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1. Introduction 

The development of multicellular organisms requires the coordinated accomplishment of 
many molecular and cellular processes, like cell division and differentiation, as well as 
metabolism. Regulation of those processes must be very reliable and capable of resisting 
fluctuations of the internal and external environments. Without such homeostatic capacity, 
the viability of the organism would be compromised. Cellular processes are finely 
controlled by a number of regulatory molecules. In particular, transcription factors are 
amongst the proteins that determine the transcription rate of genes, including those 
involved in development and morphogenesis. For this reason, the molecular mechanisms 
responsible for the homeostatic capacity and coordinated behavior of the transcriptional 
machinery have become the focus of several laboratories. 
Modern techniques of molecular genetics have greatly increased the rate at which genes are 
recognized and their primary sequences determined. High throughput methods for the 
identification of gene-gene and protein-protein interactions exist and continue to be refined, 
raising the prospect of high-throughput determination of networks of interactions in 
discrete cell types. Still, classic biochemical and physiological studies are necessary to 
identify the targets, and to understand the functions of the encoded proteins. For such 
reasons, the rate at which pathways are described is much slower than the rate of genome 
sequencing. The large quantity of available sequences creates the challenge for molecular 
geneticists of linking genes and proteins into functional pathways or networks. Biologists 
are often interested in particular subsets of these very extensive networks obtained with 
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high-throughput techniques, subsets that are involved in accomplishing some specific 
biological objective. Such a view often does not take into account the global dynamical 
properties of networks, which may be finally necessary to understand the behavior of the 
system, for instance to correlate genotype and phenotype. This is where computational 
models of some particular networks will support bench biologists by providing their 
descriptive and predictive capacity. 
With the constant development of faster and more reliable biotechnologies, the scientific 
community is presented with a growing collection of biological information, some qualitative, 
some quantitative. Formal databases include catalogs of genes (EnsEMBL (Hubbard et al. 
2007)), proteins (UniProt (The UniProt Consortium 2007)), enzymes and their substrates 
(BRENDA (Chang et al. 2009)) and molecular reactions (Reactome (Matthews et al. 2009)), 
many from multiple species. Quantitative data resulting from large-scale experiments are also 
collected in databases; some of them are public, including gene expression (ArrayExpress 
(Parkinson et al. 2007)), protein interactions (IntAct (Kerrien et al. 2007)), reaction kinetics 
(SABIO-RK (Rojas et al. 2007)), cellular phenotypes (MitoCheck (Erfle et al. 2007)) and whole 
organism phenotypes (e.g. EuroPhenome (Morgan et al. 2010)) amongst others. The 
combination of these biological data with mathematical probabilistic methods to produce 
models for selected domains of biological systems becomes essential to better understand and 
possibly predict the behavior of systems in conditions that cannot be experimentally assayed. 
However, the diversity of biological systems, the system-specific type of information and 
the limited availability of data, implies a requirement for the development of adapted 
modeling methods. Modeling methods must be tailored not only to make the best use of the 
information available but also to answer specific biological questions, which can span from 
the understanding of the function of a pathway and its evolution to the global molecular 
mechanisms underlying cellular events such as cell differentiation for example. 
Figure 1 illustrates the tradeoff between network size and the possibility to model different 

aspects – from topology to dynamics – of the network. We will give here an overview of the 

current progress of modeling methods illustrated by chosen examples of systems. 

2. Sources of data 

Data acquisition has been greatly improved by the application of high-throughput screening 
methods in molecular biology, enabling simultaneous measurement of thousands of 
molecular events (data points) in a single experiment. Besides, public repositories for high-
content biological data (ArrayExpress, IntAct, MitoCheck, amongst others) enable, with the 
increasing use of standardized annotations, data integration at the system level (Table 1).  
The choice of the type of data needed to reconstruct networks depends on the type and size 
of system under study and is driven by the scientific rationale. Although all sources of 
experimental data are potentially useful for modeling a system, modeling specifically a 
signaling pathway will have different requirements in terms of data types to be integrated 
than a metabolic pathway. Additionally, the granularity of models’ description can also be 
adjusted to incorporate the extent of experimental data available. 
The TGF-beta signaling pathway has been extensively studied by the authors using both 
kinetic and Boolean approaches. Modeling the TGF-beta signaling pathway requires 
information to build the topology of the network, from recognition of the signal to its 
transduction to the nucleus, including the down-stream effect on the transcriptome. This 
information will be obtained from methods of molecular biology and biochemistry. 
Studying protein interactions will be necessary for predicting the topology of the model, 
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while assessing protein amounts and phosphorylation states, genes’ expression levels, and 
reaction kinetics will be necessary for recording the dynamics of the model, thereby not only 
reducing the number of parameters to be predicted, but also defining constraints in the 
network. Modeling a metabolic pathway will have other data requirements, such as classical 
biochemistry and genetics to determine the network topology, metabolomics to inform flux 
parameters and, if the system allows it, phenotypes may also be integrated into the model.  
 

 

Fig. 1. The size of the network and the available amount of data determine the type of 
approach to tackle biological questions. For very large networks, exploration is often 
restricted to topological aspects. Metabolic networks, even of large size can be studied with 
flux balance analysis, given that stoichiometry is known. For medium size networks, 
application of Boolean logic allows to detect different qualitative modes of dynamics. 
Kinetic modeling is mainly restricted to small networks that are already well characterized. 
Advances in data acquisition and modeling techniques will extend the applicability of 
different analysis methods to various biological processes in the foreseeable future. 

3. Procedures of network reconstruction 

Determining the network topology defines the limits of the system under study and enables 
the incorporation of stoichiometric information and experimental parameters (see Table 1). 
Over the last decades, systems’ modeling has been successfully applied to formulate 
biological problems in a mathematically tractable form. A number of general approaches 
and specific models were developed to enable the understanding of biological phenomena: 
For example, the introduction of metabolic control analysis (Heinrich and Rapoport 1974; 
Kacser and Burns 1973) pinpointed the fact neglected earlier that metabolic regulation is a 
property of both the structure of the metabolic network and the kinetics of the individual 
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Table 1.Examples of sources of information (databases) related with models and methods. 
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enzymes, instead of only the task of a single rate-limiting enzyme. Detailed metabolic 

modeling has highlighted among other aspects that knowledge of in vitro kinetics of isolated 

enzymes is often not sufficient to understand metabolism (Teusink et al. 2000). The study of 

signaling pathways showed how cells process information and has revealed many 

regulatory motifs including negative or positive feedback and bistability (for overviews see 

e.g. (Ferrell 2002; Tyson, Chen, and Novak 2003)). Integration of signaling with gene 

expression, metabolism and biophysical changes demonstrated the contribution of various 

components of the cellular networks to stress response (e.g. (Klipp et al. 2005)). A number of 

problems have been tackled with modelling: Among other examples, we find  

i. The question of explaining experimentally observed oscillations (e.g. in metabolism). This 
work resulted in various oscillator models such as the Higgins-Sel’kov oscillator (Higgins 
1964; Sel'kov 1968) and more complicated models (e.g. (Hynne, Dano, and Sorensen 2001)) 
or application to interacting yeast cells (Wolf and Heinrich 2000; Wolf et al. 2000); 

ii.  Can we understand cell cycle progression from protein interactions? The approaches 
vary from very simple models (Goldbeter 1991) to comprehensive studies (e.g. (Chen et 
al. 2004)); 

iii. What determines robustness of bacterial chemotaxis? Barkai and Leibler proposed a 
mechanism for robust adaptation in simple signal transduction networks (Barkai and 
Leibler 1997).  

Many of these examples seek to explain emergent properties whose origins are not obvious 
from a cursory examination of the underlying interactions. In addition, such models helped 
to establish an abstract language for describing biological observations and to introduce 
concepts such as equilibrium or steady state (early) or control, stability, robustness or signal 
amplification (later) into analysis of biological systems. 

3.1 Types of networks 
Biological networks reflect the regulatory and functional interactions between molecular 
components (genes, proteins, metabolites) but may also be extended to integrate 
information on cellular behavior and physiological impact.  
The type of information usually represented in networks can be heterogeneous. For 
instance, the transfer of information through regulatory interactions can be distinguished 
from the transfer of mass during metabolic reactions. 
Computational models are constrained by the amount of information available in the system 
of interest, which is itself limited to the fabrication of biotechnological tools enabling 
scientific explorations of various biological systems at the molecular scale. To date, 
knowledge on prokaryote metabolism is rather complete in comparison to eukaryotic 
organisms. Similarly, while biological data can be extracted using monocellular cultures in 
vitro, the transposition of knowledge to multicellular systems remains uncertain. 

3.2 Modeling methods 
3.2.1 ODE modeling  
Among the most frequently applied techniques for modeling dynamic processes in 
biological networks are systems of ordinary differential equations (ODE) (Klipp 2007). These 
systems are used to describe the temporal changes of molecular concentrations caused by 
production, degradation, transport, or modification of the modeled substances. Such 
changes of concentration are expressed as a function of rates of reaction and appropriate 
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stoichiometric coefficients. Reaction rates, in turn, can be of several types, such as the mass 
action law (Guldberg and Waage 1879), the Michaelis-Menten rate law (Briggs and Haldane 
1925; Michaelis and Menten 1913), or more complicated forms to attain some specific 
kinetics (Cornish-Bowden et al. 2004; Klipp et al. 2005; Koshland, Nemethy, and Filmer 1966; 
Liebermeister and Klipp 2006; Monod, Wyman, and Changeux 1965). 
The use of kinetic ODE modeling using rate laws has been the cornerstone of our traditional 

biochemical terminology and thinking. Such equations have proven quite successful 

providing a convenient language and conveying immediate meaning since the formulation 

of the mass action law (Waage and Guldberg 1864), and the modeling of enzyme kinetics 

(Michaelis and Menten 1913). As a consequence, there is a vast amount of research and huge 

numbers of publications that have been devoted to the modeling of biochemical reactions 

using ordinary differential equations (Heinrich and Rapoport 1974; Tyson, Chen, and Novak 

2003). A widely successful example of the use of the kinetic approach is the modeling of the 

cell-cycle control in yeast (Tyson, Csikasz-Nagy, and Novak 2002). 
A severe drawback of the ODE approach is the large number of parameters involved in the 
system of equations. This implies that for any given biological system, there is the need of 
large sets of experimental data to determine the parameter values of the equations. 
Moreover, although a number of kinetic parameters are already available in databases, these 
values are not always applicable for other organisms or other experimental scenarios than 
for those for which they were measured. For example, kinetic constants usually are 
developed for metabolic reactions catalyzed by enzymes acting in a test tube, so the 
appropriateness for modeling in vivo reactions remains to be proven. They may also have 
been measured in different species from the one under consideration. Alternatively, there is 
the possibility of parameters estimation (Ashyraliyev, Jaeger, and Blom 2008; Sorribas and 
Cascante 1994), but such methodology is computationally costly and there is no guarantee 
that the computational result is biologically correct. 
Most ODE models make use of continuous functions to describe the kinetic laws. 
Continuous functions, however, may not always be appropriate for describing biological 
processes. For example, given that molecules are discrete entities, the number of molecules 
as a function in time is in reality a discrete function. Hence, it is important to assess if the 
use of a continuous function in a given model is a reasonable approximation to reality. As a 
rule of thumb, if the experimental error at measuring the real value of a variable is larger 
than the jump in the discrete value, then it is usually harmless to replacement discrete 
functions by continuous ones. 
The representation of chemical species as a concentration with the use of continuous 
variables also assumes that the system is absolutely uniform. However, in reality 
biochemical systems frequently exhibit a large degree of spatial heterogeneity due to 
processes such as compartmentalization, molecular association, or restricted diffusion. It has 
been mathematically demonstrated that changes in the spatial distribution of molecules 
have a large impact on the dynamical behavior of a biochemical system (Zimmerman and 
Minton 1993). 
Often ODE models are deterministic, but under certain circumstances, a deterministic 
approach does not give an adequate representation of the biological system. At the 
molecular scale, individual molecules randomly collide with one another, allowing for a 
chemical reaction to occur only if the collision energy is strong enough. This effect is 
observed for small volumes; when using deterministic equations the smaller the volume the 
less accurate the model becomes (Ellis 2001; Erdi and Toth 1989). Therefore, it is important 
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to make sure that the system under study is large enough to avoid stochastic fluctuations 
(Fournier et al. 2007) which could be amplified and thus originate observable macroscopic 
effects. 

3.2.2 Discrete networks 
A network is a system formed by multiple nodes, each associated with a state of activation, 
which depends upon the state of a set of nodes. A common practice is to represent nodes 
with the use of continuous variables. However, usually there is only qualitative 
experimental data regarding the activity of most genes and/or proteins. For such reasons, a 
useful simplification is to suppose that genes can attain only a finite number of possible 
states, thus allowing their representation with discrete variables. In the simplest case, a gene 
might be “turned on” (or “active”, or “1”) or “turned off” (or “inactive”, or “0”) at a given 
time. In this case, we are dealing with binary networks, also known as Boolean networks. 
Boolean networks were first presented by Kauffman (Glass and Kauffman 1973; Kauffman 
1969) so as to give a qualitative description of the concerted action of a group of genes 
during cellular differentiation. Such models were originally developed as a suitable 
simplification for the analysis of genetic regulation, and were originally studied exclusively 
from a statistical point of view (Kauffman 1993) due to the lack of biological data on 
experimentally validated biological networks. More recently, Boolean network models have 
been developed for a series of biological systems showing the suitability of this 
methodology to capture key aspects of cellular development and differentiation (Albert and 
Othmer 2003; Davidich and Bornholdt 2008; Faure et al. 2006; Gupta et al. 2007; Huang and 
Ingber 2000; Kervizic and Corcos 2008; Li et al. 2004; Mendoza, Thieffry, and Alvarez-Buylla 
1999; Saez-Rodriguez et al. 2007; Samal and Jain 2008). 
The use of Boolean models has permitted the discovery of the influence of the network 
topology on its dynamical behavior. Specifically, most studied networks include feedback 
loops or circuits. It has been shown that their presence is necessary to ensure 
multistationarity and homeostasis, which are particularly important properties of biological 
systems. The logical analysis of feedback loops decomposes any network into a well-defined 
set of feedback loops. It was first developed by Thomas (Thomas 1973), and formally 
demonstrated by others (Gouzé 1998; Plahte, Mestl, and Omholt 1995; Snoussi 1998). 
Negative feedback loops generate homeostasis in the form of damped or sustained 
oscillations. The importance of homeostasis in maintaining the internal environment of an 
organism is well known and dates from the work of (Cannon 1929). Conversely, positive 
feedback loops generate multiple alternative steady states or multistationarity. The 
biological interpretation of multistationarity as cellular differentiation goes back to Delbrück 
(Delbrück 1949), and has been developed by the group of Thomas (Thieffry et al. 1995; 
Thomas 1973). 
Boolean networks are widely used for their computational tractability and their capability of 
providing qualitatively correct results; there is, however, an important issue to take into 
account. Boolean networks describe time as a discrete variable, hence there is the need to 
decide at each clock tick which nodes of the network are going to be updated. On the one 
hand, in the synchronous approach all nodes are updated at each time step. This 
methodology is the easiest to implement but also the less realistic, since it is highly unlikely 
that all molecules in the modeled network have the same time response. On the other hand, 
in the asynchronous approach only one node is updated at each time step. While this 
approach is closer to reality, there is usually no experimental information regarding the 
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correct order of response. Worse still, the group of stable states attained by the system using 
the synchronous and asynchronous approaches are not necessarily identical. It is therefore 
advisable to use both methodologies, with the aid of a modeling software (Garg, Banerjee, 
and De Micheli 2008; Gonzalez et al. 2006), and then use biological knowledge to decide 
among all possible outcomes. 

3.2.3 Qualitative modeling 
The use of continuous variables provides fine-granularity modeling, thus allowing for the 
description of a richer dynamical behavior. However, experimental data to support 
parameter fitting is very scarce; hence the development of quantitative models of regulatory 
networks is limited to a small set of experimental systems for which a large quantity of 
molecular data has been gathered (for an example see (Jaeger et al. 2004)). The alternative 
approach of modeling with the use of Boolean networks is not always possible, though, 
usually because of the lack of experimental information to infer the logical rules governing 
the response of nodes. There are, however, intermediate modeling methodologies lying 
between the coarse-grained binary approach and the fine-grained use of ordinary-
differential equations: among them it is possible to find the use of piecewise-linear 
differential equations, qualitative differential equations and standardized qualitative 
dynamical systems. 
Piecewise-linear models have been proposed for the modeling of regulatory networks. 
These equations, originally proposed in (Glass and Kauffman 1973) have been amply 
studied (Glass and Pasternack 1978; Gouzé and Sari 2002; Mestl, Plahte, and Omholt 1995; 
Plahte, Mestl, and Omholt 1994) from a theoretical point of view. Variables in the piecewise-
linear approach represent the concentrations of proteins, while the differential equations 
describe the regulatory interactions among genes encoding these proteins. Each differential 
equation contains two terms, namely the activation part consisting of a weighted sum of 
products of step functions and the decay rate. The mathematical form of these equations 
divides the state space into multidimensional boxes, and inside the volume of each box the 
equations are reduced to linear ODEs, making the behavior of the system inside a given 
volume straightforward to analyze. Nevertheless, the global behavior of these systems of 
equations can be very complex, with chaotic behavior being rather common (Lewis and 
Glass 1995; Mestl, Bagley, and Glass 1997). Despite this drawback piecewise-linear 
differential equations have been used to analyze several regulatory networks of biological 
interest (De Jong et al. 2004; Ropers et al. 2006; Viretta and Fussenegger 2004). 
In the case of the use of qualitative differential equations, the dependent variable takes a 
qualitative value composed of a qualitative magnitude and a direction. Here, the qualitative 
magnitude is a discretization of a continuous variable, while the qualitative direction is the 
sign of its derivative. Furthermore, each equation is actually a set of constraints that restrict 
the possible qualitative values of the variable. To solve the system, it is necessary to create a 
tree of possible sequences of transitions from the initial state. Now, this characteristic makes 
the methodology difficult to apply for large biological systems, since the trees describing the 
dynamical behavior rapidly grow out of bounds. This scalability problem has restricted the 
application of qualitative equations to a small number of models (Heidtke and Schulze-
Kremer 1998; Trelease, Henderson, and Park 1999). 
While Boolean models approximate a continuous sigmoid by a discontinuous step function, 
the standardized qualitative dynamical systems method goes the other way around. Within 
this methodology, the network is modeled as a continuous system using a set of ordinary 
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differential equations. These equations describe the rate of change of activation (or 
synthesis, or transcription) as a sigmoid function of the state of activation of the controlling 
input variables. The variables representing the state of activation are normalized, so that 
they are constrained in the range [0,1]. This feature enables a comparison of the dynamics 
against the results of a purely binary model. The characteristic that distinguishes this 
method from other approaches is that the equations are normalized and standardized, i.e. 
they are not network-specific. Moreover, models can be developed even in the total absence 
of information regarding the molecular mechanisms of a given network because no 
stoichiometric or rate constants are needed. Given that this qualitative method was recently 
developed, it has been used to model a small number of biological networks (Mendoza and 
Pardo 2010; Mendoza and Xenarios 2006; Sanchez-Corrales, Alvarez-Buylla, and Mendoza 
2010). The standardized qualitative dynamical systems methodology has been used for the 
development of a software package for the automated analysis of signaling networks 
(http://www.enfin.org/squad). 

3.2.4 Constraint-based modeling 
Analyzing the dynamics of large-scale metabolic networks using kinetic modeling 
techniques is hampered by the size of the biological system because of the large number of 
parameters that need to be fitted. Constraint-based modeling bridges the gap between the 
mere static representation of graph-based methods and the detailed dynamic pathway 
analyses of kinetic modeling techniques (Feist and Palsson 2008). This framework aims at 
simulating at the cellular level the global dynamics of metabolism, using a limited amount 
of information. To that end, the method is based on the description of all reaction fluxes that 
are compatible with constraints deriving from basic physical assumptions, specific 
biological information or experimental measures. The assumption of steady state dynamics, 
for example, simplifies the analysis by only requiring knowledge on the reaction 
stoichiometries, which can be easily obtained from metabolic databases (Kanehisa et al. 
2006; Karp, Paley, and Romero 2002; Matthews et al. 2009). Other information such as 
reaction reversibility (Joyce and Palsson 2006), flux measurements, gene expression (Shlomi 
et al. 2008) and metabolite concentration (Henry et al. 2006; Kummel, Panke, and 
Heinemann 2006) can be incorporated into the modeling if available (Durot, Bourguignon, 
and Schachter 2009). Compared to kinetic models, constraint-based models are therefore 
easily reconstructed at large scale (Feist et al. 2009) and online resources that provide 
automatically reconstructed models are currently being launched (Henry et al. 2010).  
A set of constraints narrows the total number of possible flux states, which represent the set 
of possible metabolic behaviors of the system. In order to explore this set of attainable flux 
distributions, a number of mathematical and computational methods have been designed 
(Durot, Bourguignon, and Schachter 2009). Some of them attempt to describe the overall set 
of possibilities either by enumerating all basic independent metabolic routes, known as 
elementary modes or extreme pathways (Papin et al. 2004), or by randomly sampling the 
space of flux distributions (Schellenberger and Palsson 2009). Other methods focus on 
specified metabolic objectives, e.g. the production of biomass components, and look for flux 
distributions that optimize it (Varma and Palsson 1994).  
The constraint-based modeling framework utilizes a set of equations describing metabolites, 
where each equation contains as many unknowns as there are fluxes for a given metabolite. 
Very often the number of unknowns is larger than the number of equations. This is the main 
drawback of the approach, since it means that the system of equations has an infinite 
number of solutions. This problem is usually solved by maximizing some functions, which 
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in turn assumes that the modeled organism has evolved optimal metabolic pathways, which 
is not necessarily true. Despite this limitation, the constraint-based modeling approach has 
been successfully applied for predicting growth phenotypes for knock-out mutants on 
varying environments, analyzing essentiality or dispensability, integrating genome-scale 
experimental data, and driving metabolic engineering designs (Durot, Bourguignon, and 
Schachter 2009; Feist and Palsson 2008). 

3.2.5 Probabilistic graphical models 
Probabilistic graphical models (Pearl 1988) represent another class of methods that have 
recently gained much popularity in studies of gene regulation. Such models always define a 
joint probability distribution over all the properties in the domain, where a property is 
represented by a random variable, which is either hidden (e.g., the functional module that a 
gene belongs to) or observed (e.g., the expression level of a gene). Random variables and the 
probabilistic dependencies among them define a probabilistic graphical model, which 
provides a statistical framework for representing complex interactions in biological domains 
in a compact and efficient manner. 
In contrast to procedural methods, such as data clustering followed by motif finding 
(Tavazoie et al. 1999), probabilistic graphical models are, as their name implies, declarative, 
model-based approaches, where by a model we mean a simplified description of the 
biological process that could have generated the observed data. An important property of 
these models is their ability to handle uncertainty in a principled way, which is particularly 
useful in the biological domain, due to the stochastic nature of the biological system and due 
to the noise in the technology for measuring its properties. The details of the models 
(dependency structure and parameters) are typically learned automatically from the data, 
where the goal is to find a model that maximizes the probability of the model given the 
observed data. The main difficulty with this approach is that the learning task is 
challenging, as it involves several steps, some of which are computationally intractable. 
Despite the computational difficulties of the probabilistic approach, it has been successfully 
used in several cases. One example is the reconstruction of the structure of regulatory 
networks (Friedman et al. 2000). The main idea is that if the expression of gene A is 
regulated by proteins B and C, then A’s expression level is a function of the joint activity 
levels of B and C; this can easily be extended to networks composed of modules of co-
regulated genes (Gasch et al. 2000; Segal et al. 2003). Another example is the case where 
probabilistic graphical models were applied to identify the cis-regulatory motifs through 
which transcriptional programs occur (Segal, Yelensky, and Koller 2003), with the aim of 
identifying modules of co-regulated genes and explain the observed expression patterns of 
each module via a motif profile that is common to genes in the same module. 

4. Strengths and weaknesses of modeling methods  

The methods chosen to model a given system depend mostly on the qualitative and 
quantitative features of biological data available to construct the model and on the biological 
question that is asked. To be accurate, an ODE model will require as much experimental 
information as possible since all parameters of the network are represented and missing 
parameters will be estimated to fit experimental values. Boolean modeling minimizes the 
network to the essential nodes that are subjected to decisional events and feedback loops. 
Although such a reductionist method does not involve kinetic parameters, it remains 
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capable of predicting the logical behavior of the network and identifying steady states. 
Although these two previous methods work with currently size-limited networks, global 
metabolic modeling using the constraint-based method allows the comparative analysis of 
thermodynamic fluxes between chosen states of a system.  Probabilistic graphical models 
integrate different types of biological information, such as gene expression data for example, 
in order to reconstruct the networks and predict their behaviors. 
The models studied by the authors are developed in synergy by wet and dry laboratories, 

which cycle between computational modeling and experimental testing. For example, the 

human TGF-beta signaling pathway has been modeled using ODE modeling by the group of 

E. Klipp (Zi and Klipp 2007) and using Boolean modeling by the group of I. Xenarios. The 

ODE modeling required a large amount of biochemical information, or used parameter 

estimation methods to predict missing values. However, since this method is based on real 

biological data, it allowed investigating precisely early time points of the TGF-beta signaling 

cascade. The Boolean method required obviously less biochemical information than the 

ODE, which allowed to compute accurately a large network articulated across several 

positive or negative feedback loops. However, qualitative models despite looking fairly 

simple to construct pose several issues when one wants to validate experimentally the 

proposed predictions. Each component (node) of a model is represented as an abstraction of 

a molecular entity. For example, the interferon gamma receptor complex will be represented 

in qualitative models as a single entity (node). However, from a biochemical point of view 

interferon gamma receptor is composed of three subunits (a,b,g). This raises the question 

whether all the subunits should be experimentally measured or only one of them. This 

situation was experienced by the authors who modelled the TGFb pathway: Several 

predictions were produced after reconstructing the Boolean network. One of them was that 

knocking-out one component introduced an oscillation of several components of the TGF-

beta pathway. However, upon experimental validation, the nodes that were suggested to 

oscillate did not show any changes at the mRNA/protein expression or phosphorylation 

states during a time-course experiment. The model did not indicate at what molecular level 

the predicted oscillation would be measurable. 

According to the experience acquired with the models developed by the authors as part of 
the ENFIN Consortium, we have assessed the relationship between modeling frameworks 
and the biological questions which could be answered in each case (Table 2). 
Besides the biological question and the subjective choice of the modeler, the ability to access 
experimental data can be critical for the choice of a modeling method. This is schematically 
represented in the decision tree (Figure 2). 
Testing entire model predictions with wet experiments is often impossible, because of 

simple limitations of available technologies. Experimental assays are therefore designed to 

target key components of models, a strategy often taken in industry to prioritize 

pharmaceutical targets. To our experience, the integration of several disciplines improves 

the coverage of computational analysis. Improving computational models can also require 

repetition of experiments potentially needing expensive settings, but which may not result 

in genuine scientific discovery. For instance, there is no point measuring some parameters 

that may be useful for the model if the accuracy of measurement is too poor to resolve 

between alternative model versions. Problems may also arise concerning the spatial 

resolution of experimental data. For example, how useful are whole animal metabolomics in 

metazoans for assessing the behavior of a particular cell type? 
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Table 2. Relationships between modeling frameworks and biological questions. Each 
column represents a model type; each row represents a type of question. The cells contain 2 
types of information: 1) the degree of relevance of the modeling framework to the question 
(indicated by 1 to 3 stars; N/A stands for not applicable); 2) a short explanation on how the 
approach enables to answer the question (which method or data are used, for instance). 
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Fig. 2. Decision tree: which type of data is necessary to perform a certain type of analysis? 

Given the great development computational approaches in systems biology, it has become 
urgent to establish methods to assess the accuracy of these in specific contexts. Challenges 
have been organized for example in protein structure assessment (CASP (Moult et al. 2007)) 
or in network reconstruction (DREAM (Stolovitzky, Monroe, and Califano 2007)). In this 
context, one application of models can be to challenge the topology of computationally 
reconstructed networks in silico. Models can thus both be improved with new data but also 
be used to test the likelihood that these data make sense in the context of the already 
validated model’s components.  

5. Examples of reconstruction procedures 

5.1 T-helper model 
The vertebrate immune system encompasses diverse cell populations. One of these is made 
of CD4+ lymphocytes, or T-helper cells. While these cells have no cytotoxic or phagocytic 
activity, they coordinate several cellular and humoral immune responses via the release of 
cytokines, which influences the activity of several cell types. In vitro, T-helper cells can be 
further subdivided into precursor Th0 cells and effector Th1 and Th2 cells, depending on 
their pattern of secreted molecules. Various mathematical models have been proposed to 
describe the differentiation, activation and proliferation of T-helper cells. Early models 
aimed to describe the cellular interactions of these cells, mediated by the secretion of 
cytokines. More recent models have been developed to describe the molecular mechanism 
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that determine the differentiation process of these cells, as well as the determination of their 
molecular markers. There is currently a lack of quantitative data on the levels of expression 
of the molecules involved in the differentiation process of T-helper cells. There is, however, 
a vast amount of qualitative information regarding the regulatory interactions among many 
such molecules. As a result, it has been possible to reconstruct the basic signaling network 
that controls the differentiation of T-helper cells. Hence, despite the lack of quantitative 
data, it has been possible to model this network as a dynamical system at a qualitative level. 
Specifically, this network has been studied by modeling it as a discrete dynamical system 
(Mendoza 2006), a continuous dynamical system (Mendoza and Xenarios 2006), a Petri Net 
(Remy et al. 2006), and a binary decision diagram (Garg et al. 2007). Also the model has been 
recently updated to include the description of Th17 and Treg cell types (Mendoza and Pardo 
2010). Despite the very different approaches used to model the T-helper signaling network, 
they all reach comparable results. Specifically, they show that the network has fixed points 
that correspond to the patterns of activation or expression observed in the Th0, Th1 and Th2 
cell types. Furthermore, such models are capable of describing the effect of null-mutations, 
or over-expression of some molecules as reported by several experimental groups. The 
consistency among the results of several modeling approaches on the same signaling 
network shows that the qualitative dynamical behavior of the network is determined to a 
large extent by its topology. Moreover, these models show that it is possible to develop 
dynamical models at a qualitative level, and that such models are indeed useful to describe 
and predict relevant biological processes. 

5.2 Genome-scale metabolic model of Acinetobacter baylyi ADP1 
Acinetobacter baylyi ADP1, a strictly aerobic gamma-proteobacterium, is a good model 

organism for genetic and metabolic investigations (Metzgar et al. 2004; Young, Parke, and 

Ornston 2005) as well as for biotechnological applications (Abdel-El-Haleem 2003) thanks to 

its metabolic versatility and high competency for natural transformation. Following its 

sequencing and expert annotation (Barbe et al. 2004), a genome-wide collection of single-

knockout mutants was generated and mutant growth phenotypes were assayed in selected 

environmental conditions (de Berardinis et al. 2008). In order to interpret these phenotype 

results and assess their consistency with the previous biochemical knowledge, a genome-

scale constraint-based model of its metabolism was reconstructed (Durot et al. 2008). In a 

first step, an initial model was built using data from A. baylyi’s genome annotation, 

metabolic pathways databases (e.g. KEGG, BioCyc or Reactome) and physiological 

knowledge gathered from the literature. Such reconstruction of the overall set of 

biochemical reactions present in an organism has already been performed for more than 15 

species (Reed et al. 2006). While facilitated by metabolism-related tools such as Pathway 

Tools (Karp, Paley, and Romero 2002), the task is still labor intensive and requires extensive 

manual curation. This initial model of A. baylyi included 870 reactions, 692 metabolites and 

781 genes. In a second step, experimental mutant growth phenotypes were systematically 

compared to growth phenotypes predicted by the model. Inconsistencies between 

predictions and experimental results revealed potential gaps or errors in the current model: 

they were therefore examined to look for interpretations and possible corrections. Out of 127 

inconsistencies, 60 led to a model correction. Each correction involved a modification of the 

gene-reaction associations, the metabolic network or the biomass requirements. Explanation 

of the remaining inconsistent cases would require further experimental investigations. In 
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several cases, hypothetical interpretations involving biological processes lying outside the 

model scope (e.g. regulation) could be proposed. The result of that model refinement 

process was an increase in growth phenotype predictive accuracy from 88% to 94%. In 

addition, the improved version of the model integrated a significant fraction of the 

additional information resulting from large-scale mutant phenotyping experiments within 

the metabolic knowledge on A. baylyi derived from its genome annotation and the literature. 

5.3 Nicotinamide nucleotide transhydrogenase (Nnt) pathway 
Insulin secretion in mammals is carried out by pancreatic β-cells in response to the glucose 

concentration in the surrounding environment. The insulin secretion response is a complex 

one, incorporating many well-conserved biochemical reactions coupled to a cell-type-

specific insulin secretion process driven by intracellular ATP concentration. The kinetic core 

model of pancreatic β-cell glucose-stimulated insulin secretion (Jiang, Cox, and Hancock 

2007) simulates the relationship between incoming glucose concentration and resultant 

cytoplasmic ATP concentration using a set of ODEs representing 44 enzymatic reactions, 

some of which take place in more than one compartment and simulates the concentrations 

of 59 metabolites. The model is divided into three compartments: cytoplasm, mitochondrial 

matrix and mitochondrial inter-membrane space. Information on components of the model 

was collected from the literature and from SABIO-RK (http://www.sabio.villa-

bosch.de/SABIORK/). Initial validation of the model was based on its ability to replicate 

published properties of the system in vivo, such as response to changing glucose 

concentration and oscillation of the concentration of certain metabolites in the glycolysis 

pathway and elsewhere. Further characterization and optimization will require in vivo 

measurement of some of these concentrations in an appropriate cell type. 

6. Discussion 

We conclude along the lines of the famous quote of G.E.P. Box: “All Models Are Wrong But 

Some Models Are Useful” (Segal et al. 2003). Most models are often focused on particular 

scientific domains and integrate a limited set of information, considered being “good-

enough” to answer the scientific questions of a given project. Many uncertainties still remain 

in the interpretation of computational models. Those uncertainties emanate from different 

levels of variation: technology, laboratory-to-laboratory, human-to-human specific, among 

others. The true biological variation or stochasticity is harder to detect. For example, when 

there is significant variation between individual runs of an experiment, how should the data 

be integrated in the model? Should individual models be created for each case, and these 

compared, or should data be averaged to produce a consensus model? When is a model 

considered to contain most of the behaviors of the real system?  

The different examples represented in this review are not exhaustive by far and only reflect 
our limited knowledge of the interface between mechanistic modeling and “wet” 
experiments, based on the research performed within the ENFIN Consortium.  
Ultimately providing both models and experimental data to a wider community is a way to 

bridge the gap and transmit our knowledge to the next generation of scientists. An effort 

leading in that direction is the development of databases of models such as BioModels 

(www.biomodels.org) (Le Novere et al. 2006), which collects molecular models by using a 
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standardized format. Another important development is the formulation of standards for 

experiments and for model formulation (such as MIRIAM (Le Novere et al. 2005)). 

Standards and associated controlled vocabularies will certainly contribute to unifying 

experimental data models that are currently scattered across several databases.  
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