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1. Introduction 

The word acoustics originates from the Greek word meaning “to listen.” The original 
meaning concerned only hearing and sound perception. The word has gradually attained an 
extended meaning and, in addition to its original sense, is now commonly used for almost 
everything connected with rapidly varying mechanical vibrations, from noise to seismic and 
sonar systems, to ultrasound in medical diagnosis and materials technology. An important 
technical application of acoustics is related to undersea activities, where acoustic waves are 
used in much the same way that radar and electromagnetic waves are used on land and in 
the air—for the detection and location of objects, and for communications. The reason that 
acoustic rather than electromagnetic waves are used in seawater is simple: electromagnetic 
waves are strongly attenuated in salt water and would, therefore, have too short a range to 
be useful for most applications.  
The objective of this chapter is to give an introduction to interface waves and the use of the 
interface waves to estimate shear wave (also called S-wave) speed in the sediments. 
Knowledge of the S-wave speed profile of seabed sediments is important for seafloor 
geotechnical applications, since S-wave speed provides a good indicator of sediment 
rigidity, as well as for sediment characterization, seismic exploration, and geohazard 
assessment. In addition, for environments with high seabed S-wave speeds, S-wave 
conversion from the compressional wave (also called P-wave) at the seafloor can represent 
an important ocean acoustic loss mechanism which must be accounted for in propagation 
modelling and sonar performance predictions. This chapter serves as a basic introduction to 
acoustic remote sensing of the seabed's structure and composition. In addition to the basic 
concepts, the chapter also presents technical subjects such as experimental set up for 
excitation and recording of the interface waves and techniques for using interface waves to 
estimate the seabed geoacoustic parameters. Particular attention is devoted to an 
understanding and an explanation of the experimental problems involved with the 
generation, reception and processing of interface waves.  
The chapter is organized as follows. Section 2 introduces acoustic wave propagating in 
fluids and gases and elastic wave propagating in solid media which support both P-wave 
and S-wave. Then polarization of S-waves is discussed. Section 3 is devoted to introduce 
interface waves and their properties. Section 4 presents techniques for using interface waves 
to estimate the seabed geoacoustic parameters for applications of geotechnical engineering 
in offshore construction and geohazard investigation. Different signal processing methods 
for extracting the dispersion curves of the interface waves and inversion schemes are 
presented. Examples for the inversion are illustrated. Section 5 contains the conclusions. 
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2. Acoustic and elastic waves 

Acoustic waves are mechanical vibrations. When an acoustic wave passes through a 
substance, it causes local changes in the density that is related to local displacements of mass 
about the rest positions of the particles in the medium. This displacement leads to the 
formation of forces that act to restore the density to the equilibrium state, and move the 
particles back to their rest positions. The medium may be a gas, a fluid, or a solid material.  
The basic equations of acoustics are obtained by considering the equations for an inviscid 
and compressible fluid. In the following these equations are expressed with the notation that 
p is the pressure, ǒ is density and u is particle displacement. The particle velocity is the 
derivative of the displacement with respect to time v u .  
The acoustic wave equation for fluids and gases is derived by the application of three simple 
principles. 
 The momentum equation also known as Euler’s equation 
 The continuity equation, or conservation of mass 
 The equation of state: the relationship between changes in pressure and density or 

volume 
Euler's equation is expressed by  

  ,p
t

       

v
v v  (1) 

which is an extension of Newton's second law that states that force equals the product of mass 
and acceleration. The extension is the second left-hand term in Equation (1) which represents 
the change in velocity with position for a given time instant, while the first term describes the 
change with time at a given position. The conservation of mass implies that the net changes in 
the mass, which result from its flow through the element, must be equal to the changes in the 
density of the mass of the element. This is expressed by the continuity equation 

    .
t


   


v  (2) 

An equation of state is required to give a relationship between a change in density and a 
change in pressure taking into consideration the existing thermodynamic conditions. 
Assuming that the passage of an acoustic wave is nearly an adiabatic and reversible process 
the equation of stat may be formulated as pressure as a function of density: 

    .p p 
 (3) 

Equations (1), (2), and (3) are all nonlinear. Applying linearization to these equations and 
combining them the acoustic wave equation can be obtained 

 

2
2

2 2
1

0 ,
p

p
c t


  


 (4) 

where 2  is Laplace operator and c is the sound speed at the ambient conditions, which is 
defined as: 
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  .
K

c 


 (5) 

Thus the sound speed is given by the square root of the ratio between volume stiffness or bulk 
modulus K, which has the same dimension as pressure expressed in N/m2 or in pascal (Pa) 
and density, and the dimension of density is kg/m3. Both the volume stiffness and density are 
properties of the medium, and therefore depend on external conditions such as pressure and 
temperature. Therefore the sound speed is a local parameter, which may vary with the 
location, for instance, when the sound speed varies with the depth in the water. Equation (4) 
gives the wave equation for sound pressure. After linearization, the particle velocity is 
obtained from Newton’s second law 

 
1

 ,p
t


  

 
u

 (6) 

and the particle displacement satisfies the wave equation 

 
 

2

2 2
1

0 .
c t


    



u
u

 (7) 

It is often convenient to describe the particle displacement by a scalar variable as 

  , u  (8) 

  is the displacement potential, which also satisfies the wave equation: 

 
2

2
2 2
1

0 .
c t

 
   


 (9) 

The sound pressure can be expressed by the displacement potential 

 
2

2  .p
t

 
 


 (10) 

By Fourier transformation, the wave equation is transformed from time domain to 
frequency domain:  

 ( , ) ( , )exp( )  ,t i t dt




    r r  (11) 

and back to time domain by the inverse transformation 

 
1

( , ) ( , )exp( )  .
2

t i t d




      
 r r  (12) 

The wave equation for the displacement potential may be expressed in frequency domain as: 

 2 2( ) ( , ) 0 ,       r r  (13) 
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where the wave number ( ) r is defined as 

 ( )  .
( )c


 r

r
 (14) 

Equation (13) is the Helmholtz equation, which is often easier to solve than the 
corresponding wave equation in time domain.  
A fluid medium can only support pressure or compressional waves also called P-waves or 
longitudinal waves with particle displacement in the direction of the wave propagation. A 
solid medium can in addition also support transverse waves or S-waves with particle 
displacement perpendicular to the direction of wave propagation. The wave equation in 
solid medium is given as:  

 
2

2
2 ( 2 ) ( )  .

t


         


u
u u  (15) 

In this wave equation, ǌ and Ǎ are Lamé elasticity coefficients, ǒ is the density of the 
medium, and u is the particle displacement vector with components ux, uy and uz. It is often 
convenient to recast equation (14) expressing the particle displacement vector by two 
potential functions, a scalar potential   and a vector potential Ψ . The particle 
displacement vector is then expressed as: 

  .  u Ψ  (16) 

Inserting equation (16) into equation (15) yields  

 
   

 

2 2

2 2

2                                     +                      .

t t

  
                  

  

Ψ Ψ

Ψ
 (17) 

By definition, ( ) 0  Ψ . In equation (17), the terms containing  and Ψ  are 
independently selected to satisfy the respective parts of equation (17). This results in the 
following two wave equations: 

 
 

2
2

2 2  ,
t

 
      


 (18) 

 

2
2

2  .
t


  


Ψ Ψ
 (19) 

From Equation (18), we observe that the scalar potential   propagates at a speed, called P-
wave speed cp, defined as:  

 
 2

 =  .p
H

c
  


 

 (20) 

The vector potential Ψ  of equation (19) propagates with the S-wave speed cs, defined as: 
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  .sc





 (21) 

The ratio between the two wave speeds defined by equations (20) and (21) is given by the 
Poisson ratio   as: 

 
 
1 2

 .
2 1

s

p

c

c

 


 
 (22) 

After inserting the two wave speeds into equations (18) and (19), respectively, the two wave 
equations are rewritten as 

 

2
2

2 2
1

 ,
pc t

 
  


 (23) 

 
2

2
2 2
1

 .
sc t


 



ΨΨ  (24) 

Equations (23) and (24) are the two wave equations relevant to acoustic-seismic wave 
propagation in an isotropic elastic medium. In a boundless, non-absorbing, homogeneous 
and isotropic solid these two types of body waves propagate independently of each other 
with speeds given by (20) and (21), respectively. In inhomogeneous media with space-
dependent parameters, for instance at an interface between two different media, conversions 
between P-wave and S-wave take place, and vice versa. 
In many applications we are only interested in a two-dimensional case in which the particle 
movements are in the x-z plane and where there is no y-plane dependency. S-waves that are 
polarized so that the particle movement is in the x-z plane are called vertically polarized S-
waves or SV waves. In general, S-waves are both vertically and horizontally polarized. The 
horizontal polarized S-waves are also called SH waves. However, in most underwater 
acoustic applications, we only need to consider vertically polarized S-waves since these are 
the waves that may be excited in the bottom by a normal volume source in the water 
column. 
An incident P-wave in a fluid medium at an interface between the fluid and a solid 
medium generates a reflected P-wave in the fluid and two transmitted waves: one P-wave 
and one S-wave. An incident P-wave at an interface between two solid media generates 
reflected P-wave and S-wave in the incident medium and transmitted P-wave and S-wave 
in the second medium. In any case the reflected and transmitted waves are determined by 
the boundary conditions, which require that the normal stress, normal particle 
displacement, tangential stress, and tangential particle displacement are continuous at the 
interface. In the fluid, the tangential stress is zero and there is no constraint on the 
tangential particle displacement.  

3. Interface waves 

In this section we introduce interface waves and their properties (Rauch, 1980). The simplest 
type of interface wave is the well-known Rayleigh wave, which can propagate along a free 
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surface of a solid medium and has a penetration depth of about one wavelength of the 
Rayleigh wave. A Scholte wave is another wave of the same type that can propagate at a 
fluid/solid interface and its decay inside the solid is comparable with that of the Rayleigh 
wave. The penetration depth in the fluid remains small when the adjacent solid is very soft, 
that is when the S-wave speed in the solid is smaller than the sound speed in the fluid. This is 
the situation for most water/unconsolidated-sediment combinations. But the penetration 
depth can be much larger if the S-wave speed in the solid is larger than the sound speed in the 
fluid, as is normally the case for all water/rock combinations. The most complicated type of 
interface wave is the well-known Stoneley wave, which can occur at the interface between two 
solid media for only limited combinations of parameters. Its penetration depth into each of the 
solid media is similar to that of the Rayleigh wave. The existence of the interface waves 
discussed above requires that at least one of the two media is a solid while the other medium 
may be a vacuum, air, a fluid or a solid. Love wave is another type of interface wave which is 
related to SH wave polarized parallel to a given interface and propagates within solid layers. It 
is guided by a free surface or a fluid/solid interface (Love, 1926; Sato, 1954).  

3.1 Scholte wave 
To give some insight into the physics of the interface problem we give a brief mathematical 
description of a Scholte wave propagating along the interface between two homogeneous, 
isotropic and non-dissipative half-spaces. The results give an idea of the pertinent 
propagation mechanism. We consider the situation depicted in Figure 1, where the water 
(z<0) has the sound speed c0 and density ǒ0. The sea bottom is considered as a solid medium 
(z>0) with P- and S- wave speeds cp1 and cs1, and its density is ǒ1.  
 

 
Fig. 1. Wave propagation in a half-space water column over a homogeneous half-space solid 
bottom; Rb is the reflection coefficient of the bottom. 

Since the water depth is infinite there is no reflection from the sea surface. The reflected 
acoustic wave field is determined by the reflection coefficient at an interface between the 
water and the solid half-space and given as an integral over horizontal wavenumber k 
(Hovem, 2011): 

    0
0

( )
, , ( )exp ( ) exp( )  ,

4R b p s
p

S
x z R k i z z ikx dk

i






     

   (25) 

where  , ,R x z   is the reflected wave field due to  a point source with frequency ω and 
source strength S(ǚ) at depth zs, γp0 is the vertical wave number and Rb(k) is reflection 
coefficient.   

0 0,  c 

1 1 1,  ,  p sc c   

Rb 
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Consider a plane, monochromatic wave of angular frequency ǚ = 2Ǒf propagating in the +x 
direction – the problem becomes two-dimensional (no y-coordinate dependency). Therefore 
the particle displacement has only two components u = (ux, uz) and the vector potential has 
only one component ψ = (0, Ǚ, 0).  The two components of the particle displacement in 
equation (16) are then defined as: 
 

 ,

 .

x

z

u
x z

u
z x

 
 
 
 

 
 

(26a)

(26b)
 

The components of the stress expressed by the potentials are 
 

2 2
0 0

0 0 0 2 2
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 
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(27a) 
 

(27b) 
 

in the water, and  
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 ,

 

(28a) 
 
 

(28b) 
 
 

(28c) 

 

in the bottom. The boundary conditions at the interface between the water and the solid 
bottom at z = 0 are  
 

0 1

1

1 0 

z z
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u u

p


  

 
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(29a)

(29b)
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Assuming the displacement potentials of the form: 

    0 0exp exp  (z 0) ,pA z i kx t       
 (30) 

 

   
   

1 1

1 1

exp exp  (z 0)

exp exp  (z 0)

p

s

B z i kx t

C z i kx t

       

       
.

(31a) 

(31b) 
 

The potentials have to fulfil the wave equations: 
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2 2

0 0 0 0 .     
 (32) 

 

in the water, and 

 
2 2

1 1 1 0 ,p     
 (33) 

 
2 2

1 1 1 0 ,s     
 (34) 

in the solid bottom. Since the horizontal wave number, k, is the same for all waves at the 
interface, the vertical wave numbers describing the vertical decays of the fields have to be 
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where 

 0 1 1
0 1 1

,  ,  ,   .p p s
p p p s

k
v c c c

   
        (36) 

are the horizontal wave number, the wave numbers for the P-wave in the water and the P- 
and S-waves in the bottom, respectively, and vp is the phase speed. The use of the boundary 
conditions Equation (29) leads to a set of three equations for the amplitudes A, B, and C. 
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The relationship between these amplitudes are given by 
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The set of homogeneous, linear equations (37) has a non-trivial solution only if the 
coefficient determinant is vanishing, which results in:  
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1 1 01
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s ps kck k c

      
          

 (39) 
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Inserting equations (35) and (36) into equation (39), we get the expression for the phase 
speed of the Scholte wave  
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                                
 
 
 

 (40) 

Equation (40) has always one positive real root, which is the Scholte wave  p Schv v  and can 
be found numerically.  
In the general situation with finite water depth, D, the sound propagates as in a waveguide 
by reflections from both the sea surface and the bottom. The sound field in a waveguide is 
given by an integral over horizontal wave numbers (Equation (17.66) in Hovem, 2011). The 
solution of this integral is approximately found by using the residue technique as the sum of 
the residues at the poles of the integrand. The poles are given by the zeros of the 
denominator of the integrand  

 01 exp( 2 ) 0 ,b s pR R D   
 (41) 

where Rs and Rb are reflection coefficients of the sea surface and the bottom, respectively. 
Assume that at the sea surface Rs= -1 and the poles are given as the solution to  

 01 exp( 2 ) 0 .b pR D   
 (42) 

Using the expression of the reflection coefficient of the bottom (Equation (15.42) in Hovem, 
2011) we can get  
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 (43) 

By applying equations (35) and (36), this expression can be transformed into 

 

22 2 2

2
1 1 1

2

24
10

21 1 0

0

4 1 1 2

1

tanh 1  .

1

p p p

p s s

p

pp p

s p p
p

p

v v v

c c c

v

cv vD

c v c
v

c

    
              

 
                            
 
 

 (44) 

Equation (44) is the dispersion equation for the case with finite water depth and we see that, 
when D→∞, this expression becomes identical to the expression of equation (40) for the 

www.intechopen.com



 
Waves in Fluids and Solids 162 

infinite water depth. The dispersion equation gives the phase speed as function of frequency 
for given media parameters and layer thickness.  
The dispersion equation can be solved numerically. While the phase speed vp is found as the 
numerical solution of Equation (44), the group speed vg can be found by differentiation - that 
is, by taking the derivative - and is expressed as:  

  .
1

p
g

p

p

vd
v

dvdk

v d


 






 (45) 

Figure 2 shows an example of such a numerical solution using the geoacoustic parameter 
values ρ0 =1000 kg/m3, ρ1 =2000 kg/m3, cp0=1500 m/s, cp1=2500 m/s, and cs1=400 m/s. Since the 
frequency appears only in a product with the water depth D, the speed must be a function 
of the product of f and D. Notice that the phase speed of the interface wave is slightly lower 
than the S-wave speed, and that the phase speed decreases slightly with increasing 
frequency. This means that the interface wave is dispersive in the general case. In the 
limiting case, where the water depth is infinite, the phase speed of the interface wave is 
approximately 90% of the S-wave speed in the bottom, while with a zero water depth the 
speed is somewhat higher, about 95% of the bottom S-wave speed. 
 

 
Fig. 2. The phase and group speeds of an interface wave, relative to the S-wave speed, 
expressed as a function of the frequency-thickness product f*D for the numerical values 
given in the text. 

The interface wave at a boundary between vacuum or air and a solid is called Rayleigh 
wave. The equation for the Rayleigh wave speed, vR, is obtained from Equation (40) by 
setting 0 0   or from Equation (44) by setting D = 0, resulting in the dispersion equation:  

 

22 2 2

2
1 1 1

4 1 1 2 0 .p p p

p s s

v v v

c c c

    
               

 (46) 

Equation (46) has always one positive real solution 1< p R sv v c  (Rauch, 1980; 
Brekhovskikh, 1960). The phase speed of the Rayleigh wave is frequency-independent and 
can be approximated to high accuracy by a simple formula (Rauch, 1980): 
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 1
0.87 1.12

 .
1R sv c
 


 

 (47) 

where ǎ is the Poisson’s ratio. The phase speed of the Rayleigh is approximately 95% of the 
S-wave speed, as can be seen in Figure 2. Thus, in a solid medium a measurement of the 
Rayleigh wave speed may also give an accurate measure of S-wave speed. The phase speed 
vp of the Scholte wave is also frequency-independent, and always slightly smaller than the 
lowest speed occurring in any of the two bordering media i.e. vp < min (cp0, cs1).  
With the use of hydrophones in the water or geophones on or in the bottom, one can detect 
and record the sound pressure within the water mass and the components of the particle 
displacement in the solid bottom. We will now determine the real components of the 
displacement vector of the Scholte wave. Using equations (26), (30), (31) and (36), the 
displacement components are expressed as 
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in the water, and  
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(51a) 

 
 

(51b) 

 

in the bottom. Equations (48) - (51) are parametric representations of ellipses having their 
main axes parallel to the axes of the coordinate system. With increasing distance from the 
interface, the displacement amplitudes 0 0ˆ ˆ,  x zu u and 1ˆzu decrease exponentially without 
changing sign. The horizontal displacement in the bottom, 1ˆxu , shows the same asymptotic 
behaviour, but with the sign changing at the depth of about one-tenth of the Scholte 
wavelength. Figure 3 plots the particle displacements as a function of depth relative to the 
Scholte wavelength ǌSch in the water column (left panel) and the particle orbits (right panels) 
for a typical water/sediment interface. The same parameters are used as in Figure 2 and the 
frequency-thickness product f*D = 200. The penetration depth in the water is about one-half 
of the Scholte wavelength. The right panels plot the particle movement at depth z = 0.01ǌSch 
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(bottom right), 0.09ǌSch (middle right) and 0.5ǌSch (upper right) above the water/sediment 
interface. At all depths the particles follow retrograde elliptical movements. The ellipses are 
close to circular in this case since the eccentricity is close to zero. For harder sediment, the 
ellipses are more elongated. Figure 4 shows the same plots as in Figure 3 but for the particle 
displacements in the bottom. The penetration depth in the solid is larger than the 
wavelength of the Scholte wave. At depth z = 0.01ǌSch (upper right) the particles follow a 
retrograde elliptical movements, while at depth z = 0.09ǌSch (middle right) the particle 
movement follows a vertical line, and at depth z = 0.5ǌSch (middle right) the particle 
movement is a prograde ellipse.  
 

 
Fig. 3. Particle displacements in the water (left) and the particle orbits at depth z = 0.01ǌSch 
(bottom right), 0.09ǌSch (middle right) and 0.5ǌSch (upper right) for a Scholte wave at a 
water/sediment interface. Arrows show the directions of the movement. 

Equations (35) show that all the vertical wave numbers are imaginary, and therefore the 
signal amplitudes decrease exponentially with increasing distance from the interface. A 
consequence of the imaginary vertical wave numbers is that interface waves cannot be 
excited by incident plane waves. This can be easily understood by considering the grazing 
angle of the wave in the uppermost medium. This angle is expressed as: 

 

0
0

0
cos 1.p

p p

ck

c v
   


 (52) 

Equation (52) means that the angle θ0 must be imaginary and, consequently, cannot be the 
incident angle of a propagating plane wave. However, the interface waves can be excited by 
a point source close to the interface, that is, as a near-field effect.  
The interface waves are confined to a narrow stratum close to the interface, which means 
that they have cylindrical propagation loss (i.e., 1/r) rather than spherical spreading loss 
(i.e., 1/r2), as would be true of waves from a point source located in a medium of infinite 
extent. Cylindrical spreading loss indicates that, once an interface wave is excited, it is likely 
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Fig. 4. Particle displacements in the bottom (left) and the particle orbits at depth z = 0.01ǌSch 
(upper right), 0.09ǌSch (middle right) and 0.5ǌSch (bottom right) for a Scholte wave at a 
water/sediment interface. Arrows show the directions of the movement. 

to dominate other waves that experience spherical spreading at long distances. This effect is 
familiar from earthquakes, where exactly this kind of interface wave, the Rayleigh wave, 
often causes the greatest damage. 

4. Applications of interface waves 

Knowledge of S-wave speed is important for many applications in underwater acoustics and 
ocean sciences. In shallow waters the bottom reflection loss, caused by absorption and shear 
wave conversion, represents a dominating limitation to low frequency sonar performance. 
For construction works in water, geohazard assessment and geotechnical studies the rigidity 
of the seabed is an important parameter (Smith, 1986; Bryan & Stoll, 1988; Richardson et al., 
1991; Stoll & Batista, 1994; Dong et al., 2006, WILKEN et al., 2008; Hovem et al., 1991).  
In some cases the S-wave speed and other geoacoustic properties can be acquired by in-situ 
measurement, or by taking samples of the bottom material with subsequent measurement in 
laboratories. In practice this direct approach is often not sufficient and has to be 
supplemented by information acquired by remote measurement techniques in order to 
obtain the necessary area coverage and the depth resolution.  
The next section presents a convenient and cost-effective method for how the S-wave speed 
as function of depth in the bottom can be determined from measurements of the dispersion 
properties of the seismo-acoustic interface waves (Caiti et al., 1994; Jensen & Schmidt, 1986; 
Rauch, 1980).  
First the experimental set up for interface wave excitation and reception is presented. Data 
processing for interface wave visualization is given. Then the methods for time-frequency 
analysis are introduced. The different inversion approaches are discussed. All the presented 
methods are applied to some real data collected in underwater and seismic experiments.   
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4.1 Experimental setup and data collection 
In conventional underwater experiments both the source and receiver array are deployed in 
the water column. In order to excite and receive interface waves in underwater environment 
the source and receivers should be located close, less than one wavelength of the interface 
wave, to the bottom. The interface waves can be recorded both by hydrophones, which 
measure the acoustic pressure, and 3-axis geophones measuring the particle velocity 
components. In most cases an array of sensors, hydrophones and geophones are used. The 
spacing between the sensors is required to be smaller than the smallest wavelength of the 
interface waves in order to fulfil the sampling theorem for obtaining the phase speed 
dispersion. Low frequency sources should be used in order to excite the low frequency 
components of the interface waves since the lower frequency components penetrate deeper 
into the sediments and can provide shear information of the deeper layers. The recording 
time should be long enough to record the slow and dispersive interface waves. Due to the 
strong reverberation background and ocean noise the seismic interface waves may be too 
weak to be observed even if excited. In order to enhance the visualization of interface waves 
one needs to pre-process the data. The procedure includes three-step: low pass filtering for 
reducing noise and high-frequency pulses, time-variable gain, and correction of geometrical 
spreading (Allnor, 2000).  
Figure 5 illustrates an experimental setup for excitation and reception of interface wave 
from a practical case in a shallow water (18 m depth) environment. Small explosive charges 
were used as sound sources and the signals were received at a 24-hydrophone array 
positioned on the seafloor; the hydrophones were spaced 1.5 m apart at a distance of 77 – 
111.5 m from the source. 
 

 
Fig. 5. Experimental setup for excitation and reception of interface waves by a 24-
hydrophone array situated on the seafloor.   

The 24 signals received by the hydrophone array are plotted in Figure 6. The left panel 
shows the raw data with the full frequency bandwidth. The middle panel shows the zoomed 
version of the same traces for the first 0.5 s. The first arrivals are a mixture of refracted and 
direct waves. In the right panel the raw data have been low pass filtered, which brings out 
the interface waves. In this case the interface waves appear in the 1.0 - 2.5 s time interval 
illustrated by the two thick lines. The slopes of the lines with respect to time axis give the 
speeds of the interface waves in the range of 40 m/s – 100 m/s with the higher-frequency 
components traveling slower than the lower-frequency components. This indicates that the 
S-wave speed varies with depth in the seafloor.  

77 m 24-hydrophone 

Sound source 
1.5 m 

18 m
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Fig. 6. Recorded and processed data of the 24-hydrophone array. Left panel: the raw data 
with full bandwidth; Middle panel: zoomed version of the raw data in a time window of 0.0 
- 0.5 s. Right panel: low pass filtered data in a time window of 0.5 - 3.0 s. 

4.2 Dispersion analysis 
There are two classes of methods used for time-frequency analysis to extract the dispersion 
curve of the interface waves: single-sensor method and multi-sensor method (Dong et al., 
2006). Single-sensor method, which can be used to study S-wave speed variations as function 
of distance (Kritski, 2002), estimates group speed dispersion of one trace at a time from   

 
 ,

( )g
d

v
dk





 (53) 

where vg is group speed, ω angular frequency, and k(ω) wavenumber. This method requires 
the distance between the source and receiver to be known. The Gabor matrix (Dziewonski, 
1969) is the classical method that applies multiple filters to single-sensor data for estimating 
group-speed dispersion curves. The Wavelet transform (Mallat, 1998) is a more recent 
method that uses multiple filters with continuously varying filter bandwidth to give a high-
resolution group-speed dispersion curves and improved discrimination of the different 
modes. The sharpest images of dispersion curves are usually found with multi-sensor 
method (Frivik, 1998 & Land, 1987), which estimates phase-speed dispersion using multiple 
traces and the expression is given by  

 
 .

( )pv
k





 (54) 

This method assumes constant seabed parameters over the length of the array.  
Conventionally, two types of multi-sensor processing methods are used for extracting 
phase-speed dispersion curves: frequency wavenumber (f-k) spectrum and slowness-
frequency (p-ω) transform methods (McMechan, 1981). The former method requires 
regular spatial sampling, while the latter can be used with irregular spacing. 
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Alternatively, the Principal Components method (Allnor, 2000), uses high-resolution 
beamforming and the Prony method to determine the locations of the spectral lines 
corresponding to the interface mode in the wavenumber spectra. These wavenumber 
estimates are then transformed to phase speed estimates at each frequency using the 
known spacing between multiple sensors.  
The low pass filtered data in the right panel in Figure 6 is analyzed by applying Wavelet 
transform to each trace to obtain the dispersion of group speed. The dispersion of trace 
number 10 is illustrated by a contour plot in Figure 7. The dispersion data are obtained by 
picking the maximum values along the each contour as indicated by circles. Only one mode, 
fundamental mode, is found in this case within the frequency range of 2.5 Hz – 10.0 Hz. The 
corresponding group speed is in the range of 50 m/s - 90 m/s, which gives a wavelength of 
5.0 m - 36 m approximately. After each trace is processed, the dispersion curves of the group 
speed are averaged to obtain a “mean group speed”, which is subsequently used as 
measured data to an inversion algorithm to estimate S-wave speed profile.  
 

 
Fig. 7. Dispersion analysis showing estimated group speed as function of frequency in the 
form of a contour map of the time frequency analysis results. The circles are sampling of the 
data.  

4.3 Inversion methods 
The inverse problem can be qualitatively defined as: Given the dispersion data of the 
interface waves, determine the geoacoustic model of the seafloor that will predict the same 
dispersion curves. In a more formal way, the objective is to find a set of geoacoustic 
parameters m such that, given a known relation T  between geoacoustic properties and 
dispersion data d,  

 ( )  .Ƶ m d  (55) 

In general, this problem is nonlinear but we present only a linearized inversion scheme: the 
Singular Value Decomposition (SVD) of linear system (Caiti et al., 1996). The seafloor model 
is discretized in m layers, each characterized by thickness hi, density ǒi, P-wave speed cpi, 
and S-wave speed csi. The first simplifying assumption is that the seafloor is considered to 
be horizontally homogeneous, so that the geoacoustic parameters are only a function of 
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depth in the sediment. The second simplifying assumption is that the dispersion of the 
interface wave at the water-sediment interface is only a function of S-wave speed of the 
bottom materials and the layering. The other geoacoustic properties are fixed and not 
changed during the inversion procedure since the dispersion is not sensitive to these 
parameters. These assumptions reduce the number of parameters to be estimated and the 
computational effort needed, but do not seriously affect the accuracy of the estimates. 
The actual computation of the predicted dispersion of phase/group speed is performed 
with a standard Thomson-Haskell integration scheme (Haskell, 1953), which has the 
advantage of being fast and economical in terms of computer usage. However, different 
codes can be used to generate predictions without affecting the structure of the inversion 
algorithm. With the assumptions the model generates the dispersion of phase/group speed 

n
p v R  as function of the S-wave speed m

s c R :  

 ,s pTc v  (56) 

where Jacobian n m Ƶ R R . Depending on the system represented by equation (55) is over- 
or underdetermined, its solution may not exist or may not be unique. So it is customary to 
look for a solution of (56) in the least square sense; that is, a vector cs that minimizes 

2
s pTc v . Consider the most common case where m < n; that is, we have more data than 

parameters to be estimated. The least-square solution is found by solving the normal 
equation:  

 
1( )  .T T

s p
c T T T v

 (57) 

Here TT is the transpose conjugate of matrix T. By using the SVD to the rectangular matrix T 
the solution can be expressed as: 
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In equations (57), (58) and (59) [  ]T TT W ƴ O U , U and W are unitary orthogonal matrices 
with dimension (nn) and (mm) respectively and ƴ is a square diagonal matrix of 
dimension m, with diagonal entries i called singular values of T with 12…m; O is a 
zero matrix with dimension (m(n-m)); ui is the ith column of U and wj the jth column of W.  
Since the matrix ƴ is ill conditioned in the numerical solution of this inverse problem a 
technique called regularization is used to deal with the ill conditioning (Tikhonov & 
Arsenin, 1977). The regularized solution is given by: 

 .T T T
s p  -1c (T T + H H) T v  (60) 

H with dimension (mm) is a generic operator that embeds the a priori constraints imposed 
on the solution and regularization parameter ǌ > 0. The detailed discussion on 
regularization can be found in (Caiti et al., 1994). The regularized solution is given by  
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 †  ,s pTc v  (61) 

with 

  .T T† -1 -1T = W(ƴ+ƴ (HW) (HW)) U  (62) 

The inversion scheme described above is used to estimate S-wave speed profile by inverting 
the group-speed dispersion data shown in Figure 7. A 6-layered model with equal thickness 
is assumed to represent the structure of the bottom. The layer thickness, P-wave speeds and 
densities are kept constant during iterations, but the regularization parameter is adjustable.  
The inversion results are illustrated in Figure 8. The upper left panel plots the measured 
(circles) and predicted (solid line) group speed dispersion data. The measured data and 
predicted dispersion curve agree very well. The eigenvalues and eigenvectors of the 
Jacobian matrix T are plotted in the upper right and bottom right panels respectively. The 
eigenvalues to the left of the vertical line are larger than the value of the regularization 
parameter ǌ (the vertical line). The corresponding eigenvectors marked with black shading 
constitute the S-wave speed profile. The eigenvectors marked with gray shading give no 
contribution to the estimated S-wave speed since their eigenvalues are smaller than the 
regularization parameter. The bottom left panel presents the estimated S-wave speed versus 
depth (thick line) with error estimates (thin line). The error estimate was generated 
assuming an uncertainty of 15m/s in the group speed picked from Figure 7. 
 

 
Fig. 8. Inversion results. Top left: measured (circles) and predicted (solid line) group speed 
dispersion; Top right: eigenvalues of matrix T and the value of the regularization parameter 
(vertical line). Bottom right: eigenvectors; Bottom left: estimated S-wave speed (thick line) 
and error estimates (thin line). 

The estimated S-wave speed is 45 m/s in the top layer and increases to 115 m/s in the depth 
of 15 m below the seafloor, which corresponds to one-half of the longest wavelength at 3 Hz. 
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The errors are smaller in the top layer than that in the deeper layer. This can be explained by 
the eigenvalues and the behaviors of the corresponding eigenvectors. The eigenvectors with 
larger eigenvalues give better resolution, but penetrate only to very shallower depth, while 
the eigenvectors with smaller eigenvalues can penetrate deeper depth, but give relatively 
poor resolution.  
Finally, we present another example to demonstrate the techniques for estimating S-wave 
speed profiles from measured dispersion curves of interface waves (Dong et al., 2006). The 
data of this example were collected in a marine seismic survey at a location where the water 
depth is 70 m. Multicomponent ocean bottom seismometers with 3-axis geophone and a 
hydrophone were used for the recording. The geophone measured the particle velocity 
components just below the water-sediment interface. The hydrophones were mounted just 
above the interface, and measured the acoustic pressure in the water. The receiver spacing 
was 28 m and the distance from the source to the nearest receiver was 1274 m. A set of data 
containing 52 receivers with vertical, vz, and inline, vx, components of the particle velocity 
are shown in the left two panels in Figure 9. In order to enhance the interface waves the 
recorded data are processed by low-pass filtering, time-variable gain and correction of 
geometrical spreading (Allnor, 2000). The processed data are plotted in the two right panels 
in Figure 9 where the slow and dispersive interface waves are clearly observed. The thick 
lines bracket the arrivals of the interface waves. The slopes of the lines with respect to the 
time-axis define the speeds of the interface waves. In this case the speeds appear to be in the 
range of 290 m/s - 600 m/s for the vz component and 390 m/s - 660 m/s for the vx 
component. The higher speed of vx component is a consequence of the fact that the vx 
component has weaker fundamental mode and stronger higher-order mode than vz 
component, as can be observed in Figure 10.    
 

 
Fig. 9. Raw and processed data. From the left to the right: vz and vx components of raw and 
processed data. The thick lines in the processed data illustrate the arrivals of the interface 
waves and the slopes of the lines indicate the speed range of the interface waves.   

The Principal Components method is applied to the processed data to obtain the phase 
speed dispersion. The extracted dispersion data of vz (blue dots) and vx (red dots) are plotted 
in Figure 10. The advantage by using multi-component data is that one can identify and 
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separate different modes and obtain higher resolution. By combining both vz and vx 
dispersion data the final dispersion data are extracted and denoted by circles. There are four 
modes identified, but only the first two modes are used in the inversion algorithm for 
estimating the S-wave speed. Figure 10 shows that the lower frequency components of the 
higher-order mode have higher phase speed and therefore longer wavelength than that the 
higher frequency components of the lower-order mode have. In this case the phase speed of 
the first-order mode at 2 Hz is 550 m/s, which gives a wavelength of 270 m. A 12-layered 
model is assumed to represent the structure of the bottom with layer thickness increasing 
logarithmically with increasing depth. The layer thickness, P-wave speeds and densities are 
kept constant during iterations, but the regularization parameter is adjustable.  
The inversion results are illustrated in Figure 11. The left panel shows the measured phase 
speed dispersion data (circles) and the predicted (solid line) phase speed dispersion curve. 
The right panel presents the estimated S-wave speed versus depth (thick line) with error 
estimates (thin line). The error estimates were generated assuming an uncertainty of 15m/s 
in the selection of phase speed from Figure 10. The match between the predicted and 
measured dispersion data is quite good for both the fundamental and the first-order modes. 
The estimated S-wave speed is 237 m/s in the top layer and increases up to 590 m/s in the 
depth of 250 m below the seafloor, which is approximately one of the longest wavelength at 
the frequency of 2.0 Hz. The results from the both examples indicate that the Scholte wave 
sensitivity to S-wave speed versus depth using multiple modes is larger than that using only 
fundamental mode.  
 

 
Fig. 10. Phase-speed dispersion of vz (blue) and vx (red) components. The circles are the 
sampling of the data.   

Over the years considerable effort has been applied to interface-wave measurement, data 
processing, and inversion for ocean acoustics applications (Rauch, 1980; Hovem et al., 1991; 
Richardson, 1991; Caiti et al., 1994; Frivik et al., 1997; Allnor, 2000; Godin & Chapman, 2001; 
Chapman & Godin, 2001; Dong et al, 2006; Dong et al., 2010). Nonlinear inversion gives both 
quantitative uncertainty estimation and rigorous estimation of the data error statistics and of 
an appropriate model parameterization, and is not discussed here. The work on nonlinear 
inversion can be found in Ivansson et al. (1994), Ohta et al. (2008) and Dong & Dosso (2011). 
More recently Vanneste et al. (2011) and Socco et al. (2011) used a shear source deployed on 
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Fig. 11. Inversion results. Left: measured (circles) and predicted (solid line) phase speed 
dispersion data; Right: estimated S-wave speed versus depth (thick line) and the error 
estimates (thin line). 

the seafloor to generate both vertical and horizontal shear waves in the seafloor. This 
enabled to measure both Scholte and Love waves and to inverse S-wave speed profile 
jointly, thereby obtaining information on anisotropy in the subsurface. Another and entirely 
different approach is based on using ocean ambient noise recorded by ocean bottom cable to 
extract information on the ocean subsurface. This approach has attracted much attention as 
being both economical and environmental friendly (Carbone et al., 1998; Shapiro et al., 2005; 
Bensen et al., 2007; Gerstoft et al., 2008; Bussat & Kugler, 2009; Dong et al., 2010).  

5. Conclusions 

In this chapter after briefly introducing acoustic and elastic waves, their wave equations and 
propagation, a detailed presentation on interface waves and their properties is given. The 
experimental set up for excitation and reception of interface waves are discussed. The 
techniques for using interface waves to estimate the seabed geoacoustic parameters are 
introduced and discussed including signal processing for extracting dispersion of the 
interface waves, and inversion scheme for estimating S-wave speed profile in the sediments.  
Examples with both hydrophone data and ocean bottom multicomponent data are analyzed 
to validate the procedures. The study and approaches presented in this chapter provide 
alternative and supplementary means to estimate the S-wave structure that is valuable for 
seafloor geotechnical engineering, geohazard assessment, seismic inversion and evaluation 
of sonar performance.   
The work presented in this chapter is resulted from the authors’ number of years of teaching 
and research on underwater acoustics at the Norwegian University of Science and 
Technology.  
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