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Russia 

1. Introduction 

The application of various layers on a piezoelectric substrate is a way of improving the 

parameters of propagating electroacoustic waves. For example, a metal film of certain 

thickness may provide the thermal stability of the wave for substrate cuts, corresponding to 

a high electromechanical  coupling coefficient. The overlayer can vary the wave propagation 

velocity and, hence, the operating frequency of a device. The effect of the environment (gas 

or liquid) on the properties of the wave in the layered structure is used in sensors. The layer 

may protect the piezoelectric substrate against undesired external impacts. Multilayer 

compositions allow to reduce a velocity dispersion, which is observed in single-layer 

structures. In multilayer film bulk acoustic wave resonators (FBAR) many layers are 

necessary for proper work of such devices. Therefore, analysis and optimization of the wave 

propagation characteristics in multilayer structures seems to be topical. General methods of 

numerical calculations of the surface and bulk acoustic wave parameters in arbitrary 

multilayer structures are described in this chapter. 

2. Surface acoustic waves in multilayer structures 

In the linear theory of piezoelectricity and in the quasistatic electric approximation the 

system of differential equations, describing the mechanical displacements ui along the three 

spatial coordinates xi (i = 1, 2, 3) and the electric potential  in the solid piezoelectric 

medium, may be written in such view (Campbell and Jones, 1968): 
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       i, j, k, l = 1, 2, 3 (2) 

In these equations cijkl is the forth rank tensor of the elastic stiffness constants, eijk is the third 

rank tensor of the piezoelectric constants, ij is the second rank tensor of the dielectric 

constants,  - the mass density, t – time, and the summation convention for repeated indices 

is used. The expression (1) contains three equations and (2) gives one more equation, totally 
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four equations. These equations must be solved for each medium of all the multilayer 

system, which is shown in Fig. 1. 

 

 

Fig. 1. Multilayer structure  -  substrate and M layers. 

The coordinate axis x1 direction coincides with the wave phase velocity v, the coordinate 

axis x3 is normal to the substrate surface and the axis origin is set on this surface, as shown 

in Fig 1. A solution of equations (1) and (2) we will seek in the following form: 

exp[ ( )]j j i iu ik b x vt   

4 exp[ ( )]i iik b x vt    

Here j – amplitudes of the mechanical displacements, 4 – the amplitude of the electric 

potential, bi – directional cosines of the wave velocity vector along the corresponding axises, 

k = /v = 2/ – the wave number,  – a circular frequency,  – a wavelength. Substitution 

of (3) into (1) and (2) gives the system of four linear algebraic equations for wave 

amplitudes: 

 2
4ijkl i l k kij k i jc b b e b b v      (4) 

 4 0ikl i l k ik i ke b b b b     (5) 

 The detailed form of these equations is following: 
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 (6) 

Here: 

 4 4 44, , , , , 1,2,3jk kj ijkl i l j j ikj i k ik i kc b b e b b b b i j k l          (7) 

For the existence of a nontrivial solution of the system (6) a determinant of this system must 

be equal to zero: 

Layer1 

0 

h1 

h2 

hM 



x3 

LayerM 

Layer2 

Substrate 
x1 

i, j = 1, 2, 3       (3) 
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 (8) 

This equation allows to determine the unknown directional cosine b3, if the values v, b1, and 
b2 are set. For flat pseudo-surface acoustic wave the values of the directional cosines are 
following: 

 1 2 31 , 0,b i b b b    , (9) 

where  is the wave attenuation coefficient along the propagation direction. For surface 

acoustic wave the attenuation is absent and = 0. The equation (8) with taking into account 
(9) gives the following eighth power polynomial equation with respect to the b value: 

 8 7 6 5 4 3 2
8 7 6 5 4 3 2 1 0 0a b a b a b a b a b a b a b a b a          (10) 

Coefficients ai of this equation are represented by very complicated expressions, depending 

on material constants of the medium, a phase velocity v, and the attenuation coefficient . 

For pseudo-surface acoustic waves ≠ 0 and therefore coefficients ai are complex values. For 

surface acoustic waves = 0 and coefficients ai are pure real values. In this case roots of the 

equation (10) are either real or complex conjugated pairs. If  ≠ 0,  roots of the equation (10) 

are complex but not conjugated. So, solving (numerically certainly) the equation (10), we get 

eight roots b(n) (n = 1, 2, …, 8), which are complex values in general case. These values are the 

eigenvalues of the problem. Substituting each of these values into (7) and then into equation 

system (6), we can define all four complex amplitudes ( )n
j for each root b(n). Values 

( )n
j represent the eigenvectors of the problem. This procedure must be performed for the 

substrate and for each layer. Found solutions are the partial solutions of the problem or 

partial modes.  
The general solution for each medium is formed as a linear combination of partial solutions 
(partial modes). Quantity partial modes in the general solution for each medium must be 
equal to quantity of boundary conditions on its surfaces. Four boundary conditions on each 
surface are used, namely three mechanical and one electrical one. The substrate is semi-
infinite, i.e. it has only one surface. Hence only four partial solutions are required for 
forming the general solution for the substrate. It means that some procedure of roots 
selection is required for substrate. For surface acoustic wave four roots with negative 
imaginary parts are selected from four complex conjugated pairs. This condition of roots 
selection corresponds to decreasing of the wave amplitude along the –x3 direction (into the 
depth of the substrate), i.e. to condition of the localization of the wave near the surface. 
Practically the procedure of roots sorting with increasing imaginary parts order is 
performed and then four first roots are used for forming of the general solution. 
For pseudo-surface wave roots are not complex conjugated, but they also contain four roots 
with negative imaginary part and also these four roots are first in the sorted roots sequence. 
In this case the roots selection rule is some different. Three first roots in the sorted sequence 

are selected, but the fourth root of this sequence is replaced with the fifth one (with the 
positive imaginary part of minimal value). This condition corresponds to increasing of the 
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wave amplitude into the depth of the substrate and provide the energy conservation law 

satisfaction (wave attenuates along the propagation direction x1 due to nonzero value of  in 
the direction cosine b1, see (9)). For high velocity pseudo-surface wave (the second order 
pseudo-surface wave or quasi-longitudinal pseudo-surface wave) only two first roots of the 

sorted sequence are selected, the third and the fourth roots are replaced with the fifth and 
the sixth ones.  
All these rules of roots selection are applied for substrate only. For each layer of the 

structure shown in Fig. 1 there is no problem of roots selection, because each layer has two 

surfaces and all eight roots (all eight partial modes) are used for forming of the general 

solution for each layer. 

One must to note, that in some special cases the quantity of partial modes may be less, than 

four for substrate and less, than eight for layers. This must be taken into account at forming 

of the general solution for corresponding case.      

So, the general solution for each medium is formed as a linear combination of corresponding 

partial modes: 
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     (12) 

Here m is the medium number,  Nm = n0 + n1 + … + nm, nm – the quantity of partial modes in 

the medium number m (m = 0 corresponds to a substrate, m = 1  corresponds to the 1st layer 

etc., N0-1 = n0-1 = 0), Cn – unknown coefficients and a continuous numeration is used for them 

(strange upper indices support this continuous numeration here and further).   

The substrate is assumed the piezoelectric medium in all the cases and n0 = 4 in general case 

(or less in some special cases). There are eight partial modes for each layer in the general 

case if it is piezoelectric or six modes in the general case, if the layer is anisotropic 

nonpiezoelectric or isotropic medium (dielectric or metal). For isotropic medium the second 

component of the mechanical displacement u2 is decoupled with u1 and u3 and may be 

arbitrary, for example one can set u2 = 1. 

Unknown coefficient Cn in (11) and (12) can be determined using the boundary conditions 

on all the internal boundaries and on the external surface of the upper layer.  Unfortunately 

it is impossible to formulate boundary conditions in the universal form, applicable to all the 

combinations of the substrate and layers materials. Therefore we must investigate different 

variants of material combinations separately. 

For piezoelectric layers conditions of continuity of the mechanical displacements, electric 

potential, normal components of the stress tensor and the electric displacement must be 

satisfied for all the internal boundaries.  On the external surface of the top layer normal 

components of the stress tensor must be equal to zero.  If this surface is open (free), the 

continuity of the normal component of the electric displacement must be satisfied, if this 

surface is short circuited, then electric potential must be equal to zero. The stress tensor and 

electric displacement in piezoelectric medium can be calculated by means of following 

expressions: 
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Substituting (11) and (12) into (13) and (14) we can get following boundary conditions 
equations: 
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In these equations j, k, l = 1, 2, 3, m = 0, 1, 2, … M-1 (not up to M!), where M is the quantity of 
layers, x3(m) = h1 + h2 + … + hm, x3(0) = 0.  Equations (15a) represent the continuity of 
mechanical displacements, (15b) – the continuity of the stress normal components, (15c) – 
the continuity of the electrical potential, (15d) – the continuity of the electric displacement 
normal component. If surface x3 = x3(m) is short circuited by metal layer of zero thickness, 
equations (15c) and (15d) must be changed.  The right part of the (15c) must be replaced 
with zero, the left part of (15d) also must be replaced with zero and the right part of (15d) 
must be replaced with the right part of (15c). 
The boundary conditions equations for stress on the external surface of the top layer (m = M) 
can be obtained from equations (15b) by replacing the right part of this equation with zero.  
Analogously by replacing the right part with zero the equation (15c) gives electric boundary 
condition for the short circuited external surface. In order to formulate the boundary 
condition on the free external surface, the potential in the free space must be written in the 
following form: 

 
( )

1 3 3( ) ( )( ) ( )
3 3,

Mkb x x Mf M e x x           (16) 

Here φ(M) is the potential of the external surface (x3 = x3(M)). The potential (16) satisfies 
Laplace equation (that can be checked by direct substitution of (16) into this equation) and 
vanishes at x3  ∞. 
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The normal component of the electric displacement in the free space: 

 
( )

1 3 3
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kb x xf MD kb e
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
 (17) 

Here 0 is the dielectric permittivity of the free space. Using the expression (17) we can get 
the condition of the continuity of the normal component of the electric displacement on the 
free (open) external surface: 
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The system of the boundary conditions equations  contains n0 + n1 + n2 + … + nM equations 
with the same number of unknown coefficients Cn.  In general case n0 = 4, n1 = n2 = … = nM = 8. 
For metal layers mechanical boundary conditions are the same as for the previous case (only 
one must take into account, that piezoelectric constants of layers are zero) and the electric 
boundary condition is formulated only for the substrate surface: 

 
0

( )
04

1

( ) 0
n

n
n

n

C 


                 (19) 

This variant of boundary conditions is also valid, if the first layer is metal and all other 
layers are non-piezoelectric dielectrics and metals in an arbitrary combination. For this 
variant in the general case n0 = 4, n1 = n2 = … = nM = 6. 
For isotropic dielectric layers the mechanical boundary conditions are the same as for the 
previous case.  Electric boundary conditions became complicated and multi-variant because 
any boundary may be either free or short circuited.  Only the single variant is simple – the 
first boundary is short circuited. For this variant the electric boundary condition is 
presented by the single equation (19), such as for previous case. 
In general case the dependence of the potential in the free space is defined by equation (16) 
and inside the m-th dielectric isotropic layer it must be written as: 

 
( 1) ( 1)

1 3 1 33 3( ) ( ) ( 1) ( )( )
3 33 3( ) ,

m mkb x x kb x x m mm
m mx A e B e x x x

            (20) 

Coefficients Am and Bm can be expressed by potentials on the layer boundaries, which 
depend on the electric conditions on this boundaries (free or short).  Using conditions of the 
continuity of the potential and the normal component of the electric displacement one can 
exclude all the boundary potentials and express the potential φ(1) in the first layer as 
function of  x3.  This function will content only φ(0)(x3 = 0) – potential on the substrate 
surface.  From the potential φ(1) one can express the normal component of the electric 
displacement on the substrate surface and use the condition of the continuity of this value 
for formulation of the electric boundary condition equation. This is the single equation, but 
its view significantly depends on the electric conditions on other boundaries. 
If all the boundaries are electrically free and there is only the single layer, the equation, 
which describes the electric boundary conditions, can be written so:  
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 
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Here and hereinafter εm (m = 1, 2, … M) is the relative permittivity of the m-th layer. R2 in 

(21b) is the recurrent coefficient, which allows to obtain the equation for two layers from 

equations (21) for one layer. For the single layer R2 = 1, and for two layers: 

 2
2 2

1 2( )
R S

sh kb h


                     (22) 

I.e. for two layers the electric boundary condition has the following view: 
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where: 
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The recurrent coefficient R3 gives possibility to obtain the equation for three layers from 

equation for two layers: 
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1 3( )
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  (24) 

For three layers: 
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 (25) 

For three layers R4 = 1, and for more than three: 

 4
4 4

1 4( )
R S

sh kb h


  (26) 

And so on, i.e. the equation of electric boundary conditions for m + 1 layers may be obtained 

from the equation for m layers by using the recurrent coefficient Rm+1 (RM+1 = 1, if M is the 

total number of layers).  To obtain the equation for M layers one must write equation for one 

layer, then for two layers and so on until the equation for M layers will be obtained.  

If one of the boundary surfaces x3 = x3(m) is short circuited (metalized), then electric 
conditions of all the further boundaries are unimportant, because the electric field outside 
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the short circuited surface (x3 > x3(m)) is equal to zero.  The same result will be, if the layer m 
+ 1 is metal and all the further layers are metals and dielectrics in arbitrary combination. To 
obtain the electric boundary condition equation in this case one has to get the equation for m 
layers with electrically free boundaries as described above.  Then one must remain in the 
expression for Sm (for the last layer before the short circuited surface) only the first term 
ch(kb1hm) and the second term, which contains Rm+1, replace with zero.  The equation, 
obtained so, corresponds to the zero potential on the surface x3 = x3(m).  For example, for case 
then the second boundary is short circuited, i.e. φ(2) = 0, the boundary condition equation 
coincides with (23a), but S2 = ch(kb1h2) must be set in this equation instead of (23b).  
So, the single electric boundary condition equation for multi-layer structure must be 

formulated by one of way, described above, and then full system of the boundary conditions 

equations must be solved. This equations system can be written in such form: 
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..............................................
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 (27) 

The order N of this system is equal to total quantity of partial modes of all the structure: N = 

n0 + n1 + … nM.  

For nontrivial solution of this system its determinant must be equal to zero: 

 

11 12 1

21 22 2

1 2

0

N

N

N N NN

a a a

a a a

a a a

  
  


           

  

 (28) 

The simplest example is one metal layer on the piezoelectric substrate (or one arbitrary 

nonpiezoelectric layer with shorted (metalized) bottom surface). The order of boundary 

conditions determinant is 10 for this case and its coefficients aqn have the such view: 

( )
0

( 4)
1

( ) 1,..., 4 1,2,3

( ) 5,...,10

n
qn j

n
qn j

a n q

j qa n



 

  
   

   
 
 

( ) ( ) ( ) ( )
3 3 4

0

( 4) ( 4)
3

1

1,..., 4 4,5,6

35,...,10

n n n n
qn jkl k jk l k

n n
qn jkl k l

a c b e b n q

j qa c b n

 

  

   
    


 

 ( 4) ( 4) ( 4)
3 1 13

1

0 1,..., 4 7,8,9

6exp[ ( ) ] 5,...,10

qn

n n n
qn jkl k l

a n q

j qa c b ik b h n   

   
    

   
( )

04( ) 1,...,4
10

0 5,...,10

n
qn

qn

a n
q

a n

    
  

 

Here the first three strings (q = 1, 2, 3) represent the continuity of the three components (j = 

1, 2, 3) of mechanical displacements on the substrate surface (x3(0) = 0), the second three 

strings (q = 4, 5, 6) are the continuity of the three normal components (j = 1, 2, 3) of the 

mechanical stress on the substrate surface (x3(0) = 0), the third three strings (q = 7, 8, 9) are 

three (j = 1, 2, 3) zero normal components of the mechanical stress on the top surface of the 

layer (x3(1) = h1), and the last string (q = 10) expresses the zero electric potential on the 

substrate surface (x3(0) = 0).  

(29) 
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For two metal layers (or the first layer is metal and the second layer is an arbitrary 
nonpiezoelectric material, or two arbitrary nonpiezoelectric layers with shorted bottom 
surface of the first layer): 

( )
0

( 4)
1

( ) 1,..., 4
1,2,3

( ) 5,...,10

0 11,...,16

n
qn j

n
qn j

qn

a n
q

a n
j q

a n



 

 
      

    

 
 

( ) ( ) ( ) ( )
3 3 4

0

( 4) ( 4)
3

1

1,..., 4

4,5,6
5,...,10

3
0 11,...,16

n n n n
qn jkl k jk l k

n n
qn jkl k l

qn

a c b e b n

q
a c b n

j q
a n

 

  

  


    
  



 

( 4) ( 4)
1 1 13

( 10)( 10)
2 2 13

0 1,..., 4
7,8,9

( ) exp[ ( ) ] 5,...,10
6

( ) exp[ ( ) ] 11,...,16

qn

n n
qn j

nn
qn j

a n
q

a ik b h n
j q

a ik b h n





 



 
     

  

 

 
 

( 4) ( 4) ( 4)
3 1 13

1

( 10) ( 10) ( 10)
3 2 13

2

0 1,...,4
10,11,12

exp[ ( ) ] 5,...,10
9

exp[ ( ) ] 11,...,16

qn

n n n
qn jkl k l

n n n
qn jkl k l

a n
q

a c b ik b h n
j q

a c b ik b h n





  

  

  


    
 
  

 ( 10) ( 10) ( 10)
3 2 1 23

2

0 1,...,10 13,14,15

12exp[ ( ) ( )] 11,...,16

qn

n n n
qn jkl k l

a n q

j qa c b ik b h h n   

   
     

 

( )
04( ) 1,..., 4

16
0 5,...,16

n
qn

qn

a n
q

a n

    
  

 

The first six strings represent continuity of the displacements (q = 1, 2, 3) and the stresses (q 
= 4, 5, 6) on the bottom surface of the first layer, the second six strings - continuity of the 
displacements (q = 7, 8, 9) and stresses (q = 10, 11, 12) on the bottom surface of the second 
layer, the strings up 13 to 15 – zero stress on the top surface of the second (top) layer, and 
the last string (q = 16) – zero potential on the bottom surface of the first layer.  
The next examples are the isotropic dielectric layers on the piezoelectric substrate. 

For one isotropic dielectric layer with both open surfaces the first 9 strings of the boundary 

conditions determinant are the same as in (29) and the last string is: 

 
 ( ) ( ) ( ) ( ) ( )1 1 0

3 3 1 04 4
0

1 1

( ) 1,..., 4
( ) 10

0 5,...,10

n n n n n
qn jk jj jk

qn

b
a i e b b S n

sh kb h q

a n

          
  

 (31) 

where S1 is represented by (21b) at R2 = 1. 
For one isotropic dielectric layer with the open bottom surface and the shorted top surface 
the expression (31) is valid, but S1 = ch(kb1h1). 
For one isotropic dielectric layer with bottom shorted surface the boundary conditions 
determinant coincides with (29) completely. 

(30) 
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For two isotropic dielectric layers with all open surfaces the first 15 strings of the boundary 

conditions determinant are the same as in (30) and the last string is: 

 
 ( ) ( ) ( ) ( ) ( )1 1 0

3 3 1 04 4
0

1 1

( ) 1,..., 4
( ) 16

0 5,...,16

n n n n n
qn jk jj jk

qn

b
a i e b b S n

sh kb h q

a n

 
         

  

 (32) 

where one must use (21b) for S1, (22) for R2, and (23b) for S2 (R3 = 1 must be set in (23b)).  
For two isotropic dielectric layers with the top shorted surface of the top layer (all other 

boundaries are open) the expression (32) is valid, but S2 = ch(kb1h2) instead of (23b). 

For two isotropic dielectric layers with the bottom shorted surface of the top layer the 

expression (32) is valid, but 1 1 1( )S ch kb h  instead of (21b), and (22), (23b) are not needed. 
If the bottom surface of the first layer is shorted, the boundary conditions determinant 
coincides with (30) completely. 
And now we will consider some examples with piezoelectric layers. 

For one piezoelectric layer with open surfaces the boundary conditions determinant 

contains 12 strings and 12 columns and elements of this determinant are: 

( )
0

( 4)
1

( ) 1,..., 4 1,2,3

( ) 5,...,12

n
qn j

n
qn j

a n q

j qa n



 

  
   

  
 
 

( ) ( ) ( ) ( )
3 3 4

0

( 4) ( 4) ( 4) ( 4)
3 3 4

1

1,..., 4 4,5,6

35,...,12

n n n n
qn jkl k jk l k

n n n n
qn jkl k jk l k

a c b e b n q

j qa c b e b n

 

    

   
     


 

( )
04

( 4)
14

( ) 1,..., 4
7

( ) 5,...,12

n
qn

n
qn

a n
q

a n



 

   
  

  
 
 

( ) ( ) ( ) ( )
3 3 4

0

( 4 ) ( 4) ( 4) ( 4)
3 3 4

1

1,..., 4
8

5,...,12m

n n n n
qn jk jj jk

n n n n
qn jk jj jk

a e b b n
q

a e b b n

  

     

    
   



 

  ( 4) ( 4) ( 4) ( 4) ( 4)
3 3 1 14 3

1

0 1,..., 4 9,10,11

8exp[ ( ) ] 5,...,12

qn

n n n n n
qn jkl k jk l k

a n q

j qa c b e b ik b h n     

   
     

 (33) 

  ( 4) ( 4) ( 4) ( 4) ( 4) ( 4)
3 3 1 0 1 1 14 4 3

1

0 1,..., 4

12
( ) exp[ ( ) ] 5,...,12

qn

n n n n n n
qn jk jj jk

a n

q
a i e b b b ik b h n         

  
 

    

 

Here the first three strings (q = 1, 2, 3) represent the continuity of the three components (j = 

1, 2, 3) of mechanical displacements on the substrate surface (x3(0) = 0), the next three strings 

(q = 4, 5, 6) are the continuity of the three normal components (j = 1, 2, 3) of the mechanical 

stress on the substrate surface (x3(0) = 0), the next string (q = 7) - continuity of the electric 

potential on the same surface, then (q = 8) – continuity of the normal component of the 

electric displacement on the substrate surface (x3(0) = 0), the next three strings (q = 9, 10, 11) 

are three (j = 1, 2, 3) zero normal components of the mechanical stress on the top surface of 

the layer (x3(1) = h1), and the last string (q = 12) expresses the continuity of the normal 

component of the electric displacement on the open top surface of the layer (x3(1) = h1).  

For one piezoelectric layer with shorted bottom surface and open top one the expressions 

(33) are valid, excepting the strings 7 and 8 (q = 7 and 8), which must be replaced with: 
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( )
04( ) 1,..., 4

7
0 5,...,12

n
qn

qn

a n
q

a n

    
  

           
( 4)

14

0 1,..., 4
8

( ) 5,...,12

qn

n
qn

a n
q

a n 

   
  

 (34a) 

These expressions represent the zero electric potential of the bottom surface of the layer (the 

substrate surface). 

For one piezoelectric layer with shorted top surface and open bottom one the expressions 

(33) are valid, excepting the last string (q = 12), which must be replaced with: 

 
( 4) ( 4)

1 1 14 3

0 1,..., 4
12

( ) exp[ ( ) ] 5,...,12

qn

n n
qn

a n
q

a ik b h n  

   
  

 (34b) 

which corresponds to the zero electric potential of the top surface of the layer. 
For one piezoelectric layer with both shorted surface one can use expressions (33), in which 
strings 7 and 8 must be replaced with (34a) and string 12 – with (34b). 
For two piezoelectric layers on the piezoelectric substrate with all open surfaces the 
boundary conditions determinant contains the following 20 strings: 

( )
0

( 4)
1

( ) 1,...,4
1,2,3

( ) 5,...,12

0 13,...,20

n
qn j

n
qn j

qn

a n
q

a n
j q

a n



 

 
      

  

 
 

( ) ( ) ( ) ( )
3 3 4

0

( 4) ( 4) ( 4) ( 4)
3 3 4

1

1,..., 4

4,5,6
5,...,12

3
0 13,...,20

n n n n
qn jkl k jk l k

n n n n
qn jkl k jk l k

qn

a c b e b n

q
a c b e b n

j q
a n

 

    

  


     
  



 

( )
04

( 4)
14

( ) 1,..., 4

( ) 5,...,12 7

0 13,...,20

n
qn

n
qn

qn

a n

a n q

a n



 

 
  
  

  

 
 

( ) ( ) ( ) ( )
3 3 4

0

( 4 ) ( 4) ( 4) ( 4)
3 3 4

1

1,..., 4

5,...,12 8

0 13,...,20

m

n n n n
qn jk jj jk

n n n n
qn jk jj jk

qn

a e b b n

a e b b n q

a n

  

     

  

   


  


 

 

( 4) ( 4)
1 1 13

( 12) ( 12)
2 2 13

0 1,..., 4

( ) exp[ ( ) ] 5,...,12 9,10,11 8

( ) exp[ ( ) ] 13,...,20

qn

n n
qn j

n n
qn j

a n

a ik b h n q j q

a ik b h n





 

 

 
    


  

 

 
 

( 4) ( 4) ( 4) ( 4) ( 4)
3 3 1 14 3

1

( 12) ( 12) ( 12) ( 12) ( 12)
3 3 2 14 3

2

0 1,..., 4

exp[ ( ) ] 5,...,12 12,13,14 11

exp[ ( ) ] 13,...,20

qn

n n n n n
qn jkl k jk l k

n n n n n
qn jkl k jk l k

a n

a c b e b ik b h n q j q

a c b e b ik b h n

 

 

    

    

  


     

  


 

( 4) ( 4)
1 1 14 3

( 12) ( 12)
2 2 14 3

0 1,..., 4

( ) exp[ ( ) ] 5,...,12 15

( ) exp[ ( ) ] 13,...20

qn

n n
qn

n n
qn

a n

a ik b h n q

a ik b h n





 

 

 
  


  

 

(35) 
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 
 

( 4) ( 4) ( 4) ( 4) ( 4)
3 3 1 14 3

1

( 12) ( 12) ( 12) ( 12) ( 12)
3 3 2 14 3

2

0 1,..., 4

exp[ ( ) ] 5,...,12 16

exp[ ( ) ] 13,...,20

qn

n n n n n
qn jk jj jk

n n n n n
qn jk jj jk

a n

a e b b ik b h n q

a e b b ik b h n

  

  

    

    

  


   

  


 

 

 ( 12) ( 12) ( 12) ( 12) ( 12)
3 3 2 1 24 3

2

0 1,...,12 17,18,19

16exp[ ( ) ( )] 13,...,20

qn

n n n n n
qn jkl k jk l k

a n q

j qa c b e b ik b h h n     

   
      

 

 

  ( 12) ( 12) ( 12) ( 12) ( 12)
3 3 1 0 24 4

2

( 12)
2 1 23

0 1,...,12

( ) 20

exp[ ( ) ( )] 13,...,20

qn

n n n n n
qn jk jj jk

n

a n

a i e b b b q

ik b h h n

        



  

    

   

 

 

Here the first three strings (q = 1, 2, 3) represent the continuity of the three components (j = 

1, 2, 3) of mechanical displacements on the substrate surface (x3(0) = 0), the next three strings 

(q = 4, 5, 6) are the continuity of the three normal components (j = 1, 2, 3) of the mechanical 

stress on the substrate surface (x3(0) = 0), the next string (q = 7) - continuity of the electric 

potential on the same surface, then (q = 8) – continuity of the normal component of the 

electric displacement on the substrate surface (x3(0) = 0), strings 9, 10, 11 -  the continuity of 

the three components (j = 1, 2, 3) of mechanical displacements on the surface between the 

first and the second layers  (x3(1) = h1), strings 12, 13, 14 -  the continuity of the three 

components (j = 1, 2, 3) of mechanical stress on the surface between the first and the second 

layers  (x3(1) = h1), the next string (q = 15) - continuity of the electric potential on the same 

surface, then (q = 16) – continuity of the normal component of the electric displacement on 

the same surface, the next three strings (q = 17, 18, 19) are three (j = 1, 2, 3) zero normal 

components of the mechanical stress on the top surface of the top layer (x3(2) = h1 + h2), and 

the last string (q = 20) expresses the continuity of the normal component of the electric 

displacement on the open top surface of the top layer (x3(2) = h1 + h2).  

For two piezoelectric layers on the piezoelectric substrate with shorted bottom surface of the 

first layer and with the open other surfaces strings number 7 and 8 in expressions (35) must 

be replaced with: 
 

 

( )
04( ) 1,..., 4

7
0 5,...,20

n
qn

qn

a n
q

a n

    
  

         ( 4)
14

0 1,..., 4

( ) 5,...,12 8

0 13,...,20

qn

n
qn

qn

a n

a n q

a n

 

  
  
  

 (36a) 

 

For two piezoelectric layers on the piezoelectric substrate with shorted bottom surface of the 

second layer and with open other surfaces strings number 15 and 16 in expressions (35) 

must be replaced with: 
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( 4) ( 4)
1 1 14 3

0 1,..., 4

( ) exp[ ( ) ] 5,...,12 15

0 13,...20

qn

n n
qn

qn

a n

a ik b h n q

a n

  

  
  
  

 

( 12) ( 12)
2 2 14 3

0 1,...,12
16

( ) exp[ ( ) ] 13,...20

qn

n n
qn

a n
q

a ik b h n  

   
  

 

For two piezoelectric layers on the piezoelectric substrate with shorted top surface of the 
second layer and with open other surfaces the string number 20 in expressions (35) must be 
replaced with: 

 
( 12) ( 12)

2 2 1 24 3

0 1,...,12
20

( ) exp[ ( ) ( )] 13,...20

qn

n n
qn

a n
q

a ik b h h n  

   
   

 (36c) 

If two surfaces of three are shorted, then two corresponding expressions of (36a) – (36c) 
must be used for replacing the corresponding expressions of (35), taking into account, that 
(36a) “short-circuits” the first surface (the substrate surface), (36b) – the second surface, and 
(36c) – the third one (the top surface of the top layer).  
If all three surfaces are shorted, all expressions (36a) – (36c) must be used for replacing the 
corresponding expressions in (35). 
All the examples, considered above, allow to understand how to form the boundary 
conditions determinant and for more complicated structures with three, four, five etc. layers, 
if necessary. 
Thus, the determinant of the boundary conditions is formed. Now we have to solve the 
equation (28). This means we need to find a value of wave velocity (or velocity and attenuation 
coefficient for the pseudo-surface wave), for which the boundary conditions determinant 
vanishes. The solution of equation (28) can be found by any available iterative procedure. In 
our case, we apply our own algorithm to search the global extremum of function of several 
variables (Dvoesherstov et. al., 1999). Solution corresponds to the global minimum of the 
function, which is the square of the absolute value of the boundary conditions determinant. 
Another widely used method of finding solution is to calculate the effective dielectric 
permittivity (Adler, 1994): 

 
( )
3

( )
1

m

eff m

D

kb



  (37) 

Here (m) and D3(m) - the potential and electric displacement on the top surface of the layer m. 
Corresponding string of the boundary conditions determinant is used for expression (37). 
For example, for top surface of the top layer under condition that this layer is piezoelectric, 
the effective permittivity technique gives the follow equation, which expresses continuity of 
the dielectric permittivity: 

 

 
1

1

( ) ( ) ( ) ( ) ( ) ( )
3 3 4 3 3

1 0

( ) ( ) ( )
1 0 4 3 3

1

exp[ ]

exp[ ]

M

M

M

M

N
n n n n n M

n jk jj jk
n N

N
n n M

n
n N

i C e b b ikb x

b C ikb x

  


 





 

 




 




 (38) 

(36b)
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The top value in the right part of this equation corresponds to the open surface, the bottom 
value (∞) – to short-circuited one. One can see that coefficients Cn are needed for using of 
this technique. These coefficients are obtained by solving the equations system (27), from 
those the equation, corresponding to the surface number m, is excluded. For example, in our 
case one must exclude the last equation of this system (corresponding to the last string of the 
boundary conditions determinant). The system (27) is uniform and its solution is defined 
with an accuracy up to an arbitrary coefficient. Therefore after excluding one of the equation 
from this system we can set any Cn of any value, for example CN = 1 and then solve the N-1 
power nonuniform system and to obtain all the coefficients Cn for using the equation (38). 
This procedure is repeating for different values of the wave velocity (or the velocity and the 
attenuation coefficients) until the equation (38) is satisfied. We used the global search 
procedure for equation (38) solving (Dvoesherstov et. al., 1999). Calculations by using the 
boundary conditions determinant (solving the system (27) in this case is not required) and 
by using the effective dielectric permittivity are mathematically equivalent each other and 
give the same result. But in some cases one technique gives result with better reliability than 
another, and in other cases – contrary. Our soft contains both techniques and one can easily 
switch from one to another by the single mouse click. When the wave velocity (or the 
velocity and the attenuation coefficient) is obtained, one can calculate all the coefficients Cn 
by solving the equation system (27) and then the wave amplitudes for any x3 coordinate in 
any medium by substitution Cn into (11) and (12).     
After the calculation of the wave phase velocity one can obtain all the wave propagation 
characteristics: an electromechanical coupling coefficient, a temperature coefficient of delay, 
a power flow angle, a diffraction parameter. Dependences of the layers thickness and theirs 
mass density on a temperature, which are needed for temperature coefficient of delay 
calculations, one can find, for example in (Shimizu et. al., 1976).   
All the propagation characteristics can be modified by proper choice of the layer parameters. 
For example, Fig. 2 shows dependences of the temperature coefficient of delay (TCD) on 
quartz with single Al and Au layer on the second Euler angle and on the relative layer 
thickness. Material constants for quartz are taken from (Shimizu and Yamamoto, 1980), for 
 

            
a)                                                                     b) 

Fig. 2. Dependence of TCD (ppm/oC) on the 2nd Euler angle  and on the relative layer 

thickness h/for Al (a) and Au (b). The first and third Euler angles are equal to zero.  
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Al and Au – from (Ballandras et. al., 1997).  One can see in Fig. 2, that negative values of 

TCD can be compensated by metallic layer.  For example, orientation YX-quartz (0o,90o,0o) 

becomes thermostable if h/ = 0.061 for Al layer and YX-quartz keeps the  temperature 

stability in range 0.027 ≤ h/ ≤ 0.032 for Au layer.  

So, multilayer structures can be used both for protection against external undesired 

influence and for improvement of the wave propagation characteristics, i.e. the SAW device 

properties. All these possibilities can be evaluated by means of calculation technique, 

described here. 

3. Bulk acoustic waves in multilayer structures 

Bulk acoustic waves are used in film bulk acoustic resonators. The simplest such resonator 
contains at least three layers, namely an active piezoelectric layer, in which transformation 
of the electric signal into the acoustic wave takes place, and two metallic (usually 
aluminum) electrodes, connected to the source of the electric signal. The structure of such 
resonator (named membrane type resonator) is schematically shown in Fig. 3a. 
 

 
a)                                                                                  b) 

Fig. 3. Schematic view of the membrane type film bulk acoustic wave resonator (a) and of 
the SMR resonator (b). 

FBAR resonators are used in the ultra high frequency range (several GHz and higher), 

therefore a thickness of the active layer is very small (microns and less). There are some 

problems with mounting of such small structures on the solid massive and relatively thick 

substrate. It is impossible to place membrane type FBAR on the substrate directly, because 

in this case the useful signal will be deformed by multiple spurious oscillation modes due to 

an acoustic interaction of the resonator and the substrate. To prevent this interaction more 

complicated constructions are required. In particular, an air gap between the bottom 

electrode and the substrate must be provided or cavity in substrate under a bottom 

electrode must be etched. These variants require rather complex technological processes 

application. Another possibility is mounting the multilayer Bragg reflector directly on the 

substrate and then mounting of the resonator directly on this reflector. Such construction is 

named a solid mounted resonator (SMR). The structure of such resonator schematically is 

shown in Fig. 3b. 

The Bragg reflector contains several (3 – 5) pairs of two materials with different acoustic 
properties. The thickness of each layer in the reflector must be equal to a quarter of the 

Electrode 

Piezoelectric crystal 

Electrode 

Bragg reflector 

Substrate 
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wavelength in its material. Such construction provides attenuation of the wave and prevents 
an acoustic interaction of the active zone of the resonator and the substrate.   
Transversal sizes of the resonator are usually much larger than its total thickness, therefore 
an analysis of all the main properties may be performed in the one-dimensional approach. 
The most rigorous one-dimensional theory of such multilayer structures is presented in 
(Nowotny and Benes, 1987). The following description is based on this theory, some 
modified for expansion of its possibilities.  
The wave equations, describing processes in the solid piezoelectric medium, are the same as 
for surface acoustic waves – see (1) and (2). Assuming that all the values depend only on the 
single spatial coordinate x1 (mechanical displacements ui along all the coordinates xi take 
place in this case nevertheless), we can write simpler form of these equations: 

 

22 2

1 1 112 2 2
1 1

jk
jk j

uu
c e

x x t

 
 

 
  

       j, k = 1, 2, 3   (39) 

 
2 2

11 112 2
1 1

0k
k

u
e

x x

 
 

 
 (40) 

Complex material constants (with real and imaginary parts) can be used for modeling of 
electro-acoustic losses in the medium.  
The solution for the electric potential  can be obtained from (40) in such form: 

 11
1 1 0

11

k
k

e
u x  


    (41) 

Here 0 and 1 are arbitrary unknown constants. 
Substitution (41) into (39) gives: 

 

22_

1 1 2 2
1

jk
jk

uu
c

x t




 

 (42) 

Here 
_

1 1jkc  are the stiffened elastic constants:  

 
_

11 11
1 1 1 1

11

j k
jk jk

e e
c c


   (43) 

We will seek the solution of these equations (j = 1, 2, 3) as a sinusoidal wave, propagating 
along the x1 axis with the velocity v: 

 
1

1( )
1( , )

x
i t

i x tv
k k ku x t e e


  

      , (44) 

where  = 1/v is a slowness. 
Substitution of (44) into the equations (42) transforms them into the linear algebraic 
equations system: 

 
_ _

1 1jk k jc c  , (45) 
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where 

 
_

2
2

c v
 


   (46) 

In more detailed form the system (45) has the following view: 

 

_ _ _ _

1111 1121 11311 2 3

_ _ _ _

1211 1221 12311 2 3

_ _ _ _

1311 13211 2 31331

( ) 0

( ) 0

( ) 0

c c c c

c c c c

c c c c

  

  

  

   

   

   

 (47) 

This is a system of linear equations for the three amplitudes . This system can have a 
nontrivial solution only if the determinant of its coefficients is equal to zero: 

 

_ _ _ _

1111 1121 1131

_ _ _ _

1211 1221 1231

_ _ _ _

1311 1321 1331

0

c c c c

c c c c

c c c c



 



 (48) 

It gives the third power polynomial equation for 
_

c , i.e. for v2. Three roots of this equation 

will represent the three eigenvalues 
( )_ n

с  (n = 1, 2, 3), giving three values of the bulk wave 

velocity v(n) or three values of the slowness (n).  

Three values ( )n
k  (k = 1, 2, 3) correspond to each value 

( )_ n

с . These values  ( )n
k are 

obtained by solving the system (47) for each value 
( )_ n

с and represent the eigenvector. 

System (47) is homogeneous, so its solution is determined up to an arbitrary factor. 
Consequently, we can normalize each eigenvector by its modulus, and work further with 
the normalized dimensionless vector. The three normalized eigenvectors are complete and 
orthogonal: 

 ( ) ( ) ( ) ( ),n m n n
nm klk k k l

n

          (kl is the Kroneсker symbol) (49) 

The general solution of the equations system (42) we will seek in such view: 

 1 1( , ) ( ) i t
k ku x t u x e  , (50) 

where uk(x1) is the linear combination of three bulk waves, obtained from equations (47) and 
(48): 

 
3

( ) ( ) ( ) ( ) ( )
1 1 1

1

( ) [ cos( ) sin( )]n n n n n
k k

n

u x A x B x    


   (51) 
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Here A(n) and B(n) are six unknown coefficients of the linear combination. Together with 

0 and 1 we have the eight unknown coefficients to be defined further. 
We need the eight boundary conditions for obtaining the eight unknown coefficients. We 

will use three normal components of the stress tensor, three components of the mechanical 

displacement, the normal component of the electric displacement and the electric potential 

for some concrete coordinate x1, for example for x1 = 0, as boundary values for unknown 

coefficients determination.  

The mechanical displacements and the electric potential are determined by expressions (51) 

and (41) respectively, and for the stress tensor and for electric displacement the following 

expressions are valid: 

( )_
( ) ( ) ( ) ( ) ( ) ( )

1 1 1 11 1 1 11 1
1 1

[ sin( ) cos( )]
n

n n n n n nk
j jk j jj

n

u
T c e c A x B x e

x x

         
     

    (52) 

 1 11 11 11 1
1 1

k
k

u
D e

x x

   
  

 
 (53) 

Substituting x1 = 0 into (41) and (51) – (53), we get the following eight equations for 

determination of A(n), B(n), 0 , and 1 : 

 ( ) ( )(0) n n
j j

n

u A       
( )_

( ) ( ) ( )
1 11 1(0)

n
n n n

j jj
n

T c B e      (54) 

 1 11 1(0)D        11
0
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(0) (0)k
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e
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
   (55) 

Solving this system (taking into account the completeness and the orthogonality conditions 

(49)), we can get all the unknown coefficients: 
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e
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
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1 1
11

1
(0)D


  (56) 

These coefficients (with using (41), (51) – (53)) give the possibility to obtain all the values uj, 

T1j, D1, and  for any coordinate x1, if these values are known for x1 = 0 coordinate.     

Let us consider in particular the single layer of thickness l, infinite in lateral directions  – see 

Fig. 4. 

 

 

Fig. 4. The single layer of thickness l. 

x1 = l 

x1

x1 = 0 
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All the values uj, T1j, D1, and  for coordinate x1 = l can be expressed as a linear combination 
of these values for coordinate x1 = 0 in the following matrix form: 

1

11 12 13 11 12 13 1
1

21 22 23 21 22 23 22

31 32 33 31 32 33 33

11 11 12 13 11 12 13 1

12 21 22

13

1

0

0
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M M M M M M Mu

T M M M M M M M

T M M M
T

D





 
 
 
 
 
   
 
 
 
 
 
 

1

1 1

2 2

3 3

11 11

12 1223 21 22 23 2

13 13
31 32 33 31 32 33 3

1 2 3 1 2 3
1 10

0

0

1

0 0 0 0 0 0 0 1

Tu TT TT TT TD

Tu Tu Tu TT TT TT TD

u u u T T T D

x

u u

u u

u u

T T

T TM M M M
T T

M M M M M M M

M M M M M M M
D D

        



 
   
   
   
   
  
       
  
  
  
         

 

M

1 0x 






 
 
 
 
 
 
 
 



 (57) 

 

Here 8x8 matrix M is the transfer matrix of the single layer. This matrix allows to calculate 

the values uj, T1j, D1, and on one surface of the layer via these values on another surface. 

The elements of the transfer matrix are defined by wave equations solutions (i.e. by material 

properties of the layer) by such a manner: 
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Here 
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In expressions (58) – (61) i, j = 1, 2, 3 (a number of the coordinate axis), n = 1, 2, 3 (a number 

of the partial solution of the wave equations). The values k(n), given by (61), are the 

dimensionless scalar coupling coefficients (k(n) are nonzero only for piezoelectric medium).  

One can see from the previous equations that the transfer matrix approaches to the unit 

matrix if the layer thickness l  0. 

If a layer is nonpiezoelectric dielectric, all the elements of its transfer matrix, containing the 

value k(n), are zero, excepting DM , and the transfer matrix of the nonpiezoelectric dielectric 

layer has a simpler form: 
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 (62) 

 

For a metal layer in an electrostatic approximation the electric potential is always the same 

on both its surfaces, therefore DM  = 0 for metal layer and the transfer matrix of the metal 

layer has the simplest form: 

 

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

0 0

0 0

0 0

0 0

0 0

0 0

0 0

uu uu uu uT uT uT

uu uu uu uT uT uT

uu uu uu uT uT uT

Tu Tu Tu TT TT TT

Em
Tu Tu Tu TT TT TT

Tu Tu Tu TT TT TT

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M M M

M M M M M M

 M M

0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (63) 

 

The designation “MEm” will be explained further. 
Now we can consider a multilayer system. Fig. 5 shows a multilayer structure with arbitrary 
quantity N of arbitrary layers. 
 

 

Fig. 5. Multilayer structure. 

For multilayer structure the “output” values uj, T1j, D1 and  of the first layer are the “input” 
values for the second layer and so on. Therefore the transfer matrix of the multilayer 
structure is a multiplication of the transfer matrices of each layer: 

 M = MN .…. M2 . M1 (64) 

N  

1  

2  

x1 = 0 

x1 = l1+l2+…+lN 

x1 
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The factors sequence must be namely such, as in (64), any transposition is impossible in 
general case, because A.B ≠ B.A for a matrices multiplication in general case. The matrix M 

in (64) transfers the values uj, T1j, D1 and from the surface x1 = 0 (bottom) to the surface x1 
= l1+l2+…+lN (top).  
All the layers may be arbitrary (piezoelectric, dielectric, metal), but if the layer is used as an 
electrode, its transfer matrix differs from matrices, described above. It is obviously, that only 
the metal layer can be used as an electrode. Therefore all the mechanical values and the 
electric potential of the electrode are transferred by the matrix (63). If the metal layer is not 
connected to the electric source and is electrically neutral, the matrix (63) transfer the normal 
component of the electric displacement correctly too, i.e. (D1)x1=l = (D1)x1=0 (but not inside the 
metal layer, where D1 = 0). But if the metal layer is connected to the electric source and is 
used as an electrode, a discontinuity of the value D1 takes place which is not represented in 
the matrix (63).   
Therefore the special consideration is needed for electrodes. Fig. 6 shows two electrodes, 
connected to an external harmonic voltage source with an amplitude V and a frequency . 
 

 

Fig. 6. Two electrodes, connected to an external harmonic voltage source with amplitude V 

and frequency . 

First we will consider electrodes of zero thickness. Therefore all the mechanical values are 
transferred without changes (electric potential is transferred without changes always by 
metal layer of any thickness).  
Values D1(1-) and D1(1+) on both sides of the first electrode are different, for the second 
electrode analogously. The difference D1(1+) - D1(1-) is equal to the electric charge per unit 
area of the electrode (in the SI system). A time derivative of this value is the current density. 
Its multiplication on the electrode area A gives the total electrode current. For a harmonic 
signal the time derivative equivalent to a multiplication on i. As a result the following 
expression takes place for a current I1 of the electrode 1: 

 I1 = iA[D1(1+) - D1(1-)] (65) 

For electrode 2 analogously. If there are only two electrodes connected to one electric source, 
then I = I1 = - I2 and: 

 I = VY, (66) 

where V = – (1 and 2 are electrode potentials) and Y is an admittance of two 
electrodes for the external electric source.  
We are free in determining the zero point of the electric potential and we can choose it so: 

 1 + 2 = 0,     i.e.  V = 21 = -22 (67) 

Electrode 1 

Electrode 2 x1 D1(2+) 

D1(2-) 

D1(1-) 

D1(1+) 

V 

I 
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As a result, we can obtain from (65) and (66): 

 1 1 1

2
(1 ) (1 )

Y
D D

i A



     (68) 

which expresses the value of D1 at the upper side of the electrode as a linear function of the 

values of and D1 at the lower side (has the same value on both sides of an electrode). It 

means that the transfer matrix of the electrode of zero thickness (an ideal electrode) has a 

following form: 

 
Ee

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

2
0 0 0 0 0 0 1

Y

i A

 
 
 
 
 
 
 
 
 
 
 
 
 
 

M  (69) 

The metal electrode of a finite thickness (a real electrode) can be presented as a combination 

of two layers, one of which is the metal electrode of a zero thickness (an ideal electrode), 

transferring only electric values, and another one is a layer of a finite thickness, transferring 

only the mechanical values (mechanical layer) - see Fig. 7.  

 

 

Fig. 7. Representation of a real electrode as a combination of an ideal electrode and a 
mechanical layer. 

Therefore we can obtain the whole transfer matrix of the real electrode as a multiplication of 

a matrix of the ideal electrode (69) and a matrix, transferring only mechanical values and 

presented by expression (63): 

  ME = MEe.MEm = MEm.MEe (70) 

As it was mentioned above, the matrices don’t obey the commutative law in general case, 

but in this concrete case one can transpose these two matrices, what can be checked by 

direct multiplication. This means, in particular, that an ideal electrode can be placed on any 

side of the read electrode, as shown in Fig. 7.  Physically more correctly to place the ideal 

electrode on the side which is a face of contact with the interelectrode space.  

As a result, the multilayer bulk acoustic wave resonator, containing arbitrary quantity of 

arbitrary layers, but only with two electrodes, has a view, presented in Fig. 8. 

= = 

real electrode ideal electrode 

mechanical layer

mechanical layer 

ideal electrode 
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Fig. 8. Multilayer bulk acoustic wave resonator with two electrodes. 

Here F is a combination of arbitrary quantity of arbitrary layers under electrodes, G is the 
same above electrodes, Q is the same between electrodes (at least one of layers in Q must be 
piezoelectric), E1 and E2 are the two electrodes of a finite thickness.  

All the eight values uj, T1j, D1 and are transferring from a lower surface of the whole 
construction to its upper surface by the whole transfer matrix, which is the multiplication of 
transfer matrices of each elements: 

 MFE1QE2G = MG.ME2.MQ.ME1.MF (71) 

Transfer matrices MF, MQ, MG are calculated by (64) and matrices ME1 and ME2 – by (70).  
Because of electrodes presence the total transfer matrix of the whole resonator MFE1QE2G does 

not have generally the special form with 0 and 1 in the 7th column and the 8th row (as in 

(57)), but it is of the most general form: 
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  
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 (72) 

The expressions, obtained above, allow to calculate the admittance of the resonator Y which 

is its main work characteristic.  

The zero boundary conditions for T1j and D1 on the external free lower and upper surfaces 

of the construction are used for these calculations: 

 T11 = 0, T12 = 0, T13 = 0, D1 = 0    on free surfaces (73) 

The normal components of a stress tensor are equal to zero because lower and upper 

surfaces are free, the electric displacement is zero because the electric field of the external 

source is concentrated only between two electrodes (between their inner surfaces).   

E2  

F  

G

Q
  

x1  

E1  
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Let us denote the mechanical displacements and the electric potential on the lower free 

surface as (1) (1) (1) (1)
1 2 3, , ,u u u   and the same values on the upper free surface as 

(2) (2) (2) (2)
1 2 3, , ,u u u  . Then with taking into account (73) these values will be connected each 

other by the transfer matrix MFE1QE2G by the following expression: 
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2
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 (74) 

From here we can write for the 4th – 6th rows separately and for the 8th row separately: 
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We can obtain the vector (1) (1) (1)
1 2 3, ,u u u from the first equation (75) (using the standard 

inverse matrix designation): 
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 (76) 

Now we can substitute this into the second equation (75) and obtain: 
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 (77) 

In an arbitrary case (1) ≠ 0, therefore we obtain from (77) the follow scalar equation: 
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 (78) 

This is the main equation of the problem. It connects the resonator admittance Y with the 

frequency  because Y value is contained in the transfer matrices of electrodes. We can set 
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the concrete value of  and calculate from (78) the corresponding value of Y, i.e. we can 
obtain the frequency response of the resonator – its main work characteristic. Matrix 
elements in (78) are elements of the total transfer matrix of the whole device – see (72). 
In an arbitrary case the equation (78) cannot be solved analytically. The solution can be 
found only by some numerical method. We used our own algorithm of searching for the 
global extremum of a function of several variables (Dvoesherstov et. al., 1999). Solution 
corresponds to the global minimum of the square of the absolute value of the left part of the 
equation (78). Two arguments of this function are the real and imaginary parts of the 
admittance Y (for each given frequency).   
If there is not any piezoelectric layer in the packets F and G outside the electrodes, the 
transfer matrices of these packets have the simpler form (62) and the equation (78) can be 
solved analytically in the following view: 

1( ) [ ] ( )T u uu TT Tu uT uD TD D
Q Q Q Q Q QQ Q Q

i A

Y
                 " " " " " "

F G F G F G
M M M M M M M M M M M M M M M  (79) 

Here the compressed form of matrices is used for compactness. For example, uu
QM  means 

the 3x3 matrix including the first 3 columns and the first 3 rows of the 8x8 matrix, uT
QM  

means the 3x3 matrix including the columns 4 – 6 and the first 3 rows of the 8x8 matrix, 
T

Q


M  means the 1x3 matrix including the  columns 4 – 6 and the 7th row of the 8x8 matrix, 

and so on. Index Q means that all these elements are taken from transfer matrix of the Q 

packet (not for the whole device). "
FM  and "

GM  are 3x3 matrices, obtained as follows: 

 1
1 1( [( ]E m E m

   " Tu uu

F F F
M M M M M) )  1

2 2[( ) ] ( )TT Tu
E m E m

   "

G G G
M M M M M  (80) 

In these expressions the lower indexes  F and G also designate the corresponding packets, 
MF and MG are the whole 8x8 matrices of the corresponding packets, ME1m and ME2m – the 
“mechanical” parts of the electrodes 8x8 matrices and upper indexes uu, Tu, uT and TT 
means that corresponding 3x3 matrices are taken from whole 8x8 matrices. 
Practically all the concrete FBAR devices do not contain piezoelectric layers outside the 
electrodes, i.e. practically for all these devices the frequency response can be calculated with 
expressions (79) – (80). 
But not only the frequency response can be calculated by the technique, described here. The 

expression (57) allows to calculate all eight values uj, T1j, D1 and not only on the second 
surface of the layer but also for any coordinate x1 inside the layer, if these eight values are 
known for the first “input” surface of this layer. These values on the second “output” 
surface of the first layer can be used as “input” values for the second layer for the same 
calculations for any coordinate x1 inside the second layer and so on, i.e. the spatial 
distribution of all eight values inside the whole multilayer system can be obtained. As was 
mentioned above, the values on the first “input” surface of the first layer must be known for 
such calculations (for frequency response calculations all eight values on the first surface of 
the first layer are not needed).  

Four of eight values, namely, T1j and D1 are known, they are zero – see (73). The absolute 

value of the electric potential is not essential from point of view of the spatial distribution of 

all eight values. We can set any (but not zero) value of the electric potential on the first 

surface of the first layer, for instance (1) = -1 V. Then we can obtain all three values of the 

mechanical displacements (1) (1) (1)
1 2 3, ,u u u  from the equation (76). So all eight values on the 
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first surface of the first layer are determined and the spatial distribution of all these values 

can be obtained for any multilayer resonator with two electrodes. The admittance Y for 

given frequency  must be calculated preliminary, because both these values are needed for 

the spatial distribution calculation.     
The spatial distribution gives a possibility to obtain some information about physical wave 
processes those take place inside the multilayer structure, in particular - how the Bragg 
reflector “works”.  
Fig. 9 shows the frequency response of the membrane type resonator (as in Fig. 3a), obtained 
by technique, described above. The mass density of all the materials are taken in a form (1 + 

i), where  =-0.001 in this case. The frequency response is calculated for two variants of 

the Al electrode thickness – zero and 0.1 m. 
 

       
a)                                                                         b) 

Fig. 9. Frequency response of the membrane type resonator. Active layer – AlN, thickness 1 

m. a) – zero electrode thikness, Fres = 5.337 GHz, b) – Al electrode thickness 0.1 m, Fres = 
4.577 GHz. Electrode area 0.01 mm2. 

Fig. 9 illustrates an influence of the electrode thickness on a resonance frequency (this 
frequency is obtained directly from a graphic as coordinate of a maximum of a Y real part). 
The resonance frequency is decreased by the electrodes of a finite thickness, because the 
whole device with more total thickness corresponds to more half-wavelength. This 
illustrates Fig. 10 in which the spatial distribution of the T11 component of the stress tensor is 
shown, obtained also by a technique, described above.  
 

        
a)  F = Fres = 5.337 GHz                           b)  F = Fres = 4.577 GHz 

Fig. 10. Spatial distribution of T11 component of the stress tensor for two variants, shown in 
Fig. 9. F = Fres in both cases. 
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A half-wavelength corresponds to a distance between neighbouring points with zero stress. 

In a case a) this distance is 1 m and corresponds to a resonance frequency 5.337 GHz, 

whereas in a case b) a half-wavelength is equal to 1.2 m and corresponds to a lower 

frequency 4.577 GHz. This gives a possibility to control the resonance frequency by 

changing of the top electrode thickness. For example, Fig. 11 shows dependences of the 

resonance frequency on a top electrode thickness for two materials of this electrode – Al and 

Au. The bottom electrode is Al of a thickness 0.1 m in both cases. 

 

 

Fig. 11. Dependences of the resonance frequency on the top electrode tickness for Al and Au. 

The bottom electrode is Al (0.1 m) in both cases. The thickness of AlN is 1 m. 

For displaying of the possibilities of the described method Fig. 12 shows also the spatial 
distributions of the longitudinal component of the displacement u1 and the electric potential 

 for the membrane type resonator, corresponding to Figs. 9b and 10b.  
 

     
a)                                                                  b) 

Fig. 12. Spatial distribution of the longitudinal component of the displacement u1 (a) and the 

electric potential  (b) for the membrane type resonator with Al electrodes of finite thickness 

0.1 m. 

Distribution of D1 is not shown here because it is very simple – D1 = const between the 
electrodes and equal to zero outside the inner surfaces of the electrodes. 
If membrane type resonator is placed on the substrate of not very large thickness, then 
multiple modes appear, and this resonator can be a multi-frequency resonator, as shown in 
Fig. 13a. 
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a)                                                                        b) 

Fig. 13. FBAR membrane type resonator on a Si substrate of thicness 100 m (a) and 1000 m 

(b). Electrodes – Al, thicness 0.1 m, active layer – AlN, thickness 1 m.  

But if the substrate is too thick, there are too many modes and the resonator transforms from 
multi-mode actually into a “not any mode” resonator, as one can see in Fig. 13b. 
So, the membrane type resonator cannot be placed on the massive substrate directly because 
of an acoustic interaction with this substrate. One must to provide an acoustic isolation 
between an active zone of the resonator and a substrate. One of techniques of such isolation 
is a Bragg reflector between the active zone and the substrate (as shown in Fig. 3b). This 
reflector contains several pairs of materials with different acoustic properties. The difference 
of the acoustic properties of two materials in a pair must not be small. Acoustic properties of 

materials, used for Bragg reflector, are characterized by a value V, where  is a mass 

density and V is a velocity. Values V are shown in Fig. 14 for some isotropic materials. 
Material constants are taken from (Ballandras et. al., 1997). 
 

 

Fig. 14. The value V for some isotropic materials. 

As one can see in Fig. 14, the best combination for a Bragg reflector is SiO2/W. A pair Ti/W 
is good too, and a combination Ti/Mo also can be used successfully (combinations of Au or 
Pt with other materials also can be not bad, but not cheap).  
The thickness of each layer of the reflector must be equal to a quarter-wavelength in a 
material of the layer for a resonance frequency. As it was mentioned above, the resonance 
frequency is defined mainly by the active layer thickness and can be adjusted by proper 
choice of the top electrode thickness.   
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The computation technique, based on the described here rigorous solution of the wave 
equations, allows to calculate any bulk wave resonators with any quantity of any layers, 
including the resonators with Bragg reflector.  For example, Fig. 15a shows a frequency 

response of the resonator, containing an AlN active layer (1 m), two Al electrodes (both 0.2 

m), three pairs of layers SiO2/W, and a Si substrate (1000 m).  
 

     
a)                                                                             b) 

Fig. 15. A frequency response (a) and a distribution of u1 (b) for a resonator with a Bragg 
reflector, containing three pairs of layers SiO2/W. 

A thickness of a Bragg reflector layer is 0.38 m for SiO2 and 0.33 m for W (a quarter-

wavelength in a corresponding material for a resonance frequency). Fig. 15a shows, that 

three pairs of SiO2/W combination is quite enough for full acoustic isolation of an active 

zone and a substrate. A spatial distribution of a wave amplitude illustrates an influence of 

the Bragg reflector on a wave propagation, for example, Fig. 15b shows this distribution for 

a longitudinal component of a mechanical displacement. A coordinate axis x here is directed 

from a top surface of a top electrode (x = 0) towards a substrate. One can see in Fig. 15b that 

a wave rapidly attenuates in the Bragg reflector and does not reach the substrate. 

Calculation results show, that the first layer after an electrode must be one with lower value 

V – the SiO2 layer in this case. In a contrary case a reflection will not take place.  

If difference of values V of two layers of each pair is not large enough, then three pairs may 

not be sufficient for effective reflection. For example, calculations show that three or even 

four pairs of Ti/Mo layers are not sufficient for suppressing the wave in the substrate. Only 

five pairs give a desired effect in this case and provide results similar shown in Fig. 15 for 

SiO2/W layers. 

So, the described technique allows to calculate any multilayer FBAR resonators, containing 

any combinations of any quantity of any layers. The main results of these calculations are a 

frequency response of a resonator and spatial distributions of physical characteristics of the 

wave (displacement, stress, electric displacement and potential).  

In addition this technique gives a possibility to calculate a thermal sensitivity of the 
resonator too, i.e. an influence a temperature on a resonance frequency. A resonance 
frequency always changes in general case when a temperature changes. This change is 
characterized by a temperature coefficient of a frequency: 

 
1 r

r

dF
TCF

F dT
  (81) 
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Here T is a temperature, Fr is a resonance frequency.  
A computation technique, used here, allows to apply this expression for TCF calculation 
directly and to calculate this value by numerical differentiation. 
A temperature influence on a resonance frequency is due to three basic causes: 
1. A temperature dependence of material constants (stiffness, piezoelectric, dielectric 

tensors) - TCFC 

2. A temperature dependence of a mass density – TCF 
3. A temperature dependence of a layer thickness – TCFh 
A temperature dependence of material constants is described by temperature coefficients of 
these constants, a temperature dependence of a mass density is described by three linear 
expansion coefficients or by a single bulk expansion coefficient, a temperature dependence 
of a thickness is described by a linear expansion coefficient along a thickness direction. All 
these coefficients can be found in a literature, for example, for materials, usually used for 
FBAR resonators, one can see corresponding values in (Ivira et al., 2008).  
First we will consider the simplest variant – a membrane type FBAR resonator with a single 

AlN layer and infinite thin electrodes. For typical values of AlN temperature coefficients we 

can easily obtain: 

TCF = TCFc + TCF + TCFh = (-29.639 +7.343 – 5.268).10-6/оС = -27.564.10-6/оС 

One can check by a direct calculation, that this result does not depend on a thickness of AlN 

layer (for this variant with electrodes of finite thickness and for any multilayer structure 

with layers of finite thickness it is not so). TCF value is always positive, TCFh value is 

always negative. A sign of TCFc is defined mainly by a sign of temperature coefficients of 

stiffness constants. If temperature coefficients of stiffness constants are negative (for most 

materials, including AlN), then TCFc is negative, if temperature coefficients of some stiffness 

constants are positive (rare case, for example quartz), then TCFc can be positive and a total 

TCF can be zero.  

For AlN a TCF value is always negative. Al electrodes aggravate this position, besause 
temperature coefficients of Al stiffness constants are negative too. From this point of view 
Mo electrodes are more preferable, because absolute values of temperature coefficients of 
its stiffness constants are significantly less than ones for Al (althouth they are also 
negative). For example, the concrete membrane type resonator Al/AlN/Al with an Al 

thickness 0.2 m and an AlN thickness 1.1 m we can obtain: TCF = -44.23.10-6/оС (Fr = 
3.648 GHz), and for Mo/AlN/Mo resonator with the same geometry: TCF = -33.76.10-6/оС 
(Fr = 2.615 GHz). 
For most applications a resonator must be thermostable, i.e. TCF must be equal to zero. The 

single possibility to compensate the negative TCF of AlN and of electrodes and to provide a 

total zero TCF is to add some additional layer with positive temperature coefficients of 

stiffness constants. Such material is, for example SiO2. Fig. 16 shows dependenses of TCF of 

membrane type resonator with Mo electrodes on a thickness ht of a SiO2 layer for two cases: 

SiO2 layer is placed together with AlN layer between electrodes (structure 

Mo/SiO2/AlN/Mo) and  SiO2 layer is placed outside the electrodes (structure 

SiO2/Mo/AlN/Mo). Corresponding dependences of a resonance frequency are presented in 

Fig. 16 too. 

Fig. 16 shows that a SiO2 layer more effectively influences on both TCF and a resonance 

frequency, when it is placed between electrodes.  
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a)                                                                b) 

Fig. 16. Dependences of TCF and a resonance frequency on a SiO2 layer thickness ht for 
cases, when SiO2 is placed between electrodes (a) and when SiO2 is placed outside electrodes 

(b). A thickness of Mo electrodes is 0.06 m, a thickness of AlN is 1.9 m. 

Calculations show that a Bragg reflector does not change a resonance frequency of the 
corresponding membrane type resonator, if a thickness of each layer of the reflector is exactly 
equal to a quarter-wavelength. But a Bragg reflector influences on a TCF. For this reason it is 
reasonable to choose SiO2 as one material of a reflector. In this case a thickness of an additional 
compensating SiO2 layer can be reduced. For example, a thickness of  SiO2 layer outside 

electrodes, corresponding to TCF = 0, is equal about 0.53 m for variant, shown in Fig. 16b for 
membrane type resonator. A resonance frequency is about 2.11 GHz for this case. The Bragg 
reflector with three pairs of SiO2/Mo, corresponding this frequency, does not change this 
frequency, but a TCF becomes positive due to SiO2 material presense in the reflector. One must 
reduce a thickness of an additional compensating SiO2 layer to return a TCF to zero. But then a 
resonance frequency will increase. We must either increase an AlN layer thickness to return a 
resonance frequency or to change thickness of a Bragg reflector layers to adjust the reflector to 
a new resonance frequency. In any case several steps of sequential approximation are 
necessary. The technique, described here, allows to do this without problem. For example, 

presented in Fig. 16b, full thermocompensation can be obtained for ht = 0.4 m (instead of 0.53 

m for membrane type resonator) and for thickness of SiO2 and Mo layers in a Bragg reflector 

0.71 m and 0.75 m respectively. The AlN layer thickness remains 1.9 m and a resonance 
frequency slightly shifts remaining in the vicinity of 2.1 GHz.   
In many cases a presentation of FBAR resonator by means of some equivalent circuit is 
convenient – see for example (Hara et. al., 2009). The simplest variant of an equivalent 
circuit is shown in Fig. 17. 
 

 

Fig. 17. An equivalent circuit of FBAR resonator. 

Cm Lm
Rm 

C0 
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Hear C0 is a static capacitance of a resonator – a real physical value, which can be calculated 
by the geometry of the resonator and the dielectric properties of the layers between the 
electrodes: 

 

1
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1 m
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 

  (82) 

where i and li is a relative dielectric permittivity (element 11 of a tensor) of a layer number i 

and its thickness, 0 = 8.854.10-12 F/m – the dielectric constant, A is an area of a resonator 
electrode, m is a quantity of layers between electrodes. 
Values Cm, Lm, and Rm are equivalent dinamic capacitance, inductance and resistance of the 
resonator – values, which can not be determined from any physical representation – only by 
comparison with experimental frequency response or with response, obtained by some exact 
theory. Theory, described here, allows to obtain these values.  
An admittance of the equivalent circuit, shown in Fig. 17, can be calculated by following 
expressions: 

 

1

0 Im 0

1
e m m Rm

m

Y j L R j C Y Y j C
j C

  



 

       
 

 (83) 

Here 
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YRm and YIm are an active and reactive components of a dinamic admittance of the resonator, 

jC0 is an admittance of the static capacitance.  

Comparison of admittance, calculated by (83) and (84), with admittance, calculated by a 

rigorous theory, described here, allows to obtain the unique values Cm, Lm, and Rm, which 

give a frequency response, equivalent to the response, given by the rigorous theory.  

The resonance frequency of the equivalent circuit, shown in Fig. 17, is defined as: 

 
1

2r r
m m

F
L C

    (85) 

The value Rm corresponds to a maximum of the active component of the admittance (see (84)): 

 
max

1

( )
m

Rm

R
Y

  (86) 

We can find a quality-factor from curve of a active component of the admittance: 

 rF
Q

F



 (87) 
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Here F is a full width of the curve at a level 0.5 of a maximum. 
Then we can calculate an equivalent dynamic inductance: 
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m
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r

QR
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F
  (88) 

At last we can calculate an equivalent dynamic capacitance with help of (85): 
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m r
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L F

  (89) 

All these calculations the computer program performs automatically and shows obtained 
results in corresponding windows of the program interface (a program is made in a Borland 
C++ Builder medium and provides automatic transfer of main results into Excel worksheet).  
A frequency response, calculated by expressions (83) and (84) with values Cm, Lm, Rm, 
obtained by such a manner, practically coincides with a frequency response, calculated with 
rigorous theory, described here (if there is only one resonance peak in a frequency range). In 
a wide frequency range may be several resonance peaks. In this case one can connect 
required quantity of Cm, Lm, Rm circuits in parallel (but with only one Co for all them) in Fig. 
17. Cm, Lm, Rm values for every circuit can be determined by comparison with corresponding 
peak, given by a rigorous theory. 

4. Conclusion 

General methods of surface and bulk acoustic wave in multilayer structures calculation are 
described in this chapter. Corresponding equations are formulated. These equations allow 
to calculate all the main wave propagation characteristics and the device parameters. A 
phase velocity, an electromechanical coupling coefficient, a temperature coefficient of delay, 
a power flow angle and others for surface wave devices and a frequency response, a spatial 
distribution of the wave characteristics, a resonance frequency, a temperature coefficient of 
frequency, parameters of an equivalent circuit for bulk acoustic resonators are available for 
calculations by described techniques. Obtained results allow better to understand processes 
taking place in these devices and to improve their characteristics. Corresponding algorithms 
and computer programs can be used for design of surface and bulk acoustic wave devices. 
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