    and 2 /( 1) 8 /9k   .  
The numerical solution of Eq. (76) shows that any solution falls into the region bounded by 
solutions for 0   and 1  , (Ladino-Luna, 2008). It can be appreciated that within the 
interval 0 1  , which is the only one physically relevant, the curve (76) can be fitted with 
a parabolic curve. The simplest approximation that allows for a parabolic fit for 0 1   is 
the following modification of the exponents:  

 
3
1

k

k




~ 2 ,    
2

1k 
~ 1.  (77) 
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These approximations allow the following approximate analytical expression for ( , )z    

 2( 2(1 ln ) (1 2 ) )( ) (1 ln )(1 2 )(( ) ( ) ) 0.z z z z z z z z k                      (78) 

For the case 0  , that corresponds to instantaneous adiabats, and taking 5 / 4k   in 
Equation (78), the value of the positive root ( )OEDPz   is obtained,     

 
21 649 646 1

.
36OEDPz

     
    (79) 

The negative root has no physical meaning because efficiencies must always be positive. 
Figure 9 shows a comparison between fitted numerical values of MEDP  (Angulo-Brown & 
Páez-Hernández, 1993; Árias-Hernández & Angulo-brown, 1994) and  1OEDP ODPz   .  
 

 
Fig. 9. Approximated Ecological efficiency OEDP , compared with a fitted of MEDP . 

 

 
Fig. 10. Ecological efficiency for Newton's heat transfer and Dulong-Petit's heat transfer. 
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Notice that OEDP  is a better result from a theoretical point of view, because it goes to zero 
as 1   as it should be. Figure 10 shows the comparison between E  and OEDP  where 

OEDP E  . 
Let it be assumed now that z  given by equation (78) is a power series in the parameter  , 
i.e., 

 2 3
1 21 ( , ) 1 (1 ( ) ( ) ( ))EDP EDP EDPz z b b O              ,   (80) 

and let us proceed to the calculation of the coefficients of the powers in  . To this end one 
takes 0 ( , 0)EDPz z     and from (78) the coefficients are calculated by successively taking 
the derivative with respect to   and evaluating at 0  . The first two are: 

 
2 2

0 0 0
1 1 1

0 0 4 4

2 2 6 2 4
( )

( 9 )
z z z

b
z z

  


    


  
   (81) 

and 

 2 1 2
0

1
( ) ( ( ) ( ))

2
b A A

z
    ,  (82) 

where 

 1
1 0 0 0 0 02

0

4
( ) 160( )(1 2 ) ( 36 9 1)ln 18

(1 20 )

b
A z z z z z

z
   


         

 
  

  
2

0 0 0
0

9( )
9 1 8(1 2 ) 16( ) ( 1 20 )z z z

z

    
           ,  (83) 

and 

 0 0 0
2 0 0 0 02

00

8( )(1 2 ) 1 2
( ) (36 1)ln 48 40 8 ( 9 )

(1 20 )

z z z
A z z z z

zz

     


    
        

  
   (84) 

 

  
Fig. 11. First and second order coefficients 1 1( )b b   and 2 2( )b b   in (80) 

www.intechopen.com



 
Non-Instantaneous Adiabats in Finite Time 

 

151 

To assume that (80) is valid it requires that 1EDP  . For this to be so, 1b  and 2b  must to be 

positive when 0 1   and when 1  , i.e. there must exist an interval for   into which  
the coefficients have positive values, near to zero. Figure 11 shows that in fact this is correct. 
This guarantees that Eq. (80) is valid and that  01 z  is an upper bound of DP , but not the 

upper bound C . 

4. The van der Waals gas 

The internal energy in the case of a van der Waals gas for n  moles, with a change of 
temperature 0T T T   , at volume V , and with the characteristic constant a  of the system, 
and the constant heat capacity C can be written as,  

 
2

0( )
an

U nC T T
V

   .  (85) 

So that taking the temporary derivative for an adiabatic process, 

 
2

2

dU an dV

dt dtV
  ,  (86) 

the first law of thermodynamics leads to  

 ( )ext ext

dU dQ dV dV
p p p

dt dt dt dt
    ,  (87) 

taking p  as the internal pressure and extp  as the pressure of surroundings. Combining 

Equations (86) and Eq. (87), in mechanical equilibrium, we obtain 

 
2

2

an dV dQ dV
p

dt dt dtV
  ,  (88) 

so that, for a non linear heat transfer law, more general than Dulong and Petit heat transfer 
law, as  

 
0( )kdQ

T T
dt

  ,  (89) 

with the constant thermal conductance  , and the constant exponent k , 1k  , from 
Equation. (88), in an isothermal process,  

 
2

02( ) ( )kan dV
p T T

dtV
   .  (90)  

On other hand, the state equation for a van der Waals gas, with a constant b  characteristic 
of the system, which is a more realistic model for a real gas, takes the following expression, 
with constant parameters a and b, 

 
2

2

nRT an
p

V nb V
 


,   (91) 
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whose derivative respect  T  at  tanp cons t  leads to 

 
2 2

1 2
0

( )

nR V a V
nRT

V nb T TV nb V

  
        

.  (92) 

By taking 1n  , Equation (91) into Equation (90) leads to    

 0
0( )kRT dV

T T
V b dt

 


.  (93) 

In the case of a Curzon and Ahlborn cycle (Figure 1), for the heat exchange between the 
engine and the reservoirs, Equation (93) leads to the time of the isothermal processes by 
taking its integration. Moreover in the case of adiabatic processes / 0dQ dt  , so that 
Equation (87) reduces to 

 dU dV
p

dt dt
  ,  (94) 

and one can obtain 

 ln ln( )VC T R V b   ,  (95) 

or as it is usually written, 

 ( )
R

CVT V b constant  .  (96) 

Also, the duration time of the adiabatic processes can be obtained by integration of (93).  
Therefore the duration time of all processes in the cycle can be obtained from Equation (94), 
and Equation (96) leads to the relation between temperatures of the engine and the changes 
of volume in the adiabatic transformation. 

4.1 Power output and ecological function 

Taking into account the difference of temperatures between the engine and its reservoirs 
(Figure 1), it can be written the time for all of the processes in the cycle from Equation (93) 
For the isothermal processes, Eq. (93) can be written as 

 ( )kHW
H HW

RT dV
T T

V b dt
  


,   and   ( )kCW

CW C

RT dV
T T

V b dt
  


,  (97) 

and by direct integration of Equationss (97) we obtain  

 2
1

1

ln
( )

HW
k

H HW

RT V b
t

V bT T





,   and   4
3

3

ln
( )

CW
k

CW C

RT V b
t

V bT T





,   (98) 

Analogously, the time for the adiabatic processes can be obtained as  

 3
2

2

ln
( )

HW
k

H HW

RT V b
t

V bT T





,   and   1
4

4

ln
( )

CW
k

CW C

RT V b
t

V bT T





,  (99)  

Now, taking into account Equation (96), for the first adiabatic process, 
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 2 3( ) ( )
R R

C CV V
HW CWT V b T V b   ,   or,   3

2

ln ln HW

CW

TV
T

V b C

V b R





,   (100) 

and for the second adiabatic process, 

 4 1( ) ( )
R R

C CV V
CW HWT V b T V b   ,   or,   1

4

ln ln CW

HW

TV
T

CV b

V b R





,   (101) 

and the combination of Eqs. (100) and (101) allows to obtain the relation 

 3 4

2 1

V b V b

V b V b

 


 
,   or,   3 2

4 1

V b V b

V b V b

 


 
  (102) 

The power output P can be written simplyfing with the same used parameters as, 

 
 

1
(1 ) ( )

(1 ) ln 1

k k

k
H VW

z

u zu

T z z
P



 

 

 


 ,   (103) 

where 3

1

1
( 1) ln V b

VW V b
 




    . One can see that 0b   leads to VW   in Equation (29), 

and one can see that 0b   and 1k   reduce (103) to expression of P, such as it was found 
previously  (Ladino-Luna, 2002, 2005). An expression of power series in VW  leads to the 

efficiency that can be obtained following the procedure in those references.  

In the case of ecological function it is necessary to build the entropy production  , 
tot

S
t

  , 

so that (33) can be written since 

 1 2 3 4S S S      ,  (104) 

where 1 2S   is the change of entropy in the first isothermal branch and 3 4S   is the 

change of entropy at the second isothermal branch. For heat reservoirs, Q

T
S  , assumed as 

it is only in the transfer processes between the reservoirs and the engine, 

 2

1

1 2
1 2 ln V bHW

V b
H H

Q T
S R

T T


      and  3 4 4

3 4
3

lnCW

C C

Q T V b
S R

T T V b





  


;  (105) 

so that Eq. (104) can be written as 

 32

1 4

ln lnHW CW

H C

T T V bV b
S R

T V b T V b

 
     

,   (106) 

and by using  (102) and  (96) one can obtain  the entropy production as, 

  
1

(1 ) ( )

( ) ln 1

k k

k
H VW

z

u zu

T z z



  


 

 



,   (107) 

then, by using  (3),  (98) and (99) the ecological function can be written as 
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  1
1

(1 ) ( )

(1 2 ) ln 1

k k

k
VW

z

u zu

T z z
E



  

 

  



.  (108) 

One can see that the structure of Eq. (108) leads to the case with Newton’s heat transfer law 
when the limit 1k   is. It is also obtained the case of Newton heat transfer with an ideal 
gas as the working substance when 1k   and 0b  . A general form of ecological function 
and power output function can be obtained by replacing VW  instead of  , and with 
approximations for the cases when 1k  . EDPz  and EDP  (Ladino-Luna, 2008) are modified 
with the substitution V b  instead of V .  
The corresponding maximization of ecological function taking Dulong-Petit's heat transfer 
and a van der Waals gas as the working substance can be found with the substitution VW  
instead of   in all of the process to build the ecological efficiency. In the case of power 
output with the same substitution, we obtain the approximate formula for the efficiency 
when VW  goes to zero, and a similar power series of the efficiency as a function of VW ,  

 2 3
1 21 ( , ) 1 (1 ( ) ( ) ( ))PDPVW PDP VW OPDP VW VW VWz z b b O              ,  (109) 

wher OPDPz  is the same approximate efficiency previously found in section 3, following the 
procedure by Ladino-Luna (2003). At the limit 0VW   we obtain 

( 0)PDPVW VW OPDP     where OPDP  is the same approximate efficiency found in Section 
3. As one can see, ( 0)PDPVW VW CAN    , so CAN  can be consider as an upper bound for 
the efficiencies that taking into account the time of the adiabatic processes in the Curzon and 
Ahlborn cycle. 

5. Conclusions 

A first result is the fact that the efficiency for a Carnot type engine depends on the size of the 

engine, the compression ratio, as represented by the parameter  ~   1
3 1ln( / )V V

  or 

3

1

1
( 1) ln V b

VW V b
 




    . Leading term in power series corresponds to the exact value 

numerically calculated without explicitly taking into account the dependence on  , and is 
an upper bound for the value of the efficiency DP ; in fact the larger the ratio 3 1/V V  (or 

3 1( ) /( )V b V b  ), the larger the efficiency becomes. The comparison between the upper 
bound of the efficiency calculated with the proposed approximations and a fitted curve 
obtained of the numerical values from cited references shows the goodness of the made 
approximations in case of 5 / 4k  . It is worthwhile mentioning that exist an interval for  , 
 ~0.5, were the approximation employed is acceptable within  5% of the true value of ( )z   

for 0 1   as shown. A last result is shown in Figures where one can appreciate that the 
difference between using Newton's or Dulong-Petit's heat transfer laws does not lead to an 
important difference in the value of the ecological efficiency. It has also been shown that for 
the Dulong-Petit heat transfer law and the ideal gas law, the limit 0   reduces to the 
reported result.  Also, the results suggest that can be extended a new interpretation as the 
way to real performance of the thermal plants. It shows a mixture between Newton and 
Dulong-Petit heat transfer laws. Non-endoreversible cycles could be analyzed using non-
instantaneous adiabats together with non-linear heat transfer .  
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