
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1. Introduction

Multiple pattern matching is the computationally intensive kernel of many applications
including information retrieval and intrusion detection systems, web and spam filters and
virus scanners. The use of multiple pattern matching is very important in genomics
where the algorithms are frequently used to locate nucleotide or amino acid sequence
patterns in biological sequence databases. For example, when proteomics data is used for
genome annotation in a process called proteogenomic mapping (Jaffe et al., 2004), a set of
peptide identifications obtained using mass spectrometry is matched against a target genome
translated in all six reading frames.
Given a sequence database (or text) T = t1t2...tn of length n and a finite set of r patterns P =
p1, p2, ..., pr , where each pi is a string pi = pi

1 pi
2...pi

m of length m over a finite character set Σ,
the multiple pattern matching problem can be defined as the way to locate all the occurrences
of any of the patterns in the sequence database.
The naive solution to this problem is to perform r separate searches with one of the sequential
algorithms (Navarro & Raffinot, 2002). While frequently used in the past, this technique
is not efficient when a large pattern set is involved. The aim of all multiple pattern
matching algorithms is to locate the occurrences of all patterns with a single pass of the
sequence database. These algorithms are based of single-pattern matching algorithms, with
some of their functions generalized to process multiple patterns simultaneously during the
preprocessing phase, generally with the use of trie structures or hashing.
Multiple pattern matching is widely used in computational biology for a variety of pattern
matching tasks. Brundo and Morgenstern used a simplified version of the Aho-Corasick
algorithm to identify anchor points in their CHAOS algorithm for fast alignment of
large genomic sequences (Brudno & Morgenstern, 2002; Brudno et al., 2004). Hyyro et
al. demonstrated that Aho-Corasick outperforms other algorithms for locating unique
oligonucleotides in the yeast genome (Hyyro et al., 2005). The SITEBLAST algorithm
(Michael et al., 2005) employs the Aho-Corasick algorithm to retrieve all motif anchors for a
local alignment procedure for genomic sequences that makes use of prior knowledge. Buhler

Parallel Processing of Multiple Pattern Matching
Algorithms for Biological Sequences:

Methods and Performance Results

Charalampos S. Kouzinopoulos1, Panagiotis D. Michailidis2 and
Konstantinos G. Margaritis1

1University of Macedonia
2University of Western Macedonia

Greece

8

www.intechopen.com

2 Will-be-set-by-IN-TECH

et al use Aho-Corasick to design simultaneous seeds for DNA similarity search (Buhler et al.,
2005). The AhoPro software package adapts the Aho-Corasick algorithm to compute the
probability of simultaneous motif occurrences (Boeva et al., 2007).
As biological databases are growing almost exponentially in time and the current
computational biology problems demand faster and more powerful searches, the performance
of the most widely used sequential multiple pattern matching algorithms is not fast enough
when used on conventional sequential computer systems. The recent advances in parallel
computing are mature enough and can provide powerful computing means convenient
to improve the performance of multiple pattern matching algorithms when used on large
biological databases.
The goals of this chapter are (a) To discuss intelligent methods for speeding up the
search phase of the presented algorithms on large biological sequence databases on both
concurrent and shared memory/distributed memory parallel systems. We also present a
hybrid parallelization technique that combines message passing between multicore nodes and
memory sharing inside each node. This technique could potentially have a better performance
than the traditional distributed and shared memory parallelization techniques, (b) to detail
the experimental results of the parallel implementation of some well known multiple pattern
matching algorithms for biological databases and (c) to identify a suitable and preferably fast
parallel multiple pattern matching algorithm for several problem parameters such as the size
and the alphabet of the sequence database, the amount of distributed processors and the
number of cores per processor. To the best of our knowledge, no attempt has been made
yet to implement the multiple pattern matching algorithms on multicore and multiprocessor
computing systems using OpenMP and MPI respectively.
The rest of this chapter is organized as follows: the next section presents a short
survey of multiple pattern matching algorithms and details the efficient and widely used
Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki algorithms. The third
section discusses general aspects of parallel computing. The fourth section details methods
for the parallel implementation of multiple pattern matching algorithms on clusters and
multicore systems. Section five presents a hybrid parallel implementation of multiple pattern
matching algorithms that use the MPI/OpenMP APIs. Section six discusses the experimental
results of the proposed parallel implementations. Finally, the last section presents the
conclusions of this chapter.

2. Multiple pattern matching algorithms

Based on the way the patterns are stored and the search is performed, the multiple pattern
matching algorithms can generally be classified in to one of the four following approaches.

• Prefix algorithms: With prefix searching the patterns are stored in a trie, a data structure
where the root node represents the empty string and every node represents a prefix of
one of the patterns. At a given position i of the input string the algorithms traverse the
trie looking for the longest possible suffix of t1...ti that is a prefix of one of the patterns
(Navarro & Raffinot, 2002). One of the well known prefix multiple pattern matching
algorithms is Aho-Corasick (Aho & Corasick, 1975), an efficient algorithm based on the
Knuth-Morris-Pratt algorithm, that preprocesses the pattern list in time linear in |P|
and searches the input string in time linear in n in the worst case. Multiple Shift-And,
a bit-parallel algorithm generalization of the Shift-And algorithm for multiple pattern

162 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 3

matching was introduced in (Navarro & Raffinot, 2002) but is only useful for a small size
of |P| since the pattern set must fit in a few computer words.

• Suffix algorithms: The suffix algorithms store the patterns backwards in a suffix
automaton, a rooted directed tree that represents the suffixes of all patterns. At each
position of the input string, the algorithms search for a suffix of any of the patterns from
right to left to skip some of the characters. Commentz-Walter (Commentz-Walter, 1979) is
an extension of the Boyer-Moore algorithm to multiple pattern matching that uses a suffix
trie. A simpler variant of Commentz-Walter is Set Horspool (Navarro & Raffinot, 2002), an
extension of the Horspool algorithm (Horspool, 1980) that can locate all the occurrences
of multiple patterns in O(n × m) time in the worst case. Suffix searching is generally
considered to be more efficient than prefix searching.

• Factor algorithms: The factor searching algorithms build a factor oracle, a trie with
additional transitions that can recognize any substring (or factor) of the patterns.
Dawg-Match (Crochemore et al., 1999) and MultiBDM (Crochemore & Rytter, 1994) were
the first two factor algorithms, algorithms complicated and with a poor performance
in practice (Navarro & Raffinot, 2002). The Set Backward Oracle Matching and the Set
Backward Dawg Matching algorithms (Navarro & Raffinot, 2002) are natural extensions of
the Backward Oracle Matching (Allauzen et al., 1999) and the Backward Dawg Matching
(Crochemore et al., 1994) algorithms respectively for multiple pattern matching.

• Hashing algorithms: The algorithms following this approach use hashing to reduce
their memory footprint usually in conjunction with other techniques. Wu-Manber
(Wu & Manber, 1994) is one such algorithm that is based on Horspool. It reads the input
string in blocks to effectively increase the size of the alphabet and then applies a hashing
technique to reduce the necessary memory space. Zhou et al. (Zhou et al., 2007) proposed
an algorithm called MDH, a variant of Wu-Manber for large-scale pattern sets. Kim and
Kim introduced in (Kim & Kim, 1999) a multiple pattern matching algorithm that also
takes the hashing approach. The Salmela-Tarhio-Kytöjoki (Salmela et al., 2006) variants
of the Horspool, Shift-Or (Baeza-Yates & Gonnet, 1992) and BNDM (Navarro & Raffinot,
1998) algorithms can locate candidate matches by excluding positions of the input string
that do not match to any of the patterns. They combine hashing and a technique called
q-grams to increase the alphabet size, similar to the method used by Wu-Manber.

2.1 Commentz-Walter

Commentz-Walter combines the filtering functions of the single pattern matching
Boyer-Moore algorithm and a suffix automaton to search for the occurrence of multiple
patterns in an input string. The trie used by Commentz-Walter is similar to that of
Aho-Corasick but is created from the reversed patterns. The original paper presented two
versions of the algorithm, B and B1. The B algorithm creates during the preprocessing phase
a trie structure from the reversed patterns of the patterns set where each node corresponds to a
single character, constructs the two shift functions of the Boyer-Moore algorithm extended to
multiple patterns and specifies the exit nodes that indicate that a complete match is found in
O(|P|) time. The trie is then positioned with its starting node aligned with the mth character of
the input string and is compared backwards to the text making state transitions as necessary,
until the end of the input string is reached in O(n × m) worst case time. When a mismatch is
encountered, the trie is shifted to the right using the shift functions based on the knowledge

163
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

4 Will-be-set-by-IN-TECH

of the suffix of the text that matches to a suffix of one of the patterns. The B1 algorithm
is a modification of the B algorithm that has a linear search time in the worst case since it
stores in memory the input characters that were already scanned. Due to the complicated
preprocessing and the higher memory overhead, the original paper discourages its usage.

2.2 Wu-Manber

Wu-Manber is a generalization of the Horspool algorithm, a simple variant of the
Boyer-Moore algorithm that uses only the bad-character shift, for multiple pattern matching.
To achieve a better performance when |P| is increased, the algorithm essentially enlarges
the alphabet size by considering the text as blocks of size B instead of single characters.
As recommended in (Wu & Manber, 1994), a good value for B is logΣ2|P| although usually
B could be equal to 2 for a small pattern set size or to 3 otherwise. In the preprocessing
phase, three tables are built, the SHIFT table, the HASH table and the PREFIX table. SHIFT is
similar to the bad-character shift table of the Horspool algorithm and is used to determine the
number of characters that can be safely skipped based on the previous B characters on each
text position. Since the maximum amount of characters that can be skipped based on the value
of the SHIFT table is equal to m − B + 1, the Wu-Manber algorithm is not very efficient when
short patterns are used. The PREFIX table stores a hashed value of the B-characters prefix of
each pattern while the HASH table contains a list of all patterns with the same prefix. When
the value of SHIFT is greater than 0, the search window is shifted and a new substring B of the
input string is considered. When no shift is possible at a given position of the input string, a
candidate match is found and the hashed value of the previous B characters of the input string
is then compared with the hashed values stored at the PREFIX table to determine if an exact
match exists. As the experiments of this chapter involve large pattern set sizes, Wu-Manber
was implemented with a block size of B = 3.

2.3 Salmela-Tarhio-Kytöjoki

Salmela-Tarhio-Kytöjoki presented three algorithms called HG, SOG and BG, that extend
the single pattern Horspool, Shift-Or (Baeza-Yates & Gonnet, 1992) and BNDM algorithms
respectively for multiple pattern matching. The algorithms are character class filters; they
essentially construct a generalized pattern with a length of m characters in O(|P|) time for
BG and SOG and O(|P| × m) time for the HG algorithm that simultaneously matches all
the patterns. As |P| increases, the efficiency of the filters is expected to be reduced since a
candidate match would occur in almost every position (Salmela, 2009). To solve this problem,
the algorithms are using a similar technique to the Wu-Manber algorithm. They treat the input
string and the patterns in groups of q characters, effectively enlarging the alphabet size to Σ

q

characters. That way, the performance of the algorithms is improved but with an additional
memory space cost since an alphabet of 28 characters will grow to 216 characters with 2-grams
or 224 with 3-grams. When 3-grams are used, a hashing technique can be applied to reduce
the required memory space to 221 bytes. When a candidate match is found, it is verified
using a combination of the Karp-Rabin (Karp & Rabin, 1987) algorithm and binary search
in O(n(logr + m)) worst case complexity. To improve the efficiency of the verification, a
two-level hashing technique is used as detailed in (Muth & Manber, 1996). The combined
filtering and verification time is O(n) for SOG and O(nlogΣ(|P|)/m) for the BG and HG
algorithms on average. For the experiments of this chapter the HG, SOG and BG algorithms
were implemented using hashed 3-grams.

164 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 5

For this chapter, the Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki multiple
pattern algorithms were used. The Commentz-Walter algorithm is substantially faster in
practice than the Aho-Corasick algorithm, particularly when long patterns are involved (Wu
and Manber, 2004). Wu-Manber is considered to be a practical, simple and efficient algorithm
for multiple pattern matching (Navarro & Raffinot, 2002). Finally, Salmela-Tarhio-Kytöjoki is
a recently introduced family of algorithms that has a reportedly good performance on specific
types of data (Kouzinopoulos & Margaritis, 2010; 2011). For further details and pseudocode
of the above algorithms, the reader is referred to (Kouzinopoulos & Margaritis, 2010; 2011)
and the original references.

3. Parallel computing

Very often computational applications need more computing power than a sequential
computer can provide. One way of overcoming this limitation is to improve the operating
speed of processors and other components so that they can offer the power required
by computationally intensive applications. Even though this is currently possible to
certain extent, future improvements are constrained by the speed of light, thermodynamic
laws, and the high financial costs for processor fabrication. A viable and cost-effective
alternative solution is to coordinate the efforts of multiple interconnected processors and share
computational tasks among them.
Parallel computing can be classified into two basic techniques based on the way the
communication between the processing nodes occurs: distributed memory and shared
memory. In distributed memory parallel systems (most commonly clusters of computers)
the processing elements are loosely-coupled; each has its own local memory and the
communication between the elements takes place through an interconnected network, usually
with the use of message passing. Shared memory parallel systems (most commonly
multi-processors and multi-core processors) on the other hand are tightly-coupled; they have
a shared access to a common memory area that is also used for the communication between
the processing elements.

3.1 Multi-core system

A multi-core processor is a type of parallel system, which consists of a single component
with two or more independent actual processors (called "cores"). In other words, it is a single
integrated circuit chip or die that includes more than one processing unit. Each core may
independently implement optimizations such as superscalar execution (a CPU architecture
that allows more than one instruction to be executed in one clock cycle), pipelining (a standard
feature in RISC processors and Graphics Processor Units that is much like an assembly line:
the processor works on different steps of the instruction at the same time), and multithreading
(a specialized form of multitasking enabling concurrent execution of pieces of the same
program). Using multiple processors on a single piece of silicon enables increased parallelism,
saves space on a printed circuit board which enables smaller footprint boards and related cost
savings, reduces distance between processors which enables faster intercommunication with
less signal degradation than if signals had to travel off-chip between processors and reduces
the dependence on growth of processor speeds and the related increasing gap between
processor and memory speeds. Hyper-Threading is a technique used in Intel processors that
makes a single physical processor appear to the operating system as two logical processors

165
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

6 Will-be-set-by-IN-TECH

by sharing the physical execution resources and duplicating the architecture state for the two
logical processors.
Threads are a popular paradigm for concurrent programming on uniprocessor as well as
on multiprocessor machines. On multiprocessor systems, threads are primarily used to
simultaneously utilize all the available processors while in uniprocessor systems, threads
are used to utilize the system resources effectively. This is achieved by exploiting the
asynchronous behaviour of an application for overlapping computation and communication.
Multithreaded applications offer quicker response to user input and run faster. Unlike
forked process, thread creation is cheaper and easier to manage. Threads communicate using
shared variables as they are created within their parent process address space. Threads are
potentially portable, as there exists an IEEE standard for POSIX threads interface, popularly
called pthreads (Nichols et al., 1996) that is available on PCs, workstations, SMPs and clusters.
Threads have been extensively used in developing both application and system software.
The most widely used API for shared memory parallel processing is OpenMP, a set of
directives, runtime library routines and environmental variables that is supported on a wide
range of multicore systems, shared memory processors, clusters and compilers (Leow et al.,
2006). The approach of OpenMP is to start with a normal sequential programming language
but create the parallel specifications by the judicious use of embedded compiler directives.
The API consists of a set of specifications for parallelizing programs on shared memory
parallel computer systems without the explicit need for threads management.

3.2 Cluster system

A cluster is a type of parallel or distributed processing system, which consists of a collection
of interconnected stand-alone computers working together as a single, integrated computing
resource.
A computer node can be a single or multiprocessor system (PCs, workstations, SMPs and
multi-core processors) with memory, I/O facilities, and an operating system. A cluster
generally refers to two or more computer nodes connected together. The nodes can exist
in a single cabinet or be physically separated and connected via a LAN. An interconnected
(LAN-based) cluster of computers can appear as a single system to users and applications.
Such a system can provide a cost-effective way to gain features and benefits (fast and
reliable services) that have historically been found only on more expensive proprietary shared
memory systems.
Message passing libraries allow efficient parallel programs to be written for distributed
memory systems. These libraries provide routines to initiate and configure the messaging
environment as well as sending and receiving packets of data. Currently, the two most
popular high-level message-passing systems for scientific and engineering application are the
PVM (Parallel Virtual Machine) (Geist et al., 1994) from Oak Ridge National Laboratory, and
MPI (Message Passing Interface) defined by MPI Forum (Snir et al., 1996).
MPI is the most popular message passing library that is used to develop portable message
passing programs using either C or Fortran. The MPI standard defines both the syntax
as well as the semantics of a core set of library functions that are very useful in writing
message passing programs. MPI was developed by a group of researchers from academia
and industry and has enjoyed wide support by almost all the hardware vendors. Vendor
implementations of MPI are available on almost all parallel systems. The MPI library contains
over 125 functions but the number of key concepts is much smaller. These functions provide

166 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 7

support for starting and terminating the MPI library, getting information about the parallel
computing environment, point-to-point and collective communications.

3.3 Parallel programming models

Parallel applications can be classified into some well defined programming models. This
section presents a brief overview of two popular programming models, the data parallel and
master-worker models. For further details on parallel programming models, the reader is
referred to (Buyya, 1999; Grama et al., 2003).

3.3.1 The data-parallel model

Data-parallel (Grama et al., 2003) is a programming model where the tasks are statically or
semi-statically mapped onto processes and each task performs similar operations on different
data. This type of parallelism that is a result of identical operations being applied concurrently
on different data items is called data parallelism. The work may be done in phases and the
data operated upon in different phases may be different. Typically, data-parallel computation
phases are interspersed with interactions to synchronize the tasks or to get fresh data to the
tasks. Since all tasks perform similar computations, the decomposition of the problem into
tasks is usually based on data partitioning because a uniform partitioning of data followed by
a static mapping is sufficient to guarantee load balance.
Data-parallel algorithms can be implemented in both shared-memory and message-passing
paradigms. However, the partitioned address-space in a message-passing paradigm may
allow better control of placement, and thus may offer a better handle on locality. On the
other hand, shared-memory can ease the programming effort, especially if the distribution of
data is different in different phases of the algorithm.

3.3.2 The master-worker model

The master-worker model (Buyya, 1999) consists of two entities: the master and multiple
workers. The master is responsible for decomposing the problem into small tasks (and
distributes these tasks among a farm of worker processes), as well as for gathering the partial
results in order to produce the final result of the computation. The worker processes execute
in a very simple cycle: get a message with the task, process the task, and send the result to
the master. Usually, the communication takes place only between the master and the workers
while only rarely do the workers communicate with each other.
Master-worker may either use static load-balancing or dynamic load-balancing. In the first
case, the distribution of tasks is all performed at the beginning of the computation, which
allows the master to participate in the computation after each worker has been allocated a
fraction of the work. The allocation of tasks can be done once or in a cyclic way. The other
way is to use a dynamically load-balanced master/worker paradigm, which can be more
suitable when the number of tasks exceeds the number of available processors, or when the
number of tasks is unknown at the start of the application, or when the execution times are
not predictable, or when we are dealing with unbalanced problems.
The master-worker model can be generalized to the hierarchical or multi-level master - worker
model in which the top-level master feeds large chunks of tasks to second-level masters, who
further subdivide the tasks among their own workers and may perform part of the work
themselves. This model is generally equally suitable to shared memory or message- passing

167
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

8 Will-be-set-by-IN-TECH

paradigms since the interaction is naturally two-way; i.e., the master knows that it needs to
give out work and workers know that they need to get work from the master.
While using the master-worker model, care should be taken to ensure that the master does not
become a bottleneck, which may happen if the tasks are too small (or the workers are relatively
fast). The granularity of tasks should be chosen such that the cost of doing work dominates
the cost of transferring work and the cost of synchronization. Asynchronous interaction may
help overlap interaction and the computation associated with work generation by the master.
It may also reduce waiting times if the nature of requests from workers is non-deterministic.

4. Parallel implementations for distributed and shared memory systems

To implement the Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki algorithms
on a cluster and multi–core environment we followed the process of two phases: dividing
a computation into smaller parts and assigning them to different processes for parallel
execution. A major source of overhead in parallel systems is the time the processes stay idle
due to uneven distribution of load. To decrease the execution time, the available data set must
be decomposed and mapped to the available processes in such a way that this overhead is
minimized.
There are two available mapping techniques, the static mapping technique and the dynamic
mapping technique. Static mapping is commonly used in a homogeneous environment where
all processes have the same characteristics while the dynamic mapping is best suited in
heterogeneous set-ups. A simple and efficient way to divide the data set into smaller parts,
especially when no interaction occurs between neighbour array elements, is by using a line
partitioning where the data is divided on a per line basis.
Let p be the number of available processes and w the number of parts that a text is decomposed
to. In the case of static mapping, each process receives a part consisting of ⌈ n

p ⌉ + m − 1 text

characters prior to the execution of the algorithms. When a dynamic mapping is used instead,
the data set is decomposed into more parts than the available processes (w > p) and each
process receives sb + m − 1 characters where sb is the chosen block size during the execution
of the algorithms. There is an overlap of m − 1 characters on each part to ensure that each
process has all the data needed, resulting in w(m − 1) additional characters to be processed
for the dynamic mapping and p(m − 1) for the static.
For the experiments of this chapter the Master-Worker model was used, as it was concluded
in (Cringean et al., 1988) that is the most appropriate model for pattern matching on either
message passing or shared memory systems. For the data distribution between the master
and the workers, both a dynamic and a static distribution of text pointers was considered
as detailed in (Michailidis & Margaritis, 2003). The biological databases and the patterns
resided locally on each node. The pattern set was preprocessed first by each worker and
the master then distributed a pointer offset to each worker to indicate the area of the text that
was assigned for scanning during the search phase.
As opposed to distributed memory parallelization, shared memory parallelization does not
actually involve a distribution of data since all threads have access to a common memory
area. OpenMP provides the programmer with a set of scheduling clauses to control the way
the iterations of a parallel loop are assigned to threads, the static, dynamic and guided clauses.
With the static schedule clause, the assignment of iterations is defined before the computation

168 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 9

while with both the dynamic and guided clause, the assignment is performed dynamically at
computation time (Ayguade et al., 2003).
When a block size is not specified, OpenMP divides the data set into p blocks of equal size for
the static clause, where p is the number of processes, while for the dynamic and guided clause
the default block size is 1 iteration per thread, which provides the best level of workload
distribution but at the same the biggest overhead due to synchronization when scheduling
work (Bailey, 2006).

5. Hybrid parallel implementation

In this section we propose a hybrid parallelization approach that combines the advantages of
both shared and distributed memory parallelization on a cluster system consisting of multiple
interconnected multi-core computers using a hierarchical model. At the first level, parallelism
is implemented on the multi-core computers using MPI where each node is responsible for one
MPI process. In the next level, the MPI processes spread parallelism to the local processors
with the use of OpenMP directives; each OpenMP thread is assigned to a different processor
core. More specifically, a static or dynamic distribution of text pointers is used for the MPI
processes to parallelize the computation and distribute the corresponding data. Within each
MPI process, OpenMP is used to further parallelize the multiple pattern matching algorithms
by using a combined parallel work-sharing construct for each computation, namely a parallel
for directive with either the static, dynamic or guided scheduling clauses. Figure 1 presents a
pseudocode of the proposed hybrid technique.

6. Experimental methodology

To compare the performance of the parallel implementations of the multiple pattern matching
algorithms, the practical running time was used as a measure. Practical running time is the
total time in seconds an algorithm needs to find all occurrences of a pattern in an input string
including any preprocessing time and was measured using the MPI_Wtime function of the
Message Passing Interface since it has a better resolution than the standard clock() function.
The data set used consisted of the genome of Escherichia coli from the Large Canterbury
Corpus, the SWISS-PROT Amino Acid sequence database and the FASTA Amino Acid (FAA)
and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana genome:

• The genome of Escherichia coli from the Large Canterbury Corpus with a size of n =
4.638.690 characters and the FASTA Nucleidic Acid (FNA) of the A-thaliana genome with a
size of n = 118.100.062 characters. The alphabet Σ = {a, c, g, t} of both genomes consisted
of the four nucleotides a, c, g and t used to encode DNA.

• The FASTA Amino Acid (FAA) of the A-thaliana genome with a size of n = 11.273.437
characters and the SWISS-PROT Amino Acid sequence database with a size of n =
182.116.687 characters. The alphabet Σ = {a, c, d, e, f , g, h, i, k, l, m, n, p, q, r, s, t, v, w, y} used
by the databases had a size of 20 different characters.

The pattern set used consisted of 100.000 patterns where each pattern had a length of m = 8
characters.
The experiments were executed on a homogeneous computer cluster consisting of 10 nodes
with an Intel Core i3 CPU with Hyper-Threading that had a 2.93GHz clock rate and 4 Gb of
memory, a shared 4MB L3 cache and two microprocessors cores, each with 64 KB L1 cache

169
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

10 Will-be-set-by-IN-TECH

Main procedure
main()
{

1. Initialize MPI and OpenMP routines;
2. If (process==master) then call master(); else call worker();
3. Exit message passing operations;

}

Master sub-procedure
master()
{

1. Broadcast the name of the pattern set and text to workers; (MPI_Bcast)
2. Broadcast the offset of the text, the blocksize and the number of

threads to workers; (MPI_Bcast)
3. Receive the results (i.e. matches) from all workers; (MPI_Reduce)
4. Print the total results;

}

Worker sub-procedure
worker()
{

1. Receive the name of the pattern set and text; (MPI_Bcast)
2. Preprocess the pattern set;
3. Receive the offset of the text, the blocksize and the

number of threads; (MPI_Bcast)
4. Open the pattern set and text files from the local disk and store the

local subtext (from text + offset to text + offset + blocksize) in memory;
5. Call the chosen multiple pattern matching algorithm passing

a pointer to the subtext in memory;
6. Divide the subtext among the available threads (#pragma omp parallel for);
7. Determine the number of matches from each thread (reduction(+: matches));
8. Send the results (i.e. matches) to master;

}

Fig. 1. Pseudocode of the hybrid implementation

and 256 KB L2 cache. The nodes were connected using Realtek Gigabit Ethernet controllers.
Additional experiments were executed on a Core 2 Quad CPU with 2.40GHz clock rate and
8 Gb of memory, 4 × 32 KB L1 instruction cache, 4 × 32 KB L1 data cache and 2 × 4 MB
L2 cache. The Ubuntu Linux operating system was used on all systems and during the
experiments only the typical background processes ran. To decrease random variation, the
time results were averages of 100 runs. All algorithms were implemented using the ANSI C
programming language and were compiled using the GCC 4.4.3 compiler with the “-O2” and
“-funroll-loops” optimization flags.

7. Experimental results

This section discusses the performance speedup achieved by the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
when executed in parallel using OpenMP, MPI and a hybrid OpenMP/MPI parallel technique.
The total execution time Ttot of a multiple pattern matching algorithm on a cluster of
distributed nodes generally equals to the summation of the average processing time Tp on

170 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 11

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 2 4 2 4 2 4

S
p

e
e

d
u

p

Number of processor cores (Static scheduling)

E.coli SWISS PROT FAA FNA

CW
WM
HG

SOG
BG

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 2 4 2 4 2 4

S
p

e
e

d
u

p

Number of processor cores (Dynamic scheduling)

E.coli SWISS PROT FAA FNA

CW
WM
HG

SOG
BG

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 2 4 2 4 2 4

S
p

e
e

d
u

p

Number of processor cores (Guided scheduling)

E.coli SWISS PROT FAA FNA

CW
WM
HG

SOG
BG

Fig. 2. Speedup of all algorithms for different number of cores and all three scheduling
clauses on a Hyper-Threading CPU

a single node plus the total communication time Tc to send the text pointers from the master
to the workers and receive back the results.

Ttot = Tp + Tc (1)

As opposed to distributed memory parallelization, shared memory parallelization does not
actually involve a distribution of data since all threads have access to a common memory
area and thus the total execution time Ttot equals to the average processing time Tp per core.

171
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

12 Will-be-set-by-IN-TECH

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 2 4 2 4 2 4

S
p

e
e

d
u

p

Number of processor cores (Static scheduling)

E.coli SWISS PROT FAA FNA

CW
WM
HG

SOG
BG

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 2 4 2 4 2 4

S
p

e
e

d
u

p

Number of processor cores (Dynamic scheduling)

E.coli SWISS PROT FAA FNA

CW
WM
HG

SOG
BG

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 4 2 4 2 4 2 4

S
p

e
e

d
u

p

Number of processor cores (Guided scheduling)

E.coli SWISS PROT FAA FNA

CW
WM
HG

SOG
BG

Fig. 3. Speedup of all algorithms for different number of cores and all three scheduling
clauses on a Quad Core CPU

Speedup or parallelization rate Sp refers to the running time increase of a parallel algorithm
over a corresponding sequential when executed on a cluster of p processing elements.

Sp =
Tseq

Tp
(2)

An analytical performance prediction model for string matching algorithms when executed
in parallel on a cluster of distributed nodes can be found in (Michailidis & Margaritis, 2002).

172 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 13

 7.5

 8

 8.5

 9

 9.5

 10

cw wu hg sog bg

S
p

e
e

d
u

p

Algorithms (E.coli)

Static
Dynamic

 6.5

 7

 7.5

 8

 8.5

 9

cw wu hg sog bg

S
p

e
e

d
u

p

Algorithms (SWISS PROT)

Static
Dynamic

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

cw wu hg sog bg

S
p

e
e

d
u

p

Algorithms (FAA)

Static
Dynamic

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

cw wu hg sog bg

S
p

e
e

d
u

p

Algorithms (FNA)

Static
Dynamic

Fig. 4. Comparison of the speedup of the algorithms for a static and dynamic pointer
distribution

7.1 Shared memory parallelization

Figure 2 presents the speedup achieved with the use of the OpenMP API when parallel
executing the multiple pattern matching algorithms on a single Intel Core I3 processor with
2 and 4 threads as opposed to their execution on a single core. The biological data set used
included the genome of Escherichia coli, the SWISS-PROT Amino Acid sequence database and
the FASTA Amino Acid (FAA) and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana
genome, a pattern set size of 100.000 patterns and a pattern length of m = 8. Since the
Core I3 processor consists of only two physical and two logical cores with the use of the
Hyper-Threading technology, Figure 3 depicts for comparison purposes the speedup of the
algorithms on the same data set when executed on an Intel Core 2 Quad processor, that has
four physical cores, with 2 and 4 threads.
As illustrated in Figures 2 and 3, the parallel speedup achieved by all algorithms on both
processors and for all biological sequence databases using the static clause of OpenMP was
similar when two threads were used. In that case, a parallelization rate close to 2 was achieved.
With the use of 4 threads though, the Core 2 Quad processor had a significant advantage
in terms of performance with a speedup between 3.5 and 4 times the running time of the

173
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

14 Will-be-set-by-IN-TECH

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (E.coli)

CW
WM
HG

SOG
BG

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (SWISS PROT)

CW
WM
HG

SOG
BG

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (FAA)

CW
WM
HG

SOG
BG

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (FNA)

CW
WM
HG

SOG
BG

Fig. 5. Speedup of all algorithms with MPI for different number of processors using a static
pointer distribution

sequential algorithms on all biological databases as opposed to a speedup between 2.5 and 3.5
of the Core I3 processor. More specifically, when 4 threads were used on the Core I3 processor,
the speedup achieved by the Commentz-Walter algorithm was close to 3 for the SWISS-PROT
sequence database and between 2.5 and 3 for the E.coli, FAA and FNA databases. Wu-Manber
had a parallelization rate of between 2.5 and 3 on all biological databases. Finally, the speedup
of the HG, SOG and BG algorithms was close to 3 for the E.coli database and between 2.5 and
3 for the SWISS-PROT, FAA and FNA databases. On the Core 2 Quad processor, the speedup
achieved by all algorithms was uniform; their parallelization rate for all biological databases
was close to 2 when executed on two processor cores and between 3.5 and 4 when executed
on all four physical cores of the CPU.
Since the percentage of hits and misses was generally balanced across the data set and
the use of dynamic scheduling usually incurs high overheads and tends to degrade data
locality (Ayguade et al., 2003), it was expected that the static scheduling clause of OpenMP
would be best suited for the experiments of this chapter. A similar conclusion was drawn
in (Kouzinopoulos & Margaritis, 2009) where the static scheduling clause with the default
chunk size had a better performance than the dynamic and guided scheduling clauses for two

174 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 15

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (E.coli)

CW
WM
HG

SOG
BG

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (SWISS PROT)

CW
WM
HG

SOG
BG

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (FAA)

CW
WM
HG

SOG
BG

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (FNA)

CW
WM
HG

SOG
BG

Fig. 6. Speedup of all algorithms with hybrid OpenMP/MPI for different number of
processors with two cores

dimensional pattern matching algorithms. The experimental results confirm this expectation
since a higher parallelization rate was achieved in most cases when the static scheduling
clause was used instead of the dynamic and guided clauses. The performance speedup of the
Commentz-Walter algorithm was roughly similar on all biological databases, independent
of the scheduling clause used. The speedup of the Wu-Manber algorithm was significantly
decreased when a dynamic scheduling clause with 4 threads on the Core I3 processor was
used. Finally, the parallelization rate of the Salmela-Tarhio-Kytöjoki algorithms was slightly
reduced when the dynamic and guided scheduling clauses were used instead of the static
clause.
The performance increase of a parallel task that is executed on a processor with four physical
cores over a processor with two physical cores and Hyper-Threading was expected, it is
interesting though that the parallel execution of a multiple pattern algorithm using 4 threads
on a CPU with two cores and Hyper-Threading exhibits a performance increase of 1.25 to
1.5. This performance boost is achieved by the increase in parallelization that helps hiding
a number of hardware and software issues including memory latency, branch misprediction
and data dependencies on the instruction stream (Marr et al., 2002) that often leave processor

175
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

16 Will-be-set-by-IN-TECH

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (E.coli)

CW
WM
HG

SOG
BG

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (SWISS PROT)

CW
WM
HG

SOG
BG

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (FAA)

CW
WM
HG

SOG
BG

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p

Number of processors (FNA)

CW
WM
HG

SOG
BG

Fig. 7. Speedup of all algorithms with hybrid OpenMP/MPI for different number of
processors with four cores

resources unused. Similar performance gains were reported in (Tian et al., 2002) with an
average performance speedup of 1.2 to 1.4 on image processing and genetics experiments.

7.2 Distributed memory parallelization

Figure 4 presents a performance comparison in terms of parallel speedup of the
Commentz-Walter, Wu-Manber and the Salmela-Tarhio-Kytöjoki multiple pattern matching
algorithms using the MPI library for a static and dynamic distribution of pointers from the
master to the worker nodes on a homogeneous cluster of 10 nodes. For the static distribution
of pointers, each node received a block consisting of ⌈ n

p ⌉+ m − 1 bytes as already discussed.

For the dynamic distribution, measurements showed that a block size of ⌈ n
1000 ⌉ + m − 1

bytes provided the nodes with enough blocks to equate any load unbalances caused by the
distribution of pattern match locations in the biological databases while at the same time
keeping low the communication cost. Due to the homogeneity of the cluster nodes and the
generally balanced data set used it was expected that the algorithms should have a better
performance in terms of the parallelization rate achieved when the static distribution of
pointers was used over the dynamic as confirmed by the experimental results.

176 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

OpenMP MPI Hybrid

S
p

e
e

d
u

p

Parallelization technique (E.coli)

CW
WM
HG

SOG
BG

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

OpenMP MPI Hybrid

S
p

e
e

d
u

p

Parallelization technique (SWISS PROT)

CW
WM
HG

SOG
BG

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

OpenMP MPI Hybrid

S
p

e
e

d
u

p

Parallelization technique (FAA)

CW
WM
HG

SOG
BG

 0

 5

 10

 15

 20

 25

OpenMP MPI Hybrid

S
p

e
e

d
u

p

Parallelization technique (FNA)

CW
WM
HG

SOG
BG

Fig. 8. Speedup achieved with OpenMP, MPI and a hybrid OpenMP/MPI system

More specifically, the Commentz-Walter algorithm had a better performance on the E.coli
and the FNA sequence databases with the static distribution of pointers while HG and
SOG were consistently faster for all types of biological databases when a static pointer
distribution was used. The parallel implementation of the Wu-Manber algorithm also was
faster when a static distribution of pointers was chosen instead of the dynamic. Interestingly,
the Commentz-Walter algorithm had a better performance on the SWISS-PROT database
when a dynamic distribution of pointers was used. The advantage of the dynamic distribution
of pointers over the static for Commentz-Walter can be explained by the fact that the
sequential implementation of the algorithm is outperformed by the Wu-Manber and the
Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms when used on data
sets with a big alphabet size, including the SWISS-PROT and the FAA databases as detailed
in (Kouzinopoulos & Margaritis, 2011). This fact can be also confirmed by the very low
parallelization rate that is achieved by the Commentz-Walter algorithm as presented in
Figures 4 and 5.
Figure 5 depicts the speedup of the multiple pattern matching algorithms as a factor of the
number of worker nodes utilized in the cluster. The static pointer distribution was chosen
as it was concluded that it was best suited to the specific biological databases and the cluster

177
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

18 Will-be-set-by-IN-TECH

topology used. As discussed in (Michailidis & Margaritis, 2003), there is an inverse relation
between the parallel execution time and the number of workstations on a distributed memory
system, since the total communication time is much lower than the processing time on each
node. It is clear from Figure 5 that by distributing a computation task over two worker
nodes resulted in approximately doubling its performance. On each subsequent workstation
introduced, the performance of the algorithms increased but in most cases with a decreasing
rate since the communication cost between the master and the worker nodes also increased.
This parallelization rate generally depended on the algorithm and varied with the type of the
sequence database used.
For the E.coli sequence database, the speedup of all multiple pattern matching algorithms
increased roughly linear in the number of distributed nodes in the cluster. The Wu-Manber
algorithm improved its performance by 9.7 times when parallel executed on a cluster with 10
nodes while the Commentz-Walter, HG, SOG and BG algorithms improved their performance
by 8.4 times. The parallelization rate of the algorithms was similar for the SWISS-PROT and
the FNA sequence databases. For both genomes, the speedup of the algorithms increased
with a linear rate; the maximum speedup achieved for SWISS-PROT and FNA was 9 and
8 respectively for the Salmela-Tarhio-Kytöjoki family of algorithms, 7.6 and 7.4 for the
Wu-Manber algorithm and 6.8 and 5.1 for the Commentz-Walter algorithm. It is interesting
that for the FAA sequence database, the parallelization of all algorithms increased with a
logarithmic rate in the number of worker nodes with the HG, SOG and BG achieving a
maximum speedup of 6.5 times, Wu-Manber a speedup of 6 times and Commentz-Walter
reaching a speedup of 3.4 times. Based on the experimental findings it can be concluded in
general that the hashing multiple pattern matching algorithms have a better parallelization
rate than the trie-based Commentz-Walter algorithm on all biological databases.

7.3 Hybrid parallelization

Figures 6 and 7 illustrate the performance increase of the Commentz-Walter, Wu-Manber
and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms using the
proposed hybrid OpenMP/MPI technique on a homogeneous cluster of 10 nodes with a Core
I3 processor on each node for 2 and 4 threads. To distribute the data across the worker nodes
of the cluster and subsequently across the cores of each processor, the static distribution
of pointers was chosen for MPI and the static scheduling clause was used for OpenMP as
were the best suited options for the specific algorithms, biological databases and cluster
topology used. As can be seen in both Figures, the parallelization rate achieved by the
algorithms was significant better when using the hybrid OpenMP/MPI technique instead of
either shared memory or distributed memory parallelization. Additionally it can be seen that
the type of sequence database that is used can greatly affect the performance of the parallel
implementation of the algorithms.
When the two physical cores of the Core I3 processor where used and for the E.coli
sequence database, the parallelization rate of the algorithms increased linear in the number
of cluster nodes. The Wu-Manber algorithm was up to 19.2 times faster than its sequential
implementation while the Commentz-Walter, HG, SOG and BG algorithms had on average a
14.5 times better performance. As with the distributed memory parallelization, the speedup
of the multiple pattern matching algorithms was similar for the SWISS-PROT and the FNA
sequence databases; the speedup of the SOG algorithm was 15.3 and 13.5 respectively, of the
HG, BG and Wu-Manber algorithms was 12 on average while the maximum parallelization

178 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 19

rate of the Commentz-Walter algorithm was 10.7 and 6.4. Finally for the FAA genome, the
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
had a similar speedup of 8.4 on average while Commentz-Walter had a parallelization rate of
3.7. When all four processing cores were utilized per processor (two physical and two logical)
with the use of the Hyper-Threading technique, the performance of all algorithms increased
by an additional 1.2 to 1.3 times on all biological sequence databases as can be seen on Figure
7.
Figure 8 presents a comparison of the speedup achieved by the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
using the three presented parallelization techniques; shared memory with 4 threads per
node, distributed memory with 10 homogeneous cluster nodes and a hybrid technique that
combines the advantages of both shared and distributed memory parallelization. As can be
seen by Figure 8, the proposed hybrid implementation of the algorithms was roughly 5 to 8
times faster than the shared memory implementation using two processor cores and 2 to 3
times faster than the distributed memory parallelization for all sequence databases.

8. Conclusions

This chapter presented implementations and experimental results of the Commentz-Walter,
Wu-Manber and the Salmela-Tarhio-Kytöjoki family of multiple pattern matching algorithms
when executed in parallel. The algorithms were used to locate all the appearances of any
pattern from a finite pattern set on four biological databases; the genome of Escherichia coli
from the Large Canterbury Corpus, the SWISS-PROT Amino Acid sequence database and
the FASTA Amino Acid (FAA) and FASTA Nucleidic Acid (FNA) sequences of the A-thaliana
genome. The pattern set used consisted of 100.000 patterns where each pattern had a length
of m = 8 characters.
To compare the speedup achieved on multicore processors, the parallel algorithms were
implemented using shared memory parallelization on processors with two and four physical
cores using 2 and 4 threads and with either the static, dynamic or guided scheduling clause
for the data distribution between each processor core. For the performance evaluation of
the parallel implementations on a homogeneous cluster of 10 worker nodes, the algorithms
were implemented using distributed memory parallelization with a static or dynamic pointer
distribution. Finally a hybrid OpenMP/MPI technique was proposed that combined the
advantages of both shared and distributed parallelization.
It was discussed that the parallel execution of multiple pattern matching algorithms on
a homogeneous cluster with multicore processors using the specific types of biological
databases is more efficient when the static scheduling clause and a static pointer allocation
are used for the OpenMP and MPI APIs respectively. Moreover it was concluded in general
that the hashing multiple pattern matching algorithms have a better parallelization rate than
the trie-based Commentz-Walter algorithm on all biological databases. Finally, it was shown
that the proposed hybrid implementation of the algorithms was roughly 5 to 8 times faster
than the shared memory implementation using two processor cores and 2 to 3 times faster
than the distributed memory parallelization for all sequence databases.
The work presented in this chapter could be extended with experiments that use additional
parameters like patterns of varying length and larger pattern sets. Since biological databases
and sets of multiple patterns are usually inherently parallel in nature, future research could

179
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

20 Will-be-set-by-IN-TECH

focus on the performance evaluation of the presented algorithms when parallel processed on
modern parallel architectures such as Graphics Processor Units.

9. References

Aho, A. & Corasick, M. (1975). Efficient string matching: an aid to bibliographic search,
Communications of the ACM 18(6): 333–340.

Allauzen, C., Crochemore, M. & Raffinot, M. (1999). Factor oracle: A new structure for pattern
matching, 1725: 758–758.

Ayguade, E., Blainey, B., Duran, A., Labarta, J., Martinez, F., Martorell, X. & Silvera, R. (2003).
Is the schedule clause really necessary in openmp?, International workshop on OpenMP
applications and tools, Vol. 2716, pp. 147–159.

Baeza-Yates, R. & Gonnet, G. (1992). A new approach to text searching, Communications of the
ACM 35(10): 74–82.

Bailey, A. (2006). Openmp: Getting fancy with implicit parallelism, Website. URL:
http://developer.amd.com/documentation/articles/Pages/ 1121200682.aspx.

Boeva, V., Clement, J., Regnier, M., Roytberg, M. & V.J., M. (2007). Exact p-value calculation
for heterotypic clusters of regulatory motifs and its application in computational
annotation of cis-regulatory modules, Algorithms for Molecular Biololoy 2(1): 13.

Brudno, M. & Morgenstern, B. (2002). Fast and sensitive alignment of large genomic
sequences, IEEE Computer Society Bioinformatics Conference, Vol. 1, pp. 138–147.

Brudno, M., Steinkamp, R. & Morgenstern, B. (2004). The CHAOS/DIALIGN WWW server
for multiple alignment of genomic sequences, Nucleic Acids Research 32: 41–44.

Buhler, J., Keich, U. & Y., S. (2005). Designing seeds for similarity search in genomic dna,
Journal of Computer and System Sciences 70(3): 342–363.

Buyya, R. (1999). High Performance Cluster Computing: Programming and Applications, Vol. 2,
Prentice Hall.

Commentz-Walter, B. (1979). A string matching algorithm fast on the average, Proceedings of
the 6th Colloquium, on Automata, Languages and Programming pp. 118–132.

Cringean, J. K., Manson, G. A., Wilett, P. & G.A., W. (1988). Efficiency of text scanning
in bibliographic databases using microprocessor-based, multiprocessor networks,
Journal of Information Science 14(6): 335–345.

Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Lecroq, T., Plandowski, W. & Rytter,
W. (1994). Speeding up two string-matching algorithms, Algorithmica 12(4): 247–267.

Crochemore, M., Czumaj, A., Gasieniec, L., Lecroq, T., Plandowski, W. & Rytter, W. (1999).
Fast practical multi-pattern matching, Information Processing Letters 71(3-4): 107 – 113.

Crochemore, M. & Rytter, W. (1994). Text algorithms, Oxford University Press, Inc., New York,
NY, USA.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. & V., S. (1994). PVM: Parallel
Virtual Machine, A Users Guide and Tutorial for Networked Parallel Computing, The MIT
Press.

Grama, A., Karypis, G., Kumar, V. & Gupta, A. (2003). Introduction to Parallel Computing,
Addison Wesley.

Horspool, R. (1980). Practical fast searching in strings, Software: Practice and Experience
10(6): 501–506.

180 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Parallel Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance Results 21

Hyyro, H., Juhola, M. & Vihinen, M. (2005). On exact string matching of unique
oligonucleotides, Computers in Biology and Medicine 35(2): 173–181.

Jaffe, J., Berg, H. & G.M., C. (2004). Proteogenomic mapping as a complementary method to
perform genome annotation, Proteomics 4(1): 59–77.

Karp, R. & Rabin, M. (1987). Efficient randomized pattern-matching algorithms, IBM Journal
of Research and Development 31(2): 249–260.

Kim, S. & Kim, Y. (1999). A fast multiple string-pattern matching algorithm, Proceedings of the
17th AoM/IAoM Inernational Conference on Computer Science pp. 1–6.

Kouzinopoulos, C. & Margaritis, K. (2009). Parallel Implementation of Exact Two Dimensional
Pattern Matching Algorithms using MPI and OpenMP, Hellenic European Research on
Computer Mathematics and its Applications.

Kouzinopoulos, C. & Margaritis, K. (2010). Experimental Results on Algorithms for Multiple
Keyword Matching, IADIS International Conference on Informatics.

Kouzinopoulos, C. S. & Margaritis, K. G. (2011). Algorithms for multiple keyword matching:
Survey and experimental results. Technical report.

Leow, Y., Ng, C. & W.F., W. (2006). Generating hardware from OpenMP programs, Proceedings
of IEEE International Conference on Field Programmable Technology, pp. 73–80.

Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A. & Upton, M. (2002).
Hyper-Threading Technology Architecture and Microarchitecture, Intel Technology
Journal 6(1): 4–15.

Michael, M., Dieterich, C. & Vingron, M. (2005). Siteblast–rapid and sensitive local alignment
of genomic sequences employing motif anchors, Bioinformatics 21(9): 2093–2094.

Michailidis, P. & Margaritis, K. (2002). Parallel implementations for string matching problem
on a cluster of distributed workstations, Neural, Parallel and Scientific Computations
10(3): 312.

Michailidis, P. & Margaritis, K. (2003). Performance evaluation of load balancing strategies
for approximate string matching application on an MPI cluster of heterogeneous
workstations, Future Generation Computer Systems 19(7): 1075–1104.

Muth, R. & Manber, U. (1996). Approximate multiple string search, Combinatorial Pattern
Matching, Springer, pp. 75–86.

Navarro, G. & Raffinot, M. (1998). A bit-parallel approach to suffix automata: Fast extended
string matching, Lecture Notes in Computer Science 1448: 14–33.

Navarro, G. & Raffinot, M. (2002). Flexible pattern matching in strings: practical on-line search
algorithms for texts and biological sequences, Cambridge University Press.

Nichols, B., Buttlar, D. & Farrell, J. (1996). Pthreads Programming, OReilly.
Salmela, L. (2009). Improved Algorithms for String Searching Problems, PhD thesis, Helsinki

University of Technology.
Salmela, L., Tarhio, J. & Kytöjoki, J. (2006). Multipattern string matching with q -grams, Journal

of Experimental Algorithmics 11: 1–19.
Snir, M., Otto, S., Huss-Lederman, S., Walker, D. & J., D. (1996). MPI: The complete reference,

The MIT Press.
Tian, X., Bik, A., Girkar, M., Grey, P., Saito, H. & Su, E. (2002). Intel OpenMP C++/Fortran

Compiler for Hyper-Threading Technology: Implementation and Performance, Intel
Technology Journal 6(1): 36–46.

Wu, S. & Manber, U. (1994). A fast algorithm for multi-pattern searching, pp. 1–11. Technical
report TR-94-17.

181
Parallel Processing of Multiple Pattern Matching Algorithms
for Biological Sequences: Methods and Performance Results

www.intechopen.com

22 Will-be-set-by-IN-TECH

Zhou, Z., Xue, Y., Liu, J., Zhang, W. & Li, J. (2007). Mdh: A high speed multi-phase dynamic
hash string matching algorithm for large-scale pattern set, 4861: 201–215.

182 Systems and Computational Biology – Bioinformatics and Computational Modeling

www.intechopen.com

Systems and Computational Biology - Bioinformatics and

Computational Modeling

Edited by Prof. Ning-Sun Yang

ISBN 978-953-307-875-5

Hard cover, 334 pages

Publisher InTech

Published online 12, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Whereas some â€œmicroarrayâ€ ​ or â€œbioinformaticsâ€ ​ scientists among us may have been criticized as

doing â€œcataloging researchâ€ ​, the majority of us believe that we are sincerely exploring new scientific and

technological systems to benefit human health, human food and animal feed production, and environmental

protections. Indeed, we are humbled by the complexity, extent and beauty of cross-talks in various biological

systems; on the other hand, we are becoming more educated and are able to start addressing honestly and

skillfully the various important issues concerning translational medicine, global agriculture, and the

environment. The two volumes of this book present a series of high-quality research or review articles in a

timely fashion to this emerging research field of our scientific community.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Charalampos S. Kouzinopoulos, Panagiotis D. Michailidis and Konstantinos G. Margaritis (2011). Parallel

Processing of Multiple Pattern Matching Algorithms for Biological Sequences: Methods and Performance

Results, Systems and Computational Biology - Bioinformatics and Computational Modeling, Prof. Ning-Sun

Yang (Ed.), ISBN: 978-953-307-875-5, InTech, Available from: http://www.intechopen.com/books/systems-

and-computational-biology-bioinformatics-and-computational-modeling/parallel-processing-of-multiple-pattern-

matching-algorithms-for-biological-sequences-methods-and-per

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

