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1. Introduction 

The development of the industrial and technological society together with the economic and 
environmental implications, such as global warming and decreasing oil reserves, have been 
driving worldwide interest in searching for renewable energies to replace fossil fuels. With 
respect to fossil fuels, biomass-based fuels have the advantage of decreasing greenhouse gas 
(GHG) emissions. In this context, ethanol produced from biomass, the so called “bioethanol”, 
has become a major energy carrier for a sustainable transportation sector. Bioethanol is an 
oxygenate fuel with an high octane number (Moon et al., 2009) and it can be used as biofuel 
either in its pure state (E100) or blended with petrol in various proportions, such as E85, E95, 
E10 containing 85%, 95% and 10% of ethanol respectively. Among these, E10 not requires any 
change in engine (Balat, 2009a). In addition, bioethanol has low toxicity and reduces urban air 
pollution because the carbon dioxide released during its combustion is virtually reused by 
plants during the chlorophyll photosynthesis. Currently, United States and Brazil are the 
largest bioethanol producers in the world from corn and sugarcane respectively. However, in 
some countries with low availability of agricultural lands, the production of biofuels from 
dedicated crops could lead to direct conflict with food productions. Lignocellulosic materials 
and, among them, agro-forest residues, could, offer a great potential as biomass source for 
bioethanol production. In fact, they are virtually abundant and low cost (Perlack et al., 2005). 
Lignocellulosics materials can be classified in four groups: forest residues (chips and sawdust 
from lumber mills, dead trees, and tree branches), municipal solid wastes (household garbage 
and paper products), waste paper and energy crops (Balat, 2010). Lignocellulosic feedstocks 
are composed primarily of carbohydrate polymers (cellulose and hemicellulose) and phenolic  
polymers   (lignin).  Cellulose (C6H10O5)x is a linear polysaccharide polymer of glucose made of 
cellobiose units that are packed by hydrogen bonds. The structure of this polymer is rigid and 
compact, so that in order to obtain glucose, the biomass needs pre-treatment that breaks its 
structure to facilitate the action of the enzymes. The individual cellulose chains are packed and 
organized into crystalline microfibrils. Within these microfibrils, cellulose is found in two 
forms, namely amorphous and crystalline. The crystalline form of cellulose is very difficult to 
degrade. Hemycellulose such as xylan (C5H8O4)m is a short polymer of pentoses and hexoses 
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sugars. The dominants sugars in hemicelluloses are mannose (six-carbon sugar) in softwoods 
and xylose (five carbon sugar) in hardwoods and agriculture residues (Persson et al., 2006). 
Hemicellulose contains also, galactose, glucose and arabinose. This polymer is amorphous and 
easier to hydrolyse than cellulose. Lignin [(C9H10O3)(OCH3)0.9-1.7]n  is a phenyl propane 
polymer that contains many functional groups such as hydroxyl, methoxyl and carbonyl. 
Unlike cellulose and hemicellulose, lignin cannot be utilized in the fermentation process. In 
fact, it has  high resistance to chemical and enzymatic degradation. Low concentration of 
various other compounds, such as extractive and ash are also present. Ash consists of minerals 
such as silicon, aluminum, calcium, magnesium, potassium, and sodium. Extractives include 
resins, fats and fatty acids, phenolics, phytosterols, salts, minerals and other compounds. The 
proportions of these constituents vary between different species. Hardwood has a content of 
cellulose and hemicelluloses around 80% of total feedstock dry matter while softwood 
contains around  70% of total dry matter (Balat, 2010). On the other side, lignin is more in 
softwood than hardwood (Balat, 2009b).Table 1 shows the composition of several 
lignocellulosic materials and their potential ethanol output obtainable from 1 Kg dry biomass 
of each type. Cellulose generally accounts for 30-60% of the biomass dry weight while the 
hemicellulose content varies from 10% to 40%, and  the lignin content from 10% to 25% except 
for olive husks in which the lignin content is higher (48.4%, Table 1). Actually, the world’s 
largest ethanol producers are Brazil and USA, which together account for more than 65% of 
global ethanol production. In Europe (EU), the high oil prices and the ratification of the Kyoto 
Protocol in 2005 have provided additional incentives to promote the use of alternative fuels. 
Today, EU is the third producer of bioethanol in the world with a production that in 2009 
amounted to 3.7 billion  liters (www.plateforme-biocarburants.ch).  
 

 
Fig. 1. European biochemical plants for bioethanol production. Demonstrative plants are 
marked with a triangle. Pilot plants are indicated with a circle and commercial plants are 
marked with a square. Information were taken from: http://biofuels.abc- 
energy.at/demoplants/projects/mapindex (TASK IEA 39). 

www.intechopen.com



 
Latest Frontiers in the Biotechnologies for Ethanol Production from Lignocellulosic Biomass 

 

165 

Table 2 shows the detailed bioethanol production in EU for the year 2009 in the major 
countries. 
 

Biomass 
Ash 
(%) 

Hemicellulose 
(%) 

Cellulose 
(%) 

Lignin 
(%) 

Ethanol 
potential 
kg/kg* 

Poplar  17 49 18 0.37 
Eucalyptus  31.8 43.3 24.7 0.42 
Maize stalk straw 3 26 38 11 0.36 
Wheat straw 1.3 27.6 34 18 0.35 
Rice straw 18.9 22.7 37 13.6 0.34 
Oat straw 2.6 24.9 37.1 15.4 0.35 
Rye straw 1.2 25.7 37.1 17.6 0.35 
Barley straw 7.1 44 37 11 0.46 
Potato rests 5 11.8 26  0.21 
Miscanthus straw 2.7 29.6 44.7 21 0.42 
Kenaf   41.9 12.3 0.24 
Hemp (wood fiber)  27.5 37.5 22 0.37 

Beet tail and beet green 5 10 10 5 0.11 

Tobacco stalk 2.4 28.2 42.4 27 0.40 

Wood, ailanthus 0.5 26.6 46.7 26.2 0.41 

Soybean stalks and 
leaves  18.5 32.1  0.29 

Bagasse  24.6 39.7 25.2 0.36 
Tomato plant waste 20.2 6 25.7 19.5 0.18 
Garlic waste 17.1 6.9 24.2 8.5 0.17 
Vines #  29.42 19.80  0.28 
Olive husk 4 23.6 24 48.4 0.27 
Agrarian residues  17 32  0.27 

Table 1. Composition of some lignocellulosic materials and theoretical ethanol yields. 
(source: Phyllis database for biomass and waste);* calculated as: 1) cellulose:glucan->glucose-
>ethanol; 2) hemicelluloses: xylane->xylose->_ ethanol; # data from ENEA 

The EU’s biggest producer is France with 1250 million liters mainly from beet and molasses. 
Germany comes second (750 million liters) followed by Spain with 465 million liters. In this 
country, the goal was reached also thanks the Abengoa’s demonstration plant in 
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Babilafuente (Salamanca). In particular, Abengoa Bioenergy New Technologies has been 
developing the biorefinery concept to convert a wide range of biomass feedstocks into 
ethanol, chemicals and energy.  
The feedstock includes agricultural residues, wood residues, and energy crops such as 
switchgrass and poplar (www.abengoabioenergy.com). Table 3 lists some bioethanol plants 
in the EU using lignocellulosic feedstocks while figure 1 displays the overall distribution of 
plants, including demonstrative  pilot and commercial scale (figure 1),  using biochemical 
conversions to obtain ethanol. 

2. Bioethanol production from lignocellulosic raw material 

The conversion of lignocellulosics materials to bioethanol via enzymatic hydrolysis can be 
simplified in four major steps: pretreatment, hydrolysis, fermentation and product 
separation (figure 2). In the  next section the main pretreatment strategies will be 
overviewed. 
   

COUNTRY Ethanol production (million liters)

Germany 750 

Spain 465 

France 1250 

Poland 166 

Sweden 175 

Italy 72 

Hungary 150 

Lithuania 30 

Austria 180 

Belgium 143 

Czech Republic 113 

Slovakia 118 

Table 2. Bioethanol production in Europe for the year 2009 (source: www:plateform 
biocarburants.ch) 

2.1 Pretreatments 

The conversion of lignocellulosic biomass into ethanol requires a pretreatment step to 
change the physical and chemical structure of biomass and to enhance the hydrolysis rate. 
There are several pretreatment strategies, all aimed at opening the structure of the cell 
biomass and allow the enzymes to access  the internal  polysaccharides. The available 
pretreatments can be grouped in  chemical, biological, physical and physicochemical 
processes.  
Chemical pretreatments employ different chemical agents like ozone, acids and alkalis. The 
ozonolysis can degrade lignin and part of hemicellulose but this technology appears quite 
expensive.  
Sulfuric acid is the most applied acid, but other acids such as HCl and HNO3 were also 
reported (Taherzadeh et al., 2008). Dilute-acid hydrolysis can be used either as a 
pretreatment of lignocellulose for enzymatic hydrolysis, or as the actual method of 
hydrolyzing to fermentable sugars (Taherzadeh et al., 2007, 2008). In general, it has the 
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disadvantage of the toxicity due to the unspecific and, sometime, harsh degradation of the 
biomass matrix. Furthermore it is could be corrosive for employed facilities (Abril D. & 
Abril A., 2009).  
Alkali pretreatment is based on the use of alkaline solutions such as NaOH, Ca(OH)2 or 
ammonia to remove lignin and part of the hemicellulose, and increase the enzymes  
accessibility to the biopolymers. 
Most promising is also the wet oxidation in which, the material are treated with water and 
air or oxygen at temperatures above 120°C for a period of e.g. 30 min. The process 
represents an effective method in separating the cellulosic fraction from lignin and 
hemicellulose (Taherzadeh et al., 2008). 
Biological pretreatment uses microorganisms such as brown, white and soft-rot fungi which 
degrade lignin and solubilize hemicelluloses (Sun & Cheng, 2002). In recent years, 
progresses in bioengineering have led to the development of microorganisms which can 
attack lignin in the biomass. The biological process is interesting for its low energy 
requirement. However, the rate of hydrolysis in the biological process is very low (Sun & 
Cheng, 2002). 
Among the investigated pretreatment, the steam explosion (SE) appears one of the most 
interesting since it limits the use of chemicals mostly to the use of saturated steam 
(Ballesteros et al., 1998; De Bari et al., 2002; Ogier et al., 1999).  
 

 
Fig. 2. Main steps of bioethanol production from lignocellulosic materials 

Through the saturated water steam at high temperature, SE causes autohydrolysis reactions 
in which part of hemicellulose and lignin are converted into soluble oligomers. Thus, the 
lignocellulosic matrix is opened up, and the cellulose surface becomes more accessible to 
enzymes. The process employs high pressure steam with temperature typically ranging 
from 160 to 260 °C for few minutes. This is followed by explosive decompression of biomass 
(Banerjee et al., 2010; Boussaid et al., 1999; Sun et al., 2004; Varga et al. 2004).   
A number of studies have been already reported in literature describing positive effects in 
terms of enhancing the enzymatic hydrolizability of several materials (hardwood and 
softwood, corn stover, straws etc.) (Cara et al ,2008; Galbe et al. 2002; Kobayashi et al.,2004; 
Ohgren et al., 2006; Sun et al. 2002; Viola et al.,2008) The steam explosion technology, 
investigated for several years in Italy at the ENEA research Center of  Trisaia  is now going 
to be developed at industrial scale thanks to  investments from the Italian Mossi & Ghisolfi 
group. Another physicochemical pretreatment is the ammonia fiber explosion (AFEX) in which 
the biomass is exposed to liquid ammonia at temperature around 90-100 °C followed by 
instantaneous pressure release. The AFEX process at reduces the lignin fraction but has less 
effect on the hemicellulose and cellulose fractions. In order to develop improved 
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lignocelluloses pretreatment strategies the use of CO2 explosion was also reported (Kumar et 
al., 2009). 
 

Location 
Coordinating 
organization/Company 

Input Output Technology 
Start 
- up 

Örnsköldsvik 
(Sweeden) SEKAB  4500 

t/a 

Enzymes 
with 
pretreatment 
of diluted 
acid in one 
step. 

2011 

Blomsterdalen 
(Norway) Weyland AS 0.075 

t/h 158 t/a Strong Acid 
Process 2010 

Ballerup  
(Denmark) BioGasol 0.5t/h 10 t/a 

Enzymatic 
hydrolysis 
and 
fermentation 

2008 

Fredericia 
(Denmark) 

Inbicon (DONG 
Energy) 1t/h   

hydrothermal 
pre-
treatment, 
high gravity 
hydrolysis, 
yeast 
fermentation 

2005 

Tortona 
(Italy) 

Chemtex-Ghisolfi 
(Italia) 

160.000 
t/a 

40.000 
t/a 

Enzymatic 
conversion. 
Pretreatment 
in equipment 
specifically 
designed. 

2011 

Babilafuente, 
Salamanca 
(Spain) 

Abengoa Bioenergy 35.000 
t/a 

3950 
t/a 

Steam-
explosion 
biochemical 
conversion 

2009 

POMACLE 
(France) PROCETHOL 2G  2700 

t/a 

Enzymatic 
hydrolysis 
followed by 
yeast 
fermentation 

2011 

Table 3. Some bioethanol plants in the EU. (source: http://biofuels.abc-energy.at) 

On the whole , however, there isn’t one general method of pretreatment because different 
types of raw material require different approaches. For instance, methods such as AFEX and 
wet oxidation  seem to be more successful for agricultural residues whereas steam 
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pretreatment has resulted in high sugar yields for both forestry and agricultural residues 
(Hahn-Hagerdal et al., 2006). Table 4 summarizes advantages and disadvantages of some 
pretreatment processes. 

2.2 Hydrolysis step 
After the pretreatment, biomass is hydrolyzed to syrups containing  monomeric sugars that 
can be fermented. The most applied methods for hydrolysis can be  grouped in two classes: 
chemical hydrolysis and enzymatic hydrolysis. The latter process is particularly interesting 
because it is selective in the biomass degradation and can be operated at mild temperature 
and pH conditions. For several years, the enzymatic hydrolysis of cellulose has been the 
major target of an international research activity. The main obstacles to the achievement of 
high process yields have been the existence of crystalline domains within the cellulose and 
the low efficacy of the enzymes used for the transformation. Considering the specificity of 
the enzymes action, several components with complementary functions are necessary to 
attack the different regions in the biopolymers chains. As result, the enzymatic preparations 
used for the hydrolysis process are complex mixtures of proteins with synergistic actions 
termed cellulases (Bayer et al., 1998).  
 

Pretreatment Advantages Disadvantages 

Steam-explosion Chemical free Generation of degradation 
products 

AFEX Low degradation products 
Low hydrolysis yields 

with woody crops 

Ozonolysis 
Reduction of lignin 

content, doesn’t produce 
toxic residue 

Expensive 

Wet-oxidation Low degradation products Use of oxygen 

Alkalis Removal lignin, increase 
accessible surface area 

Use of chemicals, long 
residence time 

Acids Alteration of lignin 
structure 

Equipment corrosion, 
toxicity 

CO2-explosion 
Contamination free, 
increase of accessible 

surface area 
Use of CO2 

Biological Low energy requirement Low hydrolysis rate 

Table 4. Advantages and disadvantages of some pretreatment strategies 

These  are proteins with a molecular weight from 30000 to 60000 AMU with a typical size 
from min. 30 to max. 200 Å (Fan et al. 1987). The surface area of lignocellulosic material is 
unaccessible to enzymes molecules and this fact implies the need of an initial pretreatment. 
In fact, the rate of the cellulose enzymatic hydrolysis depends by the structure of cellulose 
(Balat, 2010) and its crystallinity.  In effect, the rate of hydrolysis of amorphous cellulose is 
3-30 times faster than that of high crystalline cellulose (Lynd et al., 2002).  
Cellulase production is common in a large variety of fungi like Trichoderma, Aspergillus, 
Penicillum (Galbe et al., 2002). The most frequently reported sources of cellulose is the fungus 
Trichoderma reesei which produces an extracellular and efficient cellulase enzyme system 
(Jana et al. 1994) 
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In particular, the cellulases mix is constituted of endo1,4β-D-glucanase, exo1,4β-glucanase and 
β-glucosidase. The hydrolysis of hemicellulose is carried out by hemicellulolytic enzymes that 
include mostly endoxylanase, exoxylanase and ┚-xylosidase (Saha, 2004). 
Most of these  cellulolitic cocktails are present in commercial preparations supplied by 
several biotechnological  companies such as Novozymes (Denmark), Genecor (Palo Alto, 
CA), Iogen (Canada). Recently Genecor launched a new class of enzyme called "Accelerase 
1500", which have an enhanced ┚-glucosidase activity. Similarly, Novozymes has recently 
produced the Cellin CTEC mixtures having improved activities with respect to the 
traditional Celluclast.   
The commercial preparations are often compared on the base of their activities assayed by 
standard protocols (e.g. FPU, filter paper units). However the complexity of the 
lignocellulosic substrates does not make easy the prediction of the enzymes dosage on the 
base of the standard activities (Kabel et al., 2006). As consequence, the process must be 
tailored to the specific biomass used. 
The enzymes activity mainly depends on the process temperature. An increase of 
temperature of 20-30°C can introduce a significant improvement of the hydrolysis rate. 
However, the enzymes are proteins and high temperatures cause their denaturation. In this 
regard, thermostable enzymes offer potential benefits in the hydrolysis of lignocellulosics. In 
particular, thermostable enzymes have several advantages like higher stability and higher 
activity that decrease the optimal dosage needed for the process. Some thermostable 
enzymes have been isolated from bacteria thermophilic including the Rhodothermus strains 
(Hreggvidsson et al., 1996) and Thermotoga (Bok et al., 1998; Bronnenmeier et al., 1995; Evans 
et al., 2000)   
Recently, a new mix of three thermostable enzymes (cellobiohydrolase, endoglucanase and  
β-glucosidase)  were cloned and produced in Trichoderma reesei (Viikari et al., 2007). The 
obtained cellulases mixture was then added with thermostable xylanase  and tested at  high 
temperature  for the hydrolysis of steam pretreated spruce and corn stover. The results  
showed that the new enzymatic formulation had an activity at 65°C, 25% higher than the 
maximum activity of commercial reference enzymes. 

3. Fermentation of lignocellulosic hydrolyzates: Conversion of biomass to 
ethanol by microorganisms 

Fermentation of enzymatic hydrolyzates can be carried out by various microorganisms such 
as several species of bacteria, yeasts and filamentous fungi. Depending on the overall 
process scheme, mixed or separate C5 and C6 sugars streams can be obtained.  While the 
ethanolic fermentation of glucose, mannose and galactose is well established on large scale 
(Berg, 2002), the conversion of the pentose sugars, namely xylose and arabinose, is much 
difficult. However, it was estimated that the complete conversion of pentose sugars to 
ethanol would reduce the bioethanol production cost by as much as 22% (Sassner et al., 
2008). Other essential characteristics  required in fermenting microorganisms are high 
ethanol yields and productivities, minimum formation of secondary metabolites and high 
tolerance to inhibitors produced during the pretreatment and hydrolysis steps.  
The common yeast used for alcoholic fermentation is Saccharomyces cerevisiae, which has 
most of these characteristics. In particular, this specie of yeast catabolizes glucose to ethanol 
very efficiently by means of the Embden-Meyerhof and Parnas pathway (EMP) followed by 
alcoholic fermentation under anaerobic conditions (figure 3). 
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The stoichiometric reaction for glucose conversion into ethanol is described by equation 1: 

   
(1)

 
Considering that the molecular weight of ethanol is 46 g/mole and that of glucose is 180 
g/mole and that one mole of glucose produce 2 moles of ethanol, the theoretical yield for 
ethanol production from glucose is 0.51.  
Another microorganism capable to convert glucose into ethanol is Zymomonas mobilis, a 
Gram-negative bacterium which produces ethanol at high yield. Choi et al. (2008) reported 
an ethanol yield of 90.4% from naked barley. 
Nevertheless, both Saccharomyces cerevisiae and Zymomonas mobilis cannot ferment pentoses 
such as xylose present in the hydrolysates of several abundant lignocellulosic biomass such 
as residual straws (Keshwani et al., 2009). This inability represents the major obstacle to use 
these microorganisms for the fermentation of mixed syrups from lignocellulosics. 
However, in nature, there are some microorganisms (bacteria and yeasts) which have 
demonstrated a good capacity of using xylose (table 5). Figure 4 shows the xylose utilization 
pathways in bacteria and yeasts. Among yeasts, Pichia stipitis, Candida shehatae and 
Pachisolen tannophilus resulted very interesting for their capacity to ferment xylose.  As 
shown in figure 4, yeasts metabolize xylose by means of the xylose reductase (XR) that 
converts xylose to xylitol and  xylitol dehydrogenase (XDH) that convert xylitol to xylulose 
After phosphorylation, xylulose is methabolized through the pentose phosphate pathway 
(PPP) (Zaldivar et al., 2001 ). 
Generally, XR is an enzyme NADPH cofactor dependent while XDH is NAD+ cofactor 
dependent (Agbogbo & Coward-Kelly, 2008). When the process is carried out under 
anaerobic conditions, the production of xylitol is favoured and this  reduces the final ethanol 
yield. Among the wild type yeasts fermenting  xylose,  Pichia stipitis was considered  the 
most promising (Agbogbo & Coward-Kelly, 2008) because it has a XR capable to use as 
cofactor both NADPH and NADH. For this reason, under anaerobic conditions, xylose 
fermentation in Pichia stipitis is carried out by using NADH. 
Accordingly, P. stipitis produces less xylitol compared to others xylose fermenting yeasts 
(Agbogbo & Coward-Kelly, 2008). Nevertheless, the use of P. stipitis and others wild yeasts 
for the xylose fermentation is limited by the reduced capacity of using  xylose when also 
glucose is present in the hydrolyzates. In fact, many of these microorganisms have a diauxic 
growth: when they are in a medium containing mixed sugars, glucose is consumed as first 
and the others sugars are metabolizes after its depletion resulting in a low productivity. 
Furthermore, the fermentation capacity of natural P. stipitis depends in a critical way on the 
preservation, through the process of the microaerophilic conditions. Several investigation on 
the effects of aeration rate on the fermentation of glucose and xylose by P.stipitis have 
established that a low aeration rate is necessary for an optimal conversion of these sugars to 
ethanol. In detail, an ethanol production rates of 0.35 and 0.13 g g -1 h-1 were reached 
respectively on glucose and xylose  by using oxygen uptake rates below 0.005 mol l-1 h-1 ; 
however  because the substrate uptake rate is the rate-limiting step, a high cell concentration 
is needed to obtain high volumetric productivities (Grootjen et al., 1990).  
Unlike yeasts, bacteria fermenting xylose directly convert xylose to xylulose (Zaldivar et al., 
2001) through the xylose isomerase (XI) (figure 4).  
There are some bacteria that have a natural capacity to use pentoses (table 5).  Escherichia 
coli, for instance, is a bacterium gram-negative with a facultative anaerobic behavior which 
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metabolizes pentoses via the PPP. However, the wild strain of this bacterium produces a 
small amount of ethanol. Thanks to the recombinant DNA technology, it has been possible 
to transform this microorganism into a bacterium, E coli B KO11, capable to produce ethanol 
with high yields (Ohta et al., 1991). 
Some lactic acid bacteria (LAB) were also investigated for their ability to produce ethanol. 
Among them, L. buchneri strain NRRL B-30929 can metabolize glucose and xylose 
simultaneously (Liu et al., 2008) but produce undesirable bio-products such as acetate and 
lactate. 
 

Glucose 

C6H12O6 

ATP 

ADP

Glucose-6P Fructose-6P

ADP

ATP

Fructose-1,6-di-P

Glyceraldehyde-3-P 

Di-OH-acetone-P 

NAD
+

+ Pi 

1,3-di-P-glyceric acid 

ADP

ATP

3P-glyceric acid 2P-glyceric acid P-enol- pyruvic acid 

H2OADP 

ATP

Pyruvic acid 

CO2

Acetaldehyde 

NAD
 +

NADH + H
+

Ethanol

CH3CH2OH 

NADH + H
+
 

 
Fig. 3. Metabolic pattern from glucose to ethanol in S. cerevisiae. Under anaerobic conditions, 
piruvic acid is converted into ethanol by alcohol dehydrogenase. 

Thermophilic anaerobic bacteria such as Clostridium termohydrosulfuricum and Thermoanaerobacter 

ethanolicus (table 5) have also been considered for their ethanol production (Balat, 2010). Using 
thermophilic microbes have several advantage such as the possibility to perform simultaneous 
hydrolysis and fermentation at high temperature (Knutson et al., 1999). However the  
low ethanol tolerance of thermophilic anaerobic bacteria represents an obstacle for their 
industrial application.  
Table 5 summarizes the performances of the most common wild type microorganisms. On 
the whole, the major part of these microorganisms  has low productivities. Therefore the 
scientific community is  trying new approaches to achieve the goal of using all the biomass 
carbohydrates with high efficiency. The following paragraphs describe some breakthroughs 
obtained in the fermentation of pentoses. 

3.1 Cofermentation of mixed hydrolyzates 

The simultaneous fermentation of glucose and xylose in the hydrolysates is one of the most 
ambitious challenges in the field of bioethanol production because this would simplify some 
process steps and, as consequence, could reduce capital and management costs. 
Certainly, the use of wild yeast co-cultures is a mature approach for the fermentation of mixed 
syrups. In co-cultures experiments, various combinations of yeasts were tested: the most 
commonly used co-cultures were constituted by cells of P.stipitis and S.cerevisiae thanks to the 
ability of P.stipitis  to metabolize xylose and the efficient consumption of glucose by S.cerevisiae.  
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Fig. 4. Metabolism of xylose in yeasts and bacteria. 

However, co-cultures of these yeasts do not always ensure the complete conversion of 
xylose because of the diauxic behavior of P.stipitis (Nakamura et al., 2001) and, in batch co-
cultures, the production of ethanol from S. cerevisiae could worsen the performance of P. 

stipitis whose ethanol toxicity threshold is around 3% (De Bari et al., 2004; Delgenes et al., 
1996). Moreover, in the cofermentation process a compromise between the oxygen 
requirement of the two microorganisms must be used. Often, an efficient ethanol production 
by co-coltures depends on  the competition for oxygen between the two species of yeasts in 
the medium (Laplace et al., 1991). To favor the xylose consumption by yeast like P.stipitis in 
co-coltures, some researchers proposed the use of a respiratory-deficient strain of S.cerevisiae 
that cocultivated with P.stipitis in continuous cultures enabled a substrate conversion rate of 
100% (Delgenes et al., 1996). Other researchers proposed the fermentation in immobilized 
cells bioreactors.  (Cuna et al. 2008 , De Bari et al., 2004, Lebeau et al., 1998). In particular, 
enzymatic hydrolyzates  from steam treated aspen chips were  fermented with P. stipitis and 
S.cerevisiae immobilized in Ca-alginate beads. In the best conditions, the process produced 
77% of the theoretical yield (De Bari et al., 2004). Moreover, when P. stipitis and S. cereviasiae 
are coimmobilized in calcium alginate gel beads, all the cells in the beads external shells 
metabolize glucose more rapidly than xylose. As consequence, the nutrients flux entering 
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the internal shells of the beads mainly contain xylose. Furthermore the oxygen level inside 
the bead is lower than that at the beads surface. These conditions could favor the conversion 
of xylose to ethanol thus by-passing the P.stipitis diaxuc behavior.   
Recently, others combinations of yeasts were examined to improve the yield of fermentation 
and the use of xylose (Hamidimotlagh et al., 2007). In detail,  co-cultures of two xylose 
fermenting yeasts, Kluyveromyces marxianus and P.stipitis, showed process yields of 80% thanks 
the higher ethanol tolerance of K.marxianus than P.stipitis (Hamidimotlagh et al., 2007). 

3.2 Recombinant yeasts 

To overcome the problems related to the inability of wild-type microorganisms to ferment 
all the sugars in the hydrolysates, several researches were devoted to the development of 
recombinant organisms which can use both glucose and xylose. In this regard, different 
metabolic engineering strategies have been explored. The major part of the  engineering 
strategies were based on the construction of recombinants S.cerevisiae strains due to its 
intrinsic robustness and high stress tolerance (Almeida et al., 2007).  
The observation that S.cerevisiae can ferment xylulose to ethanol (Chiang et al., 1981) led 
different research groups to develop recombinant strains,  cloning the bacterial xylose 
isomerase (XI) gene in S.cerevisiae (table 6). 
XI gene from the thermophilic bacterium Thermus thermophilus was expressed in S.cerevisiae. 
(Walfridsson et al., 1996) However, the bacterial enzyme XI showed a low activity in the 
yeast (0.04 U/mg protein-1 Walfridsson et al., 1996) due to an improper folding of the protein 
in S. cerevisiae and to its intracellular precipitation (Gárdonyi & Hahn-Hägerdal, 2003). More 
recently, the gene XylA encoding the xylose isomerase was isolated from Pyromyces sp E2, 
an  anaerobic cellullolytic fungus, and after expressed in S.cerevisiae. (Kuyper et al., 2003), 
The obtained engineered strain, RWB 202, exhibited a xylose isomerase activity of about 1 
U/mg protein-1, to say higher than that of the bacterium Thermus thermophilus . This finding 
could be due to the fact that the mechanism of protein folding in S. cerevisiae  is similar to 
that of Pyromyces (Kuyper et al., 2003). Additional improvements in the RWB 202 were 
achieved by further genetic modifications. In particular, the strain RWB 218 showed high 
fermentation rates in mixed syrups, even during anaerobic growth at high sugar 
concentrations with an ethanol yield of 0.40 g ethanol/g sugars and a low xylitol production 
(table 6). This engineered strain was obtained from a recombinant strain RWB 217, by 
prolonging its anaerobic cultivation in automated sequencing-batch reactors on glucose and 
xylose mixtures. In the recombinant RWB 217 strain the expression of the Piromyces XylA 
gene was combined with the overexpression of the native S.cerevisiae xylulokinase  gene and 
the genes for the conversion of xylulose to glycolytic intermediates. In addition, the 
endogenous GRE3 gene encoding for a xylose aldolase, was deleted with the effect of  
reducing the flux of xylose to xylitol, a  bio-product that inhibits the activity of XI and 
decreases the ethanol yields (Kuyper et al., 2005, table 6). 
Others strains of S.cerevisiae capable to use xylose were generated by expressing the P.stipitis 
genes XIL1 and XIL2 encoding XR and XDH respectively (Jeffries, 2006). The only insertion 
of these genes enabled S.cerevisiae to grow on xylose. However, in most cases, low levels of 
ethanol were achieved (Kötter & Ciriacy 1993, table 6). In fact, in order to improve the 
ethanol yields further modifications were necessary. 
To obtain this goal, the gene XKS1, encoding xylulokinase XK, from S.cerevisiae and the 
genes XIL1 and XIL2 from P.stipitis were inserted into a hybrid host, obtained by breeding of 
S.uvarum and S.diastaticus. 
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The engineered strain obtained in this way, the so called 1400 pLNH32, showed higher 
yields with respect to recombinant strains containing only XYL1 and XYL2 genes (Ho et al., 
1998; Moniruzzaman et al. 1997, table 6). Over the years, several recombinant strains of 
S.cerevisiae were obtained by adopting the same approach (table 6, Eliasson et al., 2000; 
Jeppsson et al., 2002; Karhumaa et al., 2007; Roca et al., 2003; Wahlbom et al., 2003; Zaldivar  
et al., 2002). 
More recently, further improvements of the engineered yeasts performances were obtained 
by improving the xylose uptake in S.cerevisiae through  the insertion of genes for xylose 
transport. In this way, an interesting strain was obtained by the overexpression of the 
Opinomyces xylose isomerase, the S.cerevisiae xylulokinase and the P.stipitis  gene SUT1 
encoding for a sugar permease (Madhavan et al., 2009). A more efficient xylose-utilizing 
strain was isolated from the recombinant strain so obtained, by serial cultivations in  
minimal media containing only xylose as carbon source. 
The xylose adapted strain, ADAP28, showed good performances in the fermentation tests 
(table 6, Madhavan et al., 2009). Recombinant strains obtained in laboratory were not always 
applicable at industrial scales because of their instability (Hann-Hägerdal et al., 2007a). In 
fact only a limited number of engineered strains used at industrial scale have been described 
in literature.  The major part of these strains are genetically modified to express the P.stipitis 
genes XIL1 and XIL2 in the S.cerevisiae host and overexpressing the endogenous XK (Hann-
Hägerdal  et al., 2007b). 
Some of the industrial recombinant S.cerevisiae strains used in the fermentation of 
lignocellulosic hydrolysates are summarized in the table 7. With the exception of F12, all of 
the strains reported in table 7, showed an ethanol yields of more 0.4 g ethanol/g sugars consumed 

(Hann-Hägerdal  et al., 2007b). Finally,  given the restriction on GM organisms in many 
countries, some researchers investigated non-GM strains of S. cerevisiae capable to use  
xylose efficiently (Attfield & Bell, 2006). Attfield and Bell developed a native strain of 
S.cerevisiae capable of using xylose as a sole carbon source by means of natural selection and 
breeding. The authors claimed that this innovative approach could open new attractive 
ways to develop yeasts for lignocellulosic substrates. 

3.3 Fermentation schemes and technologies 

Industrial fermentation processes are traditionally classified in batch, fed-batch and 
continuous process (figure 5). The choice of the suitable process depends on the type of 
lignocellulosic hydrolysate and on the properties of the microorganisms employed. 
Currently, most of the bioethanol process schemes follow the same process employed for 
centuries in the beverage industry. This strategy is based on the batch technology in which 
substrate and cells are introduced simultaneously into the bioreactor (figure 5). At the end of 
fermentation, the bioreactor is washed, sterilized and then new medium is introduced. The 
batch technology is low cost and provides  easy operations  with reduced risks of 
contamination given that nothing is added into reactor after the initial inoculation. 
However, when lignocellulosic biomass is processed, the presence of inhibitor compounds 
could make the batch process unsuitable (see section 4). The inhibitors effect in the batch 
reactor can be reduced by increasing the initial cell density in order to exploit the intrinsic 
capacity of many microorganisms to detoxify the lignocellulosic broths. In fed-batch 
fermentation the substrate is added progressively while fermentation proceeds (figure 5).  
This process is widely used in industrial applications (Balat, 2010).  
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Fig. 5. Schematic representation of fermentation processes. 

Fed-batch cultures provide better yields and productivity than batch cultures (Chandel et al., 
2007b) thanks to the high cells concentrations during the initial phase of the process. When 
applied to the fermentation of lignocellulosic hydrolyzates, this approach has the advantage 
of favoring an “in situ” detoxification through the action of the fermenting microorganisms. 
In the fed-batch fermentation, the process productivity is influenced by the feed rate of the 
substrate so that  two low feed rates could yield low productivities. (Taherzadeh et al., 1999). 
Continuous fermentation is an open system. Sterile medium is continuously added to the 
bioreactor and an equivalent amount of the converted nutrient solution with 
microorganisms is simultaneously subtracted from the system (figure 5). Continuous 
fermentation operations often give higher productivities than batch fermentation (Chandel 
et al., 2007b), eliminate much of the downtime associated with cleaning and sterilization, 
and are easier to automate than batch and fed-batch processes. However, the continuous 
approach is often limited by difficulty of maintaining high cell concentrations in the  
bioreactor. The use of immobilized cells could overcome this problem (Chandel et al., 
2007b). Higher ethanol yields compared to free cells were reported in continuous 
fermentation processes with S.cerevisiae immobilized in calcium alginate (Taherzadeh et al., 
2001). The next subparagraph contains a survey of the most promising immobilizing 
matrices and immobilization techniques. In order to make an efficient conversion of biomass 
to ethanol, several process strategies have been explored, namely Separate Hydrolysis and 
Fermentation (SHF), Simultaneous Saccharification and Fermentation (SSF) and more 
recently the Consolidated BioProcessing (CBP).  SHF consists of two steps: the first involves 
the enzymatic hydrolysis while the second converts the monomeric sugars into ethanol 
(Wingren et al., 2003). It offers various advantages such as the possibility to carry out both 
hydrolysis and fermentation at optimal conditions. In detail, the enzymes can operate at 
high temperature increasing their performances while microorganisms can work at their 
optimal temperature and pH. The disadvantages of this method are the risk of 
contaminations during the process and the inhibition of cellulase and ┚-glucosidase  
enzymes by glucose (Xiao et al., 2004). One way to solve the problem of inhibition by glucose 
is to carry out the hydrolysis and fermentation simultaneously. This process, called  SSF, 
combines the hydrolysis step and fermentation in one vessel. As soon as hydrolysis starts, a 
fermenting microorganism is added into reactor. SSF represents a good strategy with several 
advantages such as high ethanol yield, lower required amounts of enzymes (Lin & Tanaka,  
. 
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Microorganisms Medium Xilose (g/L)
Glucose 

(g/L) 

Ethanol 
yield  

[gp/gs]

Productivi
ty [g/Lh-1]

References 

Yeasts 

Candida shehatae 
NRRLY12856 Synthetic 50 n.r 0.45 0.29 

Slininger et 
al., 1985 

Candida shehatae 
ATCC 22484 

Hydrolyzate 
of hardwood 43.5 9.0 0.14 0.10 

Perego et al., 
1990 

Pachysolen 
tannophilus (NRRL 

Y2460) 

Hydrolyzate 
of hardwood 43.5 9.0 0.21 n.r 

Perego et al., 
1990 

Pachysolen 
tannophilus 
DSM70352 

Wheat straw 10.38 16.62 0.44 0.25 
Zayed et al., 

1996 

Pichia stipitis (NRLL-
Y7124) 

Hydrolyzate 
of Eucaliptos

30.5 1.5 0.35 0.16 
Ogier et al., 

1999 
Pichia stipitis 
NRRLY-7124 

Synthetic 150 n.r 0.39 0.28 
Slininger et 

al.,1985 

Candida shehatae 
NCIM3501 

Hydrolyzate 
of Sugarcane 

bagasse 
treated with 
ion-exchange 

resin 

21.5 5.84 0.48 0.36 
Chandel et 

al.,2007a 

Pichia stipitis NRRL 
Y-7124 adapted 

Hydrolyzate 
of Wheat 

straw 
overlimed 

45 6.40 0.36 0.30 
Nigam, 
2001a 

Pichia stipitis NRRL 
Y-7124 

Hydrolyzate 
of Eicchornia 

crassipies 
treated 

54 3.5 0.35 0.18 Nigam, 2002 

Pichia stipitis CBS 
6054 

Synthetic 120.3 n.r 0.381 0.214 
Agbogbo et 

al., 2007 

Candida shehatae FPL-
Y-049 

Wood 
hydrolyzate 

121.7 (total 
fermentable 

sugars) 

121.7 (total 
fermentable 

sugars) 
0.32 0.45* 

Sreenath et 
al., 2000 

Bacteria 

Thermoanaerobacter 
ethanolicus 

Synthetic 10 n.r 0.5 0.12 Carreira et 
al., 1983 

Clostridium 
saccharolyticum 
ATCC 35040 

Synthetic 25 n.r 0.21 0.05 
Asther & 

Khan, 1985 

Clostridium 
termohydrosulfuricum 

39E 
Synthetic 5 n.r 0.39 n.r 

Ng  et al., 
1981 

 

Table 5. Yeasts and bacteria capable to metabolize xylose; (*calculated from reference, n.r.: 
not reported) 
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Recombinant 
S.cerevisiae 

Strain 
Genotipe 

Sugar 
composition

Fermentation 
conditions 

Ethanol 
yield  

(g ethanol/ 
g sugars) 

Xylitol 
yield  

(g xylitol/ 
g xylose) 

References 

S.cerevisiae XIL1, XIL2 21.7 g/L xyl  0.07 0.07 
Kötter & 
Ciriacy, 

1993 

RWB217 

XI, XK, del 
GRE3, 

overexpressed 
PPP 

20 g/L glu + 
20 g/L  xyl 

Anaerobic 
batch colture 

0.43 0.006 
Kuyper et 
al., 2004 

RWB218 

XI, XK, del 
GRE3, 

overexpressed 
PPP, selected 
for increase 

glucose uptake

20 g/L glu + 
20 g/L  xyl 

Anaerobic 
batch colture 

0.40 0.003 
Kuyper et 
al., 2005 

RWB202 XI 20 g/L glu + 
10 g/L  xyl 

Anaerobic 
chemostat 
coltures 

0.39 0.07 Kuyper et 
al., 2003 

1400 
(pLNH32) 

XYL1, XYL2, 
XKS1 

50 g/L 
xylosein YPD

Oxygen-
limited batch 

colture 
0.33 0.10 

Ho et al., 
1998 

TMB3001 
XYL1, XYL2, 

XKS1 
50 g/L glu + 
50 g/L xyl 

Aerobic batch 
fermentation 

0.23 0.08 
Zaldivar et 

al., 2002 

TMB3001 
XYL1, XYL2, 

XKS1 
50 g/L xyl 

Oxygen-
limited batch 

colture 
70 h 

0.31 0.29 

Eliasson et 
al., 2000, 

Jeppsson et 
al., 2002 

TMB3001 
XYL1, XYL2, 

XKS1 
20 g/L glu + 
50 g/L xyl 

Anaerobic 
batch colture 

0.33 0.48 

Eliasson et 
al., 2000, 

Roca et al., 
2003 

TMB3400 
XYL1, XYL2, 

XKS1 
20 g/L xyl 

Anaerobic 
batch colture 

0.18 0.25 
Wahlbom et 

al., 2003 

TMB3066 
XI, XSK1, PPP, 

del GRE 
50 g/L xyl 

Anaerobic 
batch 

0.43 0.04 
Karhumaa 
et al., 2007 

ADAP28 

XI, XKS1, 
SUT1, xylose 

adapted 

50 g/L glu + 
20 g/L xyl + 

borate 

Fermentation 
in bottle with 

a bubbling 
CO2 outlet, 
35°C, 40 h 

0.48 0.04 
Madhavan 
et al., 2009 

Table 6. Engineered S.cerevisiae strain for xylose conversion. 

2006;  Sun & Cheng, 2002) and contamination reduction during hydrolysis also thanks to the 
action of ethanol simultaneously produced. However SSF has the disadvantage to operate at 
temperature and pH conditions that represent a compromise between the optimal 
conditions for hydrolysis and fermentation.  In particular, it is fundamental to consider 
temperature as the key parameter in the process. In fact, while the cellulase enzymes are 
more active at 50°C, the yeasts usually  work at  temperatures lower than 35°C. Several 
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Strain Hydrolysate 
Fermentation 

strategy 
References 

TMB3400 
Corn stover steam 

pretreated 
Batch and fed-

batch SSF Ohgreen et al., 2006 

F12 
Still bottoms 

fermentation residue 
Batch Olsson et al., 2006 

TMB3400 Spruce Fed-batch Hann- Hägerdal & 
Pamment 2004 

TMB 3006 Spruce Fed-batch 
Hann- Hägerdal & 

Pamment 2004 
424ALNH-

ST 
Corn stover Batch Sedlak & Ho, 2004 

Table 7. Industrial S.cerevisiae strains  fermenting  xylose  in lignocellulosic hydrolysates. 

research efforts were concentrated on the isolation of strains able to work at high 
temperatures. Good performances have been recently obtained with the thermotolerant 
strain Kluyveromyces marxianus 6556 that showed promising results in the SSF of 
lignocellulosic agricultural wastes at 37°C  (Zhang et al., 2010). In fact various strains of the 
K. marxianus species have the ability to grow at temperature around 40°C and ferment 
mixed sugars such as glucose, xylose, mannose and galactose (Fonseca et al., 2008). In this 
regard, Ballesteros et al.(2001) carried out several fed-batch SSF tests using K.marxianus at 
42°C and obtaining ethanol yield of 76% for olive pulp. Rudolf et al. (2008), also 
demonstrated that undetoxified steam-pretreated bagasse could be successfully fermented 
to ethanol in a SSF process using both natural yeasts (P.stipitis CBS6054) that recombinant 
yeast (S.cerevisiae TMB3400). Interesting results were obtained using SSF with other 
materials such as industrial wastes (Kàdàr et al., 2004), wheat straw, and sweet sorghum 
bagasse (Ballesteros et al., 2004). To improve the ethanol yield through the overall 
consumption of sugars, a variant of SSF has been developed known as Simultaneous 
Saccharification and Co-Fermentation (SSCF) (Chandel et al., 2007b; Pejo et al. 2008) that 
includes the cofermentation of multiple sugar substrates in the hydrolysates using pentose-
fermenting yeast. In conclusion, either SSF or SSCF are preferred to SHF, because  both can 
be performed in the same tank resulting , in lower capital costs, higher ethanol yield and 
shorter processing time (Chandel et al., 2007b). Recently, a new integrated approach, so 
called Consolidate BioProcessing (CBP), has been developed. It combines the cellulase 
production, the cellulose hydrolysis and the sugar fermentation into a single unit operation 
(Lynd et al., 2005). In other words, CBP combines all the biological steps required for the 
conversion of lignocellulosic materials to ethanol into one reactor. The process can be drive 
by a single microorganism or through a microbial consortium capable to ferment pretreated 
biomass directly (van Zyl et al., 2007). Unfortunately, no natural microorganism exhibits all 
the features desired for CBP. There are two main strategies to make feasible the CBP 
process. The first approach consists of cloning and expressing the genes for ethanol 
production into cellulolytic microorganisms such as Clostridium cellulolyticum and 
Clostridium thermocellum (Lynd et al., 2005). Conversely, the other approach constitutes of 
cloning the genes for cellulolytic activity in the efficient ethanol producing microorganisms 
such as S.cerevisiae. This latter strategy is more viable also thanks to develop of S.cerevisiae 
recombinant strains capable to express cellulases. Most of the cellulolytyc enzymes 
expressed in S.cerevisiae are of fungal origin, mainly from  Trichoderma spp. and Aspergillus 
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spp. (van Zyl et al., 2007). Recently, a promising yeast  have been constructed capable to 
grow on 10 g/L PASC (acid-swollen cellulose) with a subsequent production of 1 g/L 
ethanol. The recombinant S.cerevisiae strain co-expresses a T.reesei endoglucanase and a 
Saccharomycopsis fibuligera ┚-glucosidase  (Den Haan et al., 2007). Certainly, further 
improvements are necessary  to optimize the heterologous enzyme expression in order to 
increase the ethanol yield. For instance, for the conversion of hemicellulose in the CBP 
process, the microorganism should have also hemicellulase activities. Katahira et al. (2004) 
introduced the genes encoding for xylose utilization from P.stipitis into a recombinant 
S.cerevisiae expressing xilanase II from T.reesei and ┚-xilosidase from A. oryzae. Despite the 
noticeable breakthroughs, the CBP approach  seems  still far from the industrial use and 
more studies are required to obtain microorganisms capable of producing ethanol from 
lignocellulosic materials in a single step. 

3.4 Innovative bioreactors configurations: Fermentation in immobilized cells 
bioreactors 

Fermentation can be carried in  free or immobilized cells bioreactors. The use of the  
immobilized cells technology (ICT) in the bio-industry has recently received much attention 
thanks to several advantages: high cell load enhancing the fermentation productivity; 
feasibility of continuous processing without any interruption. Generally, four categories of 
immobilization techniques can be distinguished, based on the cell localization and on the 
interaction mechanisms between cells and supports : ‘‘attachment to a surface’’, 
‘‘containment behind a barrier’’, ‘‘self-aggregation’’ and ‘‘entrapment within a porous 
matrix’’ (Karel et al. 1985). In the immobilization by surface attachment, yeast cells are 
allowed to attach to a solid support (Verbelen et al., 2006).  Cellular attachment to the carrier 
can be induced through linking agents such as metal oxides, glutaraldehyde or 
aminosilanes.  Containment of yeast cells behind a barrier can be obtained through the use 
of microporous membrane filters or by entrapment into microcapsules. Several polymers 
can be used as microporus membranes: nylon, polystyrene and polyester. The drawback of 
this strategy is the membrane fouling caused by the cells growth (Lebeau et al., 1998). The 
immobilization by self-aggregation, known as “flocculation” is based on the natural ability 
of yeast strains, such as S.cerevisiae, to adhere at inert surfaces (Oliveira, 1997). In this 
process, yeasts form a reversible flocs of thousands of cells (Bony et al., 1997). In particular, 
adhesion is conferred by a class of special cell wall proteins called “adhesins” or “flocculins” 
that bind some amino-acid or sugar residues on the surface of the other cells or promote 
binding to abiotic surfaces (Verstrepen & Klis, 2006). Flocculation is  dependent on several 
parameters, namely the calcium level, the pH and the fermentation temperature 
(Sampermans et al., 2005). Furthermore, different yeast species present different families of 
adhesins. The brewer’s yeast Saccharomyces cerevisiae, for example has five flocculation genes 
FLO (Teunissen & Steensma, 1995). For the industrial application flocculation profile was 
improved through recombinant DNA strategies (Pretorius & Bauer, 2002). Immobilization 
by entrapment within porous matrix is the most widely used method. The matrix is usually 
composed of agar, agarose, kappa-carrageenan, collagene, alginate, polyurethane, chitosan, 
plyacrylamide and cellulose. Among these, the most reported in literature is Ca-alginate that 
is commonly synthesized as spherical polymeric beads with diameter ranging from 0.3 to 3 
mm around the cells (Verbelen et al.,2006). Besides the in situ synthesis around the cells, a 
second entrapment strategy was also reported in which cells are allowed to diffuse into a 
preformed porous matrix (Verbalen et al., 2006). It was demonstrated that the 
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immobilization of S.cerevisiae in the ICR (Immobilized Cell Reactor) column packed with Ca-
alginate beads enables the conversion of concentrated syrups (150 g/L of glucose) with an 
ethanol yield of 38%  in seven hours (Najafpour et al., 2004). More recently, it was found that 
the use of the S.cerevisiae immobilized in the Ca-alginate beads coupled with a perm-
selective separation of ethanol allow to convert diluted hydrolyzates into hydro-alcoholic 
solutions containing 9 wt% ethanol (De Bari et al., 2009). This process could make to 
subsequent recovery of ethanol from the fermentation broths more sustainable. In fact, 
several energetic balances demonstrated that the lowest threshold to make feasible the  
bioethanol distillation from fermentation broths is 4 wt% (Zacchi & Sassner, 2008).  
However, the use at industrial scale of Ca-alginate beads is limited by the lack of stability 
through continuous processes. Other entrapping carriers such as mixed calcium alginate 
and silica beads, silica film, polyvinyl alcohol (PVA) and tetramethyl orthosilicate (TMOS) 
were investigated for bioethanol production from mixed sugars syrups by P.stipitis (Cuna et 
al., 2008; De Bari et al., 2007b). In particular, the use of this bioreactor configuration also help 
to overcome the diauxic behavior of this yeast (Cuna et al., 2008; De Bari et al., 2007b). The 
obtained results demonstrated that the silica films offer the advantages of immobilizing 
higher cell concentrations with respect to alginate beads (De Bari et al., 2007b). It was also 
shown that the ethanol yields obtained by using  the TMOS films were higher than those of 
PVA beads (70% for PVA against 80-82% for TMOS). Another material tested to immobilize 
cells  for ethanol production was the ϒ-alumina that is a good promoter of ethanol 
fermentation because of its high porosity and high stability  (Kanellaki et al., 1989). The 
immobilization was carried out by using the spray drier technology.  In particular, it was 
demonstrated that the pre-soaking of ϒ-alumina particles in a resin solution before the cells 
immobilization improved the cells uptake and increased the sucrose conversion to ethanol 
(Isono et al., 1994). Despite the interesting achievements some improvements are still 
necessary: carriers stability, reduced diffusion coefficients of nutrients and metabolites 
between the immobilization carrier and the fermentation broth. Furthermore industrial 
techniques must be optimized for the production of the immobilized biocatalytis at 
industrial  scale. 

4. Inhibitory compounds derived from biomass pretreatment: Effect on 
fermentation step 

Fermentation of hydrolyzates represents a critical step in the lignocellulosics-to-bioethanol 
process not only for the efficient conversion of all the sugars but also for the microbial 
inhibition due to the pretreatment by-products. In fact, during the pretreatment and the 
hydrolysis step (chemical hydrolysis) many microbial inhibitors compounds are commonly 
generated. As reported in literature, these compounds can be classified in three major 
groups: furan derivates, weak acids and phenolic compounds (Almeida et al., 2007; 
Palmqvist & Hann-Hägerdal , 2000). Furan derivates are mainly constituted by 5-
hydroxymethyl-2-furaldehyde (5-HMF) and 2-furaldehyde generated by dehydration of 
hexoses and pentoses, respectively. These chemical compounds inhibit both the cell growth 
and ethanol production (Palmqvist & Hann-Hägerdal , 2000).  
Several mechanisms were proposed to explain the effect of furfural and 5-HMF on the 
ethanol fermentation. It was found that in S.cerevisiae they inhibit alcohol dehydrogenase 
(ADH), pyruvate dehydrogenase (PDH) and aldehyde dehydrogenase (ALDH). 
Furthermore they cause the DNA breakdown resulting in a inhibition of the RNA and 
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protein synthesys (Modig et al., 2002). Additionally, furan derivates damage cell walls and 
membranes (Almeida et al., 2007). However, the inhibition effect of these compounds is 
dose-dependent (Liu et al., 2004). It was demonstrated that S.cerevisiae and P. stipitis strains 
were more sensitive to the inhibition by furfural than 5-HMF at the same concentration 
(table 8), while combined treatment with  furfural and HMF suppressed cell growth (Liu et 

al., 2004). Nigam (2001a) also found that a furfural concentration of 1.5 g/L interfered in 
respiration and growth of P. stipitis. Delgenes et al. (1996) showed that P.stipitis growth was 
reduced by 43%, 70% and 100% when the concentration of HMF was 0.5, 0.75 and 1.5 g/L 
respectively.  
Some microorganisms such as S.cerevisiae (Liu, 2006) have the capacity to transform furfural 
and 5-HMF into less toxic compounds of furfuryl alcohol and 2,5-bishydroxymethylfuran 
respectively. This process is also known as “in situ-detoxification ”.  
The weak acids such as acetic, formic and levulinic are the most frequent acids present in 
the hydrolysate from lignocellulosic materials. Acetic acid is produced by de-acetylation of 
hemicellulose while levulinic and formic acid are formed through the 5-HMF breakdown 
(Palmqvist & Hann-Hägerdal, 2000). Undissociated acids are liposoluble and therefore can 
diffuse across the plasma membrane. Once inside the cell, because of neutral pH, 
dissociation of acids occurs resulting in the cytosolic pH decrease and the cell growth-
inhibition. The decrease in the intracellular pH is compensated by the activity of the plasma 
membrane ATP-ase that pumps proton out of the cell and increases the ATP hydrolysis. 
This led to a reduction of ATP available for the yeast biomass formation (Russel, 1992, 
Verduyn et al., 1992). In addition, weak acids reduce the uptake of aromatic aminoacids 
from the medium (Bauer et al., 2003). The concentration of undissociated acids in the 
hydrolysate is pH-dependent and, as a result, pH is a crucial parameter during the 
fermentation step.   
Phenolic compounds are produced following the lignin degradation and depend on the 
biomass source (Almeida et al., 2007). The most common are phenol aldehydes (4-
hydroxybenzaldehyde, syringaldehydes and vanillin), phenol ketones and alcohols 
(hidroquinone, cathecol, eugenol, guaiacol). The inhibitor  mechanisms of phenolic 
compounds in the fermenting  microorganisms have not yet been completely elucidated 
(Almeida et al., 2007).  Some researches indicated that  these compounds partition into cells 
membranes cause loss of integrity (Palmqvist & Hann-Hägerdal, 2000). It was established 
that low molecular weight phenolic compounds are more inhibitory than those with high 
molecular weight (Klinke et al., 2004) and furthermore, the substituent position influenced 
the compounds toxicity (Larsson et al., 2000). Among the phenolic compounds, vanillin was 
shown to be a strong inhibitor of growth and ethanol production in P.stipitis, C. shehatae and 
S.cerevisiae at the concentration of 1 g/L (Delgenes et al., 1996).  
On the whole, inhibitor compounds in the hydrolysate from lignocellulosic biomass have a 
synergistic inhibitory effect (Mussatto & Roberto, 2004). Therefore, removal of inhibitors 
from hydrolysates is necessary for an efficient fermentation step. In this regard, several 
methods have been proposed to reduce the inhibitors concentrations (Larsson et al. 1999, 
Mussatto & Roberto, 2004). In general, the inhibitors content in the hydrolyzates can be 
reduced by using mild pretreatment/hydrolysis conditions; detoxifying the hydrolyzate 
before fermentation; developing inhibitor tolerant strains, and converting toxic compounds 
into harmlesses products (Taherzadeh et al., 2000a). The major part of the detoxification 
methods are physical, chemical or biological (Mussatto & Roberto, 2004). Among the 
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physical methods, evaporation removes volatile compounds such as acetic acid, furfural and 
vanillin (Converti et al., 2000).  Chemical methods includes different strategies like 
overliming treatment and use of ion exchange resins and activated charcoal (De Bari et al., 
2004; Lee et al., 1999; Martinez et al., 2001; Nilvebrant et al., 2001,). Biological detoxification is 
substantially based on the enzymatic treatment using peroxidase and laccase obtained from 
the lignolytic fungus Trametes versicolor (Palmqvist & Hann- Hägerdal, 2000). However, 
although the detoxification treatments are well established on large-scale processes, they 
could increase the process cost.  According to some economical evaluations,  the 
detoxification costs can constitute 22% of ethanol production cost (Von Sivers et al., 1994). 
Thus, the use of resistant microorganisms, such as  engineered or adapted strains, would be 
preferable. In particular, laccase gene from Trametes versicolor was expressed into S.cerevisiae 
resulting in higher ethanol productivity in spruce hydrolysates and in a media 
supplemented with coniferyl aldehyde (Larsson et al., 2001). On the other hand, adaptation 
to toxins could make microorganisms more tolerant (Cuna et al., 2004; Nigam, 2001b). 
Generally, adaptation is carried out by the sequential transfer of cells in media containing 
increasing concentrations of inhibitors (Cuna et al., 2004; De Bari., 2005;  Liu et al., 2005; 
Nigam, 2001b). Following the adaptation of P. stipitis,  De Bari et al. (2005) increased the 
xylose consumption and improved the ethanol yield by 17%.  The adaptation strategy also 
increased the tolerance of S. cerevisiae to 5-HMF and furfural (Liu et al., 2005). 
The ability to adapt S. cerevisiae to lignocellulosic hydrolysates is strain dependent (Olsson & 
Hann-Hägerdal, 1996). For instance, a strain of S. cerevisiae isolated from a sulphite-spent 
liquor (SSL) was shown to be able to use glucose and galactose simultaneously in the 
presence of acetic acid in contrast to the behaviour of Bakers' yeast (Linden et al., 1992). On 
the whole, recombinant technology together with the strains adaptation appears as the most 
promising approach to develop  efficient processes to convert lignocelluloses biomass into 
ethanol.  More insights in the inhibitors mechanisms and in the genomic characteristics of 
some resistant microorganisms could help the definition of protocols to enhance the yeast 
robustness. 

5. Microbial inhibition by ethanol 

The performances of the fermentation microorganism is also affected by the ethanol 
tolerance. In particular, at low concentrations, ethanol retards the growth rate of yeasts and 
inhibits cell division, while high ethanol concentrations reduce cells viability and increase 
their death (Stanley et al., 2010). Furthermore, ethanol stress alters the metabolism (Hu et al., 
2007) mostly acting on the plasma membrane and on the cytosolic enzymes (Ansanay-
Galeote et al., 2001, Lopes & Sola-Penna, 2001). Exposure to ethanol causes also a disruption 
of the membrane structure resulting in a loss of electrochemical gradients and transport 
associated to the membrane (D’Amore et al., 1990). 
The xylose fermenting yeasts P.stipitis and C.shehatae are low tolerant to ethanol and are 
completely inhibited by ethanol concentration of 30 g/L (Laplace et al., 1991). Conversely, 
S.cerevisiae reasonably tolerates higher levels of up to 70- 110 g/L (Casey et al., 1992). This 
“ethanol tolerance” property is one of the reasons why S.cerevisiae is considered the 
alcoholic fermentation-organism for excellence. Generally, the yeasts such as S.cerevisiae 
have evolved some protective/adaptive responses to ethanol. One of the ethanol stress 
response, is the increase of unsaturated fatty acid and sterols in the cell membranes (Beaven 
et al., 1982). Furthermore when S.cerevisiae is exposed to ethanol stress, an increase of the 
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heat shock proteins (HSPs) expression (i.e. HSP12 and HSP104) was observed (Glover & 
Lindquist, 1998; Sales et al., 2000). These proteins protects the liposomal membrane integrity 
and act as remodeling agent in the disaggregation of denaturated proteins. Furthermore, 
following the exposure to ethanol, yeasts accumulate trehalose. However, this sugar is 
produced in response to many stresses (Attfield, 1997) and its function in stress tolerance is 
still not clear. Although this compound has long been considered as a protectant agent in 
the stress conditions (Ogawa et al., 2000) it was found that a mutant which accumulate high 
levels of trehalose showed a reduced expression  of other adaptive mechanisms (Singer & 
Lindquist, 1998). According to Lopes & Sola-Penna (2001), the pyrophosphatase inactivation 
promoted by alcohols is not prevented by the presence of trehalose while 1.5 M urea 
attenuated this effect. 
 

Inhibitor 
Inhibitor 

concentration 
(g/L) 

Yeasts 
Strain 

Inhibition 
of ethanol 
yield (%) 

Inhibition of 
ethanol 

productivity 
(%) 

References 

5-HMF 4 
S.cerevisiae
Tembec T1 12 45 Keating et 

al., 2006 

5-HMF 4 
S.cerevisiae
CBS 8066  40 Taherzadeh 

et al., 2000b 

5-HMF 4 
S.cerevisiae

Y-1528 11 40 Keating et 
al., 2006 

Furfural 4 
S.cerevisiae
CBS 8066  69 

Taherzadeh 
et al., 1999 

Furfural 1.6 
S.cerevisiae
Tembec T1  27 Keating et 

al., 2006 

Furfural 1.6 
S.cerevisiae

Y-1528  25 Keating et 
al., 2006 

Acetic acid 4.3 S.cerevisiae 50  Olsson et 
al., 1996 

Acetic acid 8 P.stipitis 98  Olsson et 
al., 1996 

Table 8. Effect of inhibitors compounds on fermentation by yeasts 

It was established that during acclimatisation to ethanol stress, hundreds of genes are down-
regulated and about 100 genes are up-regulated (Alexandre et al., 2001; Chandler et al., 
2004).  
Ethanol tolerance is not only genetically determined and can be  influenced by many factors, 
such as plasma membrane composition (Mishra & Prasad, 1989), sugars concentration 
(Meyrial et al., 1995), temperature, osmotic pressure, intracellular ethanol accumulation, 
byproduct formations. As consequence, it is very difficult to develop more tolerant yeast 
strains and  still few studies are available on the construction of recombinant strains more 
tolerant to ethanol. In this regard Alper et al. (2006) combined mutagenesis and selection to 
isolate ethanol tolerant strains that showed an increased ethanol yield under a number of 
conditions and glucose concentrations. Kajiwara et al. (2000), also created a recombinant 
strain of S.cerevisiae with a higher unsaturated fatty acid content. This strain showed a 
higher survival rate than the wild-type strain in broths containing 15% (v/v) ethanol. 
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Interesting is also the Saccharomyces diastaticus (LORRE 316), an ethanol tolerant yeast 
capable of producing ethanol from corn starch, yielding a final concentration as high as 
17.5% (v/v) (Wang & Sheu, 2000). 

6. Conclusions 

Lignocellulosic materials can be considered an important feedstock for the production of 
second generation bioethanol. Several breakthroughs have been achieved in the last years  in 
all the process steps thus making this opportunity close to the industrial development. This 
is confirmed by several demo plants built around the world aiming at exploring the 
integrated process at significant scale. Depending on the specific biomass composition, some 
feedstocks, such as softwoods, can  be more easily  processed at demo scale. In fact, due to 
the hemicellulose composition of this biomass, the fermentable sugar streams do not contain 
pentoses and this reduces the process difficulties.  The research in this field has given 
several  microorganisms capable of fermenting diverse carbon sources and several process 
schemes. On the whole, the future development of bioethanol from lignocellulosics can be 
favored not only by the further optimization of some crucial process steps but also by the 
full implementation of the biorefinery concept. In this regard, further conversion options 
might be available for the various biomass streams, including the C5 fraction, and this could 
make more convenient the entire conversion. 
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