
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



9 

On the Optimal Allocation of the Heat 
Exchangers of Irreversible Power Cycles 

G. Aragón-González, A. León-Galicia and J. R. Morales-Gómez  
PDPA, Universidad Autónoma Metropolitana-Azcapotzalco 

México 

1. Introduction 

Thermal engines are designed to produce mechanical power, while transferring heat from 
an available hot temperature source to a cold temperature reservoir (generally the 
environment). The thermal engine will operate in an irreversible power cycle, very often 
with an ideal gas as the working substance. Several power cycles have been devised from 
the fundamental one proposed by Carnot, such as the Brayton, Stirling, Diesel and Otto, 
among others. These ideal cycles have generated an equal number of thermal engines, 
fashioned after them. The real thermal engines incorporate a number of internal and 
external irreversibilities, which in turn decrease the heat conversion into mechanical power.  

A standard model is shown in Fig. 1 (Aragón-González et al., 2003), for an irreversible 

Carnot engine. The temperatures of the hot and cold heat reservoirs are, respectively, TH 

and TL. But there are thermal resistances between the working fluid and the heat reservoirs; 

for that reason the temperatures of the working fluid are T1 and T2, for the hot and cold 

isothermal processes, respectively, with T1 < TH  and TL < T2. There is also a heat loss Q leak 

from the hot reservoir to the cold reservoir and there are other internal irreversibilities (such 

as dissipative processes inside the working fluid). This Carnot-like model was chosen 

because of its simplicity to account for three main irreversibilities above, which usually are 

present in real heat engines. 
On the other hand, the effectiveness of heat exchangers (ratio of actual heat transfer rate to 
maximum possible heat transfer rate), influence over the power cycle thermal efficiency. For 
a given transfer rate requirement, and certain temperature difference, well-designed heat 
exchangers mean smaller transfer surfaces, lesser entropy production and smaller thermal 
resistances between the working fluid and the heat reservoirs. At the end all this accounts 
for larger power output from the thermal engine. 
Former work has been made to investigate the influence of finite-rate heat transfer, together 
with other major irreversibilities, on the performance of thermal engines. There are several 
parameters involved in the performance and optimization of an irreversible power cycle; for 
instance, the isentropic temperature ratio, the allocation ratio of the heat exchangers and the 
cost and effectiveness ratio of these exchangers (Lewins, 2000; Aragón-González et al., 2008 
and references there included). The allocation of the heat exchangers refers to the 
distribution of the total available area for heat transfer, between the hot and the cold sides of 
an irreversible power cycle. The irreversible Carnot cycle has been optimized with respect to 
the allocation ratio of the heat exchangers (Bejan, 1988; Aragón-González et al., 2009).  
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Fig. 1. A  Carnot cycle with heat leak, finite rate heat transfer and internal dissipations of the 
working fluid. 

1.1 Heat exchangers modelling in power cycles 
Any heat exchanger solves a typical problem, to get energy from one fluid mass to another. 
A simple or composite wall of some kind divides the two flows and provides an element of 
thermal resistance between them. There is an enormous variety of configurations, but most 
commercial exchangers reduce to one of three basic types: a) the simple parallel or 
counterflow configuration; b) the shell-and-tube configuration; and c) the cross-flow 
configuration (Lienhard IV & Lienhard V, 2004). The heat transfer between the reservoirs 
and the hot and cold sides is usually modeled with single-pass counterflow exchangers; Fig. 
2. It is supposed a linear relation with temperature differences (non radiative heat transfer), 
finite one-dimensional temperature gradients and absence of frictional flow losses. For 
common well-designed heat exchangers these approximations capture the essential physics 
of the problem (Kays & London, 1998). 
Counterflow heat exchangers offer the highest effectiveness and lesser entropy production, 
because they have lower temperature gradient. It is well-known they are the best array for 
single-pass heat exchanging. It has also been shown they offer an important possibility, to 
achieve the heating or cooling strategy that minimizes entropy production (Andresen, B. & 
Gordon J. M., 1992).  For the counterflow heat exchanger in Fig. 2, the heat transfer rate is  
 

 

Fig. 2. Temperature variation through single-pass counterflow heat exchanger, with high 
and low temperature streams. 
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(Lienhard IV & Lienhard V, 2004): 

 q = UA ΔTmean             (1) 

where U (W/m2K) is the overall heat transfer coefficient, A (m2) is the heat transfer surface 
and ΔTmean is the logarithmic mean temperature difference, LMTD (K) (see Fig. 2). 

 a b
mean

a

b

ΔT -ΔT
LMTD = ΔT  = ΔT

ln
ΔT

 (2) 

For an isothermal process exchanging heat with a constant temperature reservoir, as it 
happens in the hot and cold sides of the irreversible Carnot cycle in Fig. 1, it appears the 
logarithmic mean temperature difference is indeterminate (since ΔTa=ΔTb). But applying 
L’Hospital’s rule it is easily shown: 

 a bLMTD = ΔT  = ΔT . (3) 

For the Brayton cycle (Fig. 3) with external and internal irreversibilities which has been 
optimized with respect to the total inventory of the heat transfer units (Aragón-González G. 
et al., 2005),  the hot and cold sides of the cycle have: 

 
H 2s 4s L

H 3 1 L

3 2s 4s 1
H LT  - T T  - T

T  - T T - T

T  - T T  - T
LMTD  = and LMTD  = 

ln ln
 (4) 

The design of a single-pass counterflow heat exchanger can be greatly simplified, with the 
help of the effectiveness-NTU method (Kays and London, 1998). The heat exchanger 
effectiveness (ε) is defined as the ratio of actual heat transfer rate to maximum possible heat 
transfer rate from one stream to the other; in mathematical terms (Kays & London, 1998): 
 

 

Fig. 3. A Brayton cycle with internal and external irreversiblities. 

 
 
 

 
 

H Hin Hout L Lout Lin

min Hin Lin min Hin Lin

C T  - T C T  - T
ε =  = 

C T  - T C T  - T
 (5) 

it follows that:  
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 qactual =  ε Cmin (THin - TLin) (6) 

The number of transfer units (NTU) was originally defined as (Nusselt, 1930): 

 
min

UA
NTU = ;

C  (7) 

 

where Cmin is the smaller of CL = ( m cp)L and CH = ( m cp)H, both in (W/K); with m the mass 

flow of each stream and cp its constant-pressure specific heat. This dimensionless group is a 
comparison of the heat rate capacity of the heat exchanger with the heat capacity rate of the 
flow. Solving for ε gives: 

 

min

min

C
- 1 - NTU

Cmax

C
- 1 - NTU

Cmaxmin

max

1 - eε = 

C
1 - e

C

 
 
 

 
 
 

 
(8) 

Equation (8) is shown in graphical form in Fig. 4. Entering with the ratio Cmin/Cmax and 

NTU = UA/Cmin the heat exchanger effectiveness ε can be read, and with equation (6) the 

actual heat transfer rate is obtained. 

When one stream temperature is constant, as it happens with both temperature reservoirs in 

the hot and cold sides of the irreversible Carnot and Brayton cycles, the capacity rate ratio 

Cmin/Cmax is equal to zero. This heat exchanging mode is called “single stream heat 

exchanger”, and the equation (8) reduces to: 

 -NTU
singlestream ε  = 1 - e  (9) 

 

 

Fig. 4. Effectiveness of counterflow heat exchangers is a function of NTU
 
and Cmin/Cmax. 

The following sections will be dedicated to the optimal allocation of counterflow heat 

exchangers which are coupled in the hot-cold sides of irreversible Carnot-like and Brayton-

like cycles (Fig. 1 and Fig. 3, respectively). 
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2. The optimal allocation of the heat exchangers for a Carnot-like cycle 

The optimal allocation of the heat exchangers of irreversible power cycles was first analyzed 

for A. Bejan (Bejan, 1988). He optimized the power for the endoreversible Carnot cycle and 

found that the allocation (size) of the heat exchangers is balanced. Furthermore, Bejan also 

found for the model of Carnot the optimal isentropic temperature ratio x = T2/T1 by a 

double maximization of the power. He obtained the optimal ratio: mpx = μ ; L Hμ =T T ; 

which corresponded to the efficiency to maximum power proposed previously for Novikov-

Chambadal-Curzon-Ahlborn  (Bejan, 1996 and Hoffman et al., 1997): 

 CNCAη  = 1 - μ    (10) 

The equation (10) was also found including the time as an additional constraint (see Aragón 

et al., 2006; and references there included). Recently in (Aragón-González et al., 2009), the 

model of the Fig. 1 has been optimized with respect to x
 
and to the allocation ratio φ

 
of the 

heat exchangers of the hot and cold side for different operation regimes (power, efficiency, 

power efficient, ecological function and criterion  x,φ ).  Formerly, the maximum power 

and efficiency have been obtained in (Chen, 1994; Yan, 1995; and Aragón et al., 2003). The 

maximum ecological function has been analyzed in general form in (Arias-Hernández et al., 

2003). In general, these optimizations were performed with respect to only one characteristic 

parameter: x
 

including sometimes also time (Aragón-González et al., 2006)). However, 

(Lewins, 2000) has considered the optimization of the power generation with respect to 

other parameters: the allocation, cost and effectiveness of the heat exchangers of the hot and 

cold sides (Aragón-González et al., 2008; see also the reviews of Durmayas et al., 1997; 

Hoffman et al., 2003). Also, effects of heat transfer laws or when a property is independent 

of the heat transfer law for this Carnot  model, have been discussed in several works (Arias-

Hernández et al., 2003; Chen et al., 2010; and references there included), and so on. 

Moreover, the optimization of other objective functions has been analyzed:  criterion 

(Sanchez-Salas et al., 2002), ecological coefficient of performance (ECOP), (Ust et al., 2005), 

efficient power (Yilmaz, 2006), and so on. 
In what follows, Carnot-like model shown in Fig. 2 will be considered, it satisfies the 
following conditions (Aragón-González (2009)): The working fluid flows through the system 
in stationary state. There is thermal resistance between the working fluid and the heat 
reservoirs. There is a heat leak rate from the hot reservoir to the cold reservoir. In real power 
cycle leaks are unavoidable. There are many features of an actual power cycle which fall 
under that kind of irreversibility, such as the heat lost through the walls of a boiler, a 
combustion chamber, or a heat exchanger and heat flow through the cylinder walls of an 
internal combustion engine, and so on. Besides thermal resistance and heat leak, there are 
the internal irreversibilities. For many devices, such as gas turbines, automotive engines, 
and thermoelectric generator, there are other loss mechanisms, i.e. friction or generators 
losses, and so on, which play an important role, but are hard to model in detail. Some 
authors use the compressor (pump) and turbine isentropic efficiencies to model the internal 
loss in the gas turbines or steam plants. Others, in Carnot-like models, use simply one 
constant greater than one to describe the internal losses. This constant is associated with the 
entropy produced inside the power cycle. Specifically, this constant makes the Claussius 
inequality to become equality: 
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 2 1

2 1

Q Q
- I  = 0

T T

 
   (11) 

where iQ (i = 1, 2) are the heat transfer rates and 2 1I = ΔS ΔS 1
 
(Chen, 1994). The heat 

transfer rates Q ,H


LQ transferred from the hot-cold reservoirs are given by (Bejan, 1988):  

 H 1 L 2Q  = Q + Q; Q  = Q + Q     
   (12) 

where the heat leak rate Q  is positive and 1 2Q , Q  are the finite heat transfer rates, between 

the reservoirs TH, TL and the working substance. By the First Law and combining equations 

(11) and (12), the power P, heat transfer rate HQ and thermal efficiency are given by: 

 

H L 1 2

H 1

  P = Q  - Q  = Q - Q  = Q(1 - Ix);

P
Q  = Q  + Q =  + Q

1 - Ix
P

   η = 
f(x)P + Q

    

   



 (13) 

where 2

1

T
x = 

T
 is the internal isentropic temperature ratio and 

1
f(x) = 

1 - Ix
 is always 

positive. The entropy-generation rate and the entropy-generation rate multiplied by the 
temperature of the cold side gives a function Σ (equations (13)): 

 

L H
gen

L H

H H
L gen L H

L H

Q Q
S  =  -  > 0

T T

Q  - P Q
     Σ = T S  = T -  = Q (1 - μ) - P

T T

     Σ = g(x)P + Q(1 - μ)

 
 
 

 

  



                   (14) 

where g(x) = f(x)(xI - μ) is also positive. The ecological function (Arias-Hernández et al., 

2003), if TL is considered as the environmental temperature, and the efficient power (Yilmaz, 

2006) defined as power times efficiency, are given by 

 E = P - Σ =  (1-g(x))P - Q (1 - η)                   (15) 

Pη = ηP 

and g(x) should be less than one (Arias-Hernández et al. (2003)). This is fulfilled if and only 

if E > 0 (see conditions on it in subsection 2.3). Finally, the Ω  criterion states a compromise 

between energy benefits and losses for a specific job and for the Carnot model discussed 

herein, it is expressed as (Sanchez-Salas et al., 2002): 

 max2η - ηΩ = P
η

    (16) 

where ηmax is a constant. 
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2.1 The fundamental optimal relations of the allocation and effectiveness of the  
heat exchangers 

The relevance of the optimization partial criterion obtained in (Aragón-González et al. 

(2009)) is that can also be applied to any parameter z different from x, and to any objective 

function that is an algebraic combination of the power and/or efficiency (as long as the 

objective function has physical meaning and satisfies the equations (20) and (21) below). In 

particular, for all the objective functions          ηP x,z , η x,z , E x,z , P x,z ,Ω x,z and also for 

other characteristic parameters (not only these presented in (Aragón-González et al. (2009)). 

In what follows, let z be any characteristic parameter of the power plant different to x and 

the following operation regimes will be considered:
  

          ηG(x,z)=P x,z , η x,z , E x,z , P x,z ,Ω x,z    (17)
 

(power, efficiency, ecological function, efficient power, and   criterion, respectively). 
Assuming, the parameter z can be any characteristic parameter of the cycle different to x. 
Thus, if z ≠ x and zmp

 
is the point in which the power P achieves a maximum value, then: 

 
mp mp

2

z z2

P P
= 0 and < 0

z z
| | 

 
  (18) 

and, from the third equation of (13): 

 
 P

z

2

Qη
z f(x)P + Q





   




 (19) 

since Q does not depend of the variable z. Thus, 

 
me mpz z

η P
= 0 = 0

z z
| | 


 

 (20) 

where zme 
is the point in which the efficiency η achieves its maximum value. This implies 

that their critical values are the same zmp = zme (necessary condition). The sufficiency 
condition is obtained by: 

 

2

2 mp me

mp me

P
z =zz2

=z2 2

Q
η

=  < 0
Z f(x)P + Q

|
|z




 
 
   

   




  (21) 

The optimization described by the equations (18)-(21) can be applied to the operation 

regimes given by equations (17) (the operation regime Σ (equation (14)) does not have a 

global minimum as was shown in (Aragón-González et al., 2009)). Thus, if zmec, zmPη, zmΩ
 
are 

the values in which the objective functions      ηE x,z , P x,z , Ω x,z reach their maximum 

value, then:  zmp = zme = zmec = zmpη = zmΩ. Furthermore, the optimization performed, with 

respect to x, is invariant to the law of heat transfer no matter the operation regime G(x,z). 
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As an illustration, only two design rules corresponding to z will be considered. The first rule 
is when the constrained internal conductance, which is applied to the allocation of the heat 
exchangers from hot and cold sides with the same overall heat transfer coefficient U by unit 
of area A in both ends (see equations (1) and (3)). Thus,

  

 ǃǂ
U U

ǂ + ǃ = Ǆ

+  = A
  (22) 

where Ǆ is a constant, ǂ,  are the thermal conductances on the hot and cold sides, 
respectively, and in parametrizing as: 

 
ǂ ǃφ = ;    1 - φ = 

UA UA
 (23) 

The second rule corresponds to total constrained area. Now, the total area A is fixed, but 
when distributed it has different overall heat transfer coefficients (different effectiveness) on 
hot and cold sides (see equations (1) and (3)). Then, 

 
H L

H L

ǂ ǃ
A = A  + A  =  + 

U U
             (24) 

where AH and AL are heat transfer areas on hot and cold sides, and UH and UL are overall 
heat transfer coefficients on the hot and cold sides, respectively. In parametrizing again:  

 
*

H L

ǂ ǃφ  = ;     1 - φ* = 
U A U A

 (25) 

The following criterion can be established: 

Criterion 1. If x is fixed, z ≠ x
 
is a characteristic parameter arbitrary of the irreversible 

Carnot cycle, the law of heat transfer is any, including the heat leak, and the objective 

functions are          ηG(x,z) = P x,z , η x,z , E x,z , P x,z , Ω x,z . Then, the objective function 

G(x,z) reaches his maximum in: zmG=zmP=zme=zmec=zmPη=zmΩ. In particular, if z=φ
 
or φ*, the 

thermal conductances, overall heat transfer coefficients and areas are given either by the 

equations (22) or (25), and G(x,z) represent any operation regime given by the equation (17), 

then, zmG  = φmG or φ*mG, and are given by:  

 

mG

U*
mG

U

1
       φ  = 

1 + I

R
or   φ  = 

I  + R

  (26) 

where 
H

U

U
R  = L

U . Consequently, the optimal area ratio of the heat exchangers is given by: 

 L

H

A
= I

A
  (27) 

or the optimal distribution of the heat exchangers areas is: 
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H L

L H

* *
H LU U

U IU

A A
A  = ;  A  =   

1 + I 1 + 
  (28) 

Indeed, it is enough to choose as objective function G(x,z), the power and the transfer heat 
law by conduction, since they are the algebraically simplest. For the first design rule 

(equation (23)), the dimensionless power output, 
H

P
UATp =  is: 

 
  μx

1 I
φ 1 - φ

1 - Ix 1 - 
p = 

 + 
 (29) 

or for the second design rule, the dimensionless power 
H H

* P
AU T

p =  is given by: 

 
  

  U

x

1 I

1 R

1 Ix 1
p

 




  

 



 (30) 

In optimizing p or p* with respect to φ or φ* (respectively), the equations (26) are derived 
and combining the equations (23) or (25) and (26), the equations (27) and (28) are obtained; 
from these equations, the Eq. (26) or Eq. (27) are derived. 

2.2 Efficiencies to maximum G(x, φ)  

In this section, the efficiencies to maximum G(x, φ) are calculated by the substitution of the 

optimal value φmG
 
given by the first equation (26) that doesn't depend on the aforesaid 

operation regimes G and neither on the transfer heat law. The power as objective function 

and the transfer heat law by conduction are newly chosen. The optimal values of x will be 

adapted or extended from the current literature for each objective function. The efficiencies 

to maximum G, for numerical values given, will be compared.  

Now, if all heat transfer rates are assumed to be linear in temperature differences, from the 

equation (29), the dimensionless power is: 
   
 

μ
x

2

1 - Ix 1 - 

1 + I
p = . 

The optimization of p, η, 
H

E
UATe =  with respect to x

 
has been discussed in (Aragón-González 

et al., 2000; 2003; 2008), and are given by: 

 
   

 

mP

me

mec

μ
x  = ;

I

Iμ + 1 + I μL(1 - μ) C - Iμ
x  = ;

CI

μ 1 + μ
x  = ;

2I

   (31) 

For the objective functions η

H H

P Ω
η UAT UATp  = , ω =  , they have been calculated only numerically 

in (Yilmaz, 2006; Sanchez-Salas et al., 2002). However, they can be calculated analytically. 
For instance, the optimal value xmpη

 
for maximum efficient power pη is obtained by: 
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2

η
η

pp
p = ; =0

f(x)p+L(1-μ) x




 (32) 

and from the equation (32), the following cubic equation is obtained: 

      
mpη

2 2

x

p p
2 L 1 - μ + 1 - Ix -p 1 - Ix -p I = 0

x 1 - Ix

    
       

   (33) 

then, the root with physical meaning is chosen; the solution is too large to be presented here. 
This value of xpη extends to one presented in (Yilmaz, 2006). Similarly, a closed form for xmΩ 
which extends to one presented in (Sanchez-Salas et al., 2002) is equally calculated, which is: 

 
2
me

mΩ
Ix  + μ

x  = 
2I

 (34) 

Using equations (13), (30), (32) and (33) the efficiencies ηmG  (ηmp, ηmax, ηmec, ηmpη and ηmΩ) to 

maximum  G = P, η, E, Pη and Ω  are given by: 

  2
μ

xmG

mG
mG

L(1 - μ) I  + 1

1 - 

1 - Ixη  = 

1 + 
 (35) 

where L = K/UA, being K the thermal conductance of the heat leak  H LQ = K T  - T . For 

numerical values of (Aragón-González et al., 2009): I = 1.235 and L = 0.01 the efficiencies ηmG 
can be contrasted. Fig. 5 shows the behavior between, ηmE, ηmpη, ηmΩ

 
with respect to ηmp and 

ηmax, versus
 
μ; it can be seen that the following inequality is satisfied: ηmp ≤ ηmec, and ηpη 

      ηmΩ ≤ ηmax. 

 

 

Fig. 5. Behaviors of  ηmp, ηmax, ηmE, ηmpη, ηmΩ, with respect to μ if I = 1.235 and L = 0.01. 

A completely analogous analysis can be performed by the substitution of the second 
equation of (26) (or any other optimal parameter, v. gr. costs per unit heat transfer) in the 
equation (30) for the power (or some other equation corresponding to the power including 
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costs as was proposed in (Aragón-González et al., 2008)) for the same transfer heat law. 
Also, this can be made applying the same objective function (power) and only changing the 
heat transfer law. But this is not covered by this chapter's scope. 

2.3 The ecological coefficient of performance (ECOP)  

In (Ust et al. (2005)) was indicated that the ecological function may take negative values, due 
to the loss rate of availability term, T0 Sgen (T0 

is the environment temperature), can be 
greater than the actual power output. In general, the ecological function takes only positive 
values for efficiencies greater than the half of the Carnot efficiency ηC. Indeed, from the 
equation (15) for Σ

 
the following is obtained:  

 

C

C C

η  - ηΣ = P  > 0
η

2η - η η
E = P > 0 η > 

η 2

 
 
 

 
 

 

 (36) 

where T0 = TL has been taken. 

Then, a new ecological objective function was proposed in (Ust et al. (2005)), in order to 

identify the effect of loss rate of availability on power output. This objective function has 

always positive values just like the power, efficiency and efficient power, and is an algebraic 

expression only of the efficiency η. The objective function was called the ecological 

coefficient of performance (ECOP) and is defined as the power output per unit loss rate of 

availability, i.e. P
ΣECOP =  > 0 ; where TL = T0 have been supposed. A performance analysis 

upon the Carnot-like model, using the ECOP criterion as objective function, was carried out 

by Ust et al. Their optimization was performed only for x and taking some numerical 

optimal values of φ* (Figure 3 (d) of Ust et al., 2005). It was found (see Figure 4 of Ust et al. 

2005) that the optimal conditions to maximum ECOP and efficiency η coincides, although 

their functional forms are different. This can be shown applying the optimization described 

in the subsection 2.1 (equations (18) to (21)) and in a form more general. Indeed, let z = x, φ
 

or φ* (or any other parameter); from the first equation of (36), the ECOP  can be wrote: 

 C

η
ECOP =  > 0

η  - η
  (37) 

and as 

 
 

 
 

mEcop mEcop me

2

2
mEcop

mEcop

η
z

z z z

C

η
2

zz

z2
C

ECOPECOP η
0 = 0

z η -η z

1 + ECOPECOP
<0

z η  - η

| | |

||







 
  

 






  (38) 

Furthermore, the following criterion can be established and can be shown in simpler form: 
Criterion 2. The ECOP criterion reaches its maximum if η = ηmax. Moreover, the optimal 
conditions are the same for the ECOP and η objective functions, independently of the heat 
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transfer law. In particular, the second equation of (31) is fulfilled. Indeed, it is enough to 
write (37) as: 

 ;
C C C

max

η η η
η η η

1 1 1
ECOP = 

- 1  - 1  - 1
   (39) 

since η ≤ ηmax, i.e. the maximum is reached if η = ηmax and as none heat transfer explicit 
law has been used, then, it is satisfied for any the heat transfer law and for any 
characteristic parameter. And clearly the second equation of (31) is fulfilled. From the 

Criterion 2 follows that the optimal conditions are the same to maximum ECOP and 

efficiency η. Thus the work of (Ust et al., 2005) has been extended to any characteristic 
parameter and to any heat transfer law. Nevertheless, the optimal conditions coincide  

for ECOP and η independently of the heat transfer law. They contain different 

thermodynamic meanings: the efficiency gives information about the necessary fuel 
consumption in order to produce a certain power level whereas ECOP gives information 
about the entropy generation (loss rate of availability). If the parameters are x and φ*,  
a discussion is presented in (Ust et al., 2005). Also, (Ust et al., 2005) have noted that the 
actual power equals to the theoretical power output minus the loss rate of availability,  
i.e. P = Pactual - T0Sgen (cfr. with (Sonntag et al., 2003) for more details). They have 
concluded that the loss rate of availability has been considered twice in the ecological 
function. It will need interpretation in order to understand what it means 
thermodynamically.  

3. The optimal allocation of the heat exchangers for a Brayton-like cycle 

A. Bejan (Bejan, 1988) optimized the power for the endoreversible Brayton cycle and found 
that the allocation (size) of the heat exchangers is balanced. The Brayton endoreversible 
model discussed for him corresponds to the cycle 1-2s-3-4s of the Fig. 3. Formerly, H. Leff 
(Leff, 1987)) was focused on the reversible Brayton cycle and obtained that the efficiency to 
maximum work corresponds to the CNCA efficiency (equation (10) with one μ* = T1/T3, see 
Fig. 3. In (Wu et al; 1991) a non-isentropic Brayton model was analyzed and found that the 
isentropic temperatures ratio (pressure ratio), that maximizes the work, is the same as a 
CNCA-like model (Aragon-González et al., 2000; 2003). In (Swanson, 1991) the 
endoreversible model was optimized by log-mean temperature difference for the heat 
exchangers in hot and cold sides and assumed that it was internally a Carnot cycle. In (Chen 
et. al., 2001) the numerical optimization for density power and distribution of a heat 
exchangers for the endoreversible Brayton cycle is presented. Other optimizations of 
Brayton-like cycles can be found in the following reviews (Durmayas et al. 1997; Hoffman et 
al. 2003). Recent optimizations of Brayton-like models were made in (Herrera et al., 2006; 
Lewins, 2005; Ust, 2006; Wang et al., 2008). 
For the isentropic Brayton cycle (1-2s-3-4s-1) its efficiency is given by (Fig. 3):  

 η = 1 - x   (40) 

where 
1
Ǆ1 - 

x = ε , with ε = p2s/p1 the pressure ratio (maximum pressure divided by minimum 

pressure) and Ǆ = cp/cv, with cp
 
and cv 

being the constant-pressure and the constant-volume 
specific heats. Furthermore, the following temperature relations are satisfied:  
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 1
2s 4s 3

T
T  = ; T  = T x

x
 (41) 

where x
 
is given by the equation (40). If a non-isentropic Brayton cycle, without external 

irreversibilities (see 1-2-3-4 cycle in Fig. 3) is considered, with isentropic efficiencies of the 
turbine and compressor η1 

and η2, respectively, and from here the following temperature 
relations  are obtained (Aragón-González et al., 2000):  

 

3 4 2s 1
1 2

3 4s 2 1

2 1 4 3 1

2

T  - T T  - Tη  = ; η  = ;
T  - T T  - T

1 - x
T  = T 1 + ; T  = T (1 - η (1 - x))

η x

 
 
 

 (42) 

Now, if we consider the irreversible Brayton cycle of the Fig. 3, the temperature reservoirs 

are given by the constant temperatures TH and TL. In this cycle, two single-pass counterflow 

heat exchangers are coupled to the cold-hot side reservoirs (Fig. 2 and Fig. 3). The heat 

transfer between the reservoirs and the working substance can be calculated by the log 

mean temperature difference LMTD (equation (2)). The heat transfer balances for the hot-

side are (equations (1) and (6)): 

    H H H H p 3 2 L L L H p 4 1Q  = U  A LMTD  = mc T  - T ; Q  = U  A  LMTD  = mc T - T
 (43) 

where LMTDH.L
 
are given by the equations (4). The number of transfer units NTU for both 

sides are (equation (7)): 

 H H 3 2 L L 4 1
H L

p H p L

U  A T  - T U  A T  - T
N  =  = ; N  =  = 

mc LMTD mc LMTD
 (44) 

Then, its effectiveness (equation (9)): 

 

H L-N -N3 2 4 1
H L

H 2 4 L

T  - T T  - Tε  = 1 - e = ; ε =1 - e =
T  - T T  - T

 (45) 

As the heat exchangers are counterflow, the heat conductance of the hot-side (cold side) is 

UHAH (ULAL) and the thermal capacity rate (mass and specific heat product) of the working 

substance is CW. The heat transfer balances results to be: 

        H W H H 2 W 3 2 L W L 4 L W 4 1Q  = C ε T  - T  = C T -T ; Q  = C ε T  - T  = C T  - T  (46) 

The temperature reservoirs TH and TL are fixed. The expressions for the temperatures T2 
and 

T4, including the isentropic efficiencies η1 and η2, the effectiveness εH and εL and µ = TL/TH 

are obtained combining equations (41), (42), and (45): 

 
   
 

    
 

1

2

1 - x η1-1 1 - x
H L H x xL H L η

2 H 4 H

L H L L H L

ε x + ε μ 1 - ε -ε μx +ε 1 - ε +x
T  = T , T  = T

ε +ε 1 - ε ε + ε 1 - ε

     
      

       (47) 

And, the dimensionless expressions, q = Q /CWTH, for the hot-cold sides are: 
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 2 4
H H L L

H H

T T
q  = ε 1 - ; q  = ε  - μ

T T

   
   
   

 (48) 

From the first law of the Thermodynamic, the dimensionless work w = W/CWTH of the cycle 
is given by: 

 

2 4
H L

H H

T T
w = ε 1 -  - ε  - μ

T T

   
   
     (49) 

and substituting the equations (47), the following analytical relation is obtained: 

  
 

 
 

 -1
L H L H L H 1

H L

L H L 2 L H L

ε μx  + ε 1 - ε ε x + ε μ 1 - ε 1 - x η1 - x 1
w = ε 1 -  + x  - ε  -  - μ

ε  + ε 1 - ε η ε  + ε 1 - ε x x

      
      
         

 (50) 

This relation will be focused on the analysis of the optimal operating states. There are three 
limiting cases: isentropic [εH = εL = η1 = η2 = 1]; non-isentropic [εH = εL = 1, 0 < η1, η2 < 1]; and 
endoreversible [η1 = η2 = 1, 0 < εH, εL < 1]. Nevertheless, only the endoreversible cycle is 
relevant for the allocation of the heat exchangers (see subsection 3.2). However, conditions 
for regeneration for the non-isentropic cycle are analyzed in the following subsection. 

3.1 Conditions for regeneration of a non-isentropic Brayton cyle for two operation 
regimes 

J. D. Lewins (Lewins, 2005) has recognized that the extreme temperatures are subject to limits: 

a) the environmental temperature and; b) in function of the limits on the adiabatic flame or for 

metallurgical reasons. The thermal efficiency η
 
(see equation (40)) is maximized without losses, 

if the pressure ratio εp
 
grows up to the point that the compressor output temperature reaches 

its upper limit. These results show that there is no heat transferred in the hot side and as a 

consequence the work is zero. The limit occurs when the inlet temperature of the compressor 

equals the inlet temperature of the turbine; as a result no heat is added in the 

heater/combustor; then, the work vanishes if εp = 1. Therefore at some intermediate point the 

work reaches a maximum and this point is located close to the economical optimum. In such 

condition, the outlet temperature of the compressor and the outlet temperature of the turbine 

are equal (T2s = T4s; see Fig. 3). If this condition is not fulfilled (T2s ≠ T4s), it is advisable to 

couple a heat regeneration in order to improve the efficiency of the system if T2s < T4s (Lewins, 

2005). A similar condition is presented when internal irreversibilities due to the isentropic 

efficiencies of the turbine (η1) and compressor (η2) are taken into account (non-isentropic 

cycle): T2 < T4 (see Fig. 3 and equation (20) of (Zhang et al., 2006)). 

The isentropic cycle corresponds to a Brayton cycle with two coupled reversible counterflow 

heat exchangers (1-2s-3-4s in Fig. 3). The supposition of heat being reversibly exchanged (in 

a balanced counterflow heat exchanger), is an equivalent idealization to the supposed heat 

transfer at constant temperature between the working substance of a Carnot (or Stirling) 

isentropic cycle, and a reservoir of infinite heat capacity. In this cycle CWTH = mcpT3, TH = T3, 

TH = T3 and TL = T1, then, 

     H L
1w = 1 - x  -  - 1 μ*; q  = 1 - xμ*; q  = x - μ*
x

 (51) 
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For maximum work:
  

 * *
mw CNCAx  = μ  ; η  = 1 - μ  (52) 

where 1

3

T*
T    and CNCAη   corresponds to the CNCA efficiency (equation (10)). 

Furthermore, in condition of maximum work: 

 
2

31 1 1 mw
mw mw

2s 4s 3 4s mw

TT T T x
= x ;       =  =  = x

T T T T x
  (53) 

 
so T2s = T4s. In other conditions of operation, when T2s < T4s, a regenerator can be coupled to 
improve the efficiency of the cycle. An example of a regenerative cycle is provided in 
(Sontagg et al., 2003).  
On the other hand, the efficiency of the isentropic cycle can be maximized by the following 

criterion (Aragón-González et al., 2003).  

Criterion 3. Let L

H H

qwη =  = 1 - 
q q

. Suppose that
2

2

Hq
< 0

x




and 
2

2
0Lq

x





, for some x. Then, 

the maximum efficiency ηmax 
is given by: 

 

L

me me

.
H

H
me

me

qw
x=x x=xx x

max q
q

x=xx
x=xx

| |
η  = = 1 - 

||


 







  (54) 

where xme 
is the value for which the efficiency  reaches its maximum. 

Criterion 3 hypothesis are clearly satisfied: 
2

2

Hq

x
< 0


 and 

2

2 0Lq

x




  for some x (Fig. 6). Thus, 

the maximum efficiency ηmax is given by the equation (54): 

 
2
me

1 2
μ me

1
x

x
1 -  = 1 - 

μ   (55) 

In solving, xme = μ and ηmax = 1 - μ
 
which corresponds to the Carnot efficiency; the other root, 

xme = 0, is ignored. And the work is null for xme = μ; as a consequence the added heat is also 
null (Fig. 6).  Now regeneration conditions for the non-isentropic cycle will be established. 
Again CWTH = mcpT3, TH = T3 and TL = T1 (cycle 1-2-3-4 in Fig. 3) and T2 

and T4 
are given by 

the equations (42). Thus, using equations (42) and the structure of the work in the equation 

(51), the work w and the heat qH are: 

 

    *
1

2

H
2

1 1 w = η 1 - x  -  - 1 μ ;η x

(1 - x)
q  = 1 - 1 + μ*η x

  
    

  (56) 

Maximizing, 

 
 
    

* *
2*

4s 2s NI NI
* * *

2

Iη 1 - μ  + Iμ - 1
T  = IT ; x  = Iμ  and η  = 1 - 

I Iη 1 - μ  + μ Iμ - 1

 (57) 
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 Fig. 6. Heat and work qualitative behavior for μ=0.25. 

where I = 1/η1η2 and ηNI is the efficiency to maximum work of the non-isentropic cycle. 
Furthermore, the hypotheses from the Criterion 3 are fulfilled (the qualitative behavior of w 

and qH is preserved, Fig. 6). In solving the resulting cubic equation, the maximum efficiency, 
its extreme value and the inequality that satisfies are obtained: 

 

     
 

    
  

2

1 1 2 2 12
max

1 2 2

1 1 2 2 1

me

1 2 2

me mw

η μ + η μ 1 - μ ( 1 - η μ + η 1 - ηηη  = 1 - 
μη μ 1 - η  + η

η μ + η μ 1 - μ 1 - η μ + η 1 - η
x =

η μ 1 - η  + η
Iμ x x

 
 
 
 

 

 (58) 

Now, following (Zhang et al., 2006), in a Brayton cycle a regenerator is used only when the 

temperature of the exhaust working substance, leaving the turbine, is higher than the exit 

temperature in the compressor (T4 > T2). Otherwise, heat will flow in the reverse direction 

decreasing the efficiency of the cycle. This point can be directly seen when T4 < T2, because 

the regenerative rate is smaller than zero and consequently the regenerator does not have a 

positive role. From equations (42) the following relation is obtained: 

 

   4 3 1 1 2

2

1 1
T  = T 1 - η 1 - x  > T 1 +  - 1  = T

η x

  
  

  
 (59) 

which corresponds to a temperature criterion which is equivalent to the first inequality of: 

    
1 1

2

1 1
min η η

-ǃ + ǃ +4Iμ
x > x = ; ǃ =  - 1  + I - μ > 0

2
  (60) 

Indeed, from the equation (59):
 

 

2

2

min

x  + ǃx - Iμ > 0

-ǃ + ǃ  + 4Iμ
x > x  =  > 0

2

  (61) 
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the inequality is fulfilled since 2ǃ  + 4Iμ  > ǃ . The other root is clearly ignored. Therefore, if 

x ≤ xmin, a regenerator cannot be used. Thus, the first inequality of (60) is fulfilled. 
Criterion 3. If the cycle operates either to maximum work or efficiency, a counterflow heat 
exchanger (regenerator) between the turbine and compressor outlet is a good option to 
improve the cycle. For other operating regimes is enough that the inequality (61) be fulfilled. 
When the operating regime is at maximum efficiency the inequality of (61) is fulfilled.  
Indeed, 

 

     
  

     
  

      

me min

2
1 2 2 1

me min 1

1 2 2

22
2

1 2 2 1

1 2 2

2 2 2
1 2 2

x  > x

η μ 1 - μ ( 1 - η μ + η 1 - ηǃ  + 4Iμ
x - x = η μ + ǃ +  - 

2 η μ 1 - η  + η

η μ 1 - μ ( 1 - η μ + η 1 - ηǃ  + 4Iμ
- =....

2 η μ 1 - η  + η

η η 1 - μ + μ ǃ η 1 - μ + μ  + 4Iμ  +

 
 
 
 

  
  

      

  
     

  

2

2
1 2 2 1

1 2 2

 4η μ 1 - μ >0

η μ 1 - μ ( 1 - η μ+η 1 - ηǃ +4Iμ
>

2 η μ 1 - η +η

 (62) 

where the following elementary inequality has been applied: If a, b > 0, then a < b ⇔ a2 < b2. 
If the operating regime is at maximum work, the proof is completely similar to the equations 
(62). An example of a non-isentropic regenerative cycle is provided in (Aragón-González et 
al., 2010). 

3.2. Optimal analytical expressions 
If the total number of transfer units of both heat exchangers is N, then, the following 
parameterization of the total inventory of heat transfer (Bejan, 1988) can be included in the 
equation (50): 

   H L H LN  + N  = N; N  = yN and  N  = 1 - y N  (63)  

For any heat exchanger  UA
C

N , where U is the overall heat-transfer coefficient, A the heat-

transfer surface and C the thermal capacity. The number of transfer units in the hot-side and 

cold-side, NH 
and NL, are indicative of both heat exchangers sizes. And their respective 

effectiveness is given by (equation (9)):
 

 
 - 1 - y N-yN

H Lε  = 1 - e ; ε  = 1 - e   (64) 

Then, the work w (equation (50)) depends only upon the characteristics parameters x and y. 

Applying the extreme conditions: w
x = 0
 ; w

y = 0
 , the following coupled optimal analytical 

expressions for x and y, are obtained: 

 

  
  

1
NE

1

NE

z - z Cz - B
x  = μ ;

z - 1 Az  - Bz

1 1 Ax - Bμ
y  =  + ln

2 2N Bx - Cμ
 
 
 

  (65) 
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where z1 = eN; z = eyN; A = η1η2 eN + 1 - η2; B = eN(η1η2 + 1 - η2) 
and C=eN-η2 + η1η2. 

The equations (65) for xNE and yNE cannot be uncoupled. A qualitative analysis and its 
asymptotic behavior of the coupled analytical expressions for xNE and yNE (equations (65)) 
have been performed (Aragón-González (2005)) in order to establish the bounds for xNE and 
yNE and to see their behaviour in the limit cases. Thus the following bounds for xNE and yNE 
were found:

 

 
1
2NI NE NE0 < x x < 1; 0 < y  < 

  (66)  

where xNI is given by the equation (57). The inequality (66) is satisfied because of 
   
   

1

1

z - z Cz - B

z - 1 Az - Bz
1 < I  . If I = 1 (η1 = η2 = 100%), the following values are obtained: xNE = xCNCA = 

 ; yNE = yE = ½ which corresponds to the endoreversible cycle. In this case necessarily:
 
εH = 

εL = 1. Thus, the equations (65) are one generalization of the endoreversible case [η1 = η2 = 1, 0 < 
εH, εL < 1]. The optimal allocation (size) of the heat exchangers has the following asymptotic 

behavior: 1 2NE
N
lim  y  = ;


1 2
1 2

NEη ,η 1
lim y  = 


. Also, xNE 

has the following asymptotic behavior:
 

NE NI
N
lim x  = x ;
 NE NI

N
lim η  = η


. Thus, the non-isentropic [εH = εL = 1, 0 < η1, η2 < 1] and 

endoreversible [η1 = η2 = 1, 0 < εH, εL < 1] cycles are particular cases of the cycle herein 
presented. A relevant conclusion is that the allocation always is unbalanced (yNE < ½). 
Combining the equations (65), the following equation as function only of z, is obtained: 

 
  
  

2
11

2
1 1

z  - z Cz - BBz  - Czμ  = 
Az  - z B z - 1 Az  - Bz

 
 
 

 (67)  

which gives a polynomial of degree 6 which cannot be solved in closed form. The variable z 

relates (in exponential form) to the allocation (unbalanced, εH < εL) and the total number of 

transfer units N of both heat exchangers. To obtain a closed form for the effectiveness εH, εL, 

the equation (67) can be approximated by: 

 
2

1
2

1

Bz  - Cz 1 1μ  =  + H
Az  - z B 2 2

   
   

  
  (68)  

with    
   

1

1

z - z Cz - B

z - 1 Az - Bz
H = ; and using the linear approximation:

 
    1

2

2
H=1 + H-1 +O H-1 . 

It is remarkable that the non-isentropic and endoreversible limit cases are not affected by the 
approximation and remain invariant within the framework of the model herein presented. 
Thus, this approximation maintains and combines the optimal operation conditions of these 
limit cases and, moreover, they are extended. The equation (68) is a polynomial of degree 4 
and it can be solved in closed form for z with respect to parameters: μ or N, for realistic 
values for the isentropic efficiencies (Bejan (1996)) of turbine and compressor:

 
η1 = η2 = 0.8 or 

0.9, but it is too large to be included here. Fig. 7 shows the values of z (zmp) with respect to μ. 
Using the same numerical values, Fig. 8 shows that the efficiency to maximum work ηNE, 
with respect to μ, can be well approached by the efficiency of the non-isentropic cycle ηNI  
(equation (57)) for a realistic value of N = 3 and isentropic efficiencies of 90%. The behavior 
of yNE with respect to the total number of transfer units N of both heat exchangers, with the 
same numerical values for the isentropic efficiencies of turbine and compressor and μ = 0.3, are 
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presented in Fig. 9.  When the number of heat transfer units, N, is between 2 to 5, the 
allocation for the heat exchangers yNE is approximately 2 - 8% or 1 - 3%, less than its 
asymptotic value or ½, respectively. 
 

 

Fig. 7. Behaviour of z(zmp) versus μ, if η1= η2=0.8 and N=3. 

 

 

Fig. 8. Behaviour of ηNE, ηNI and ηCNCA versus μ, if η1= η2=0.8 or 0.9 and N=3.  

 

 

Fig. 9. Behavior of yNE versus N, when η1= η2=0.8 or 0.9 and μ=0.3. 

This result shows that the size of the heat exchanger in the hot side decreases. Now, if the 
Carnot efficiency is 70% the efficiency ηNE is approximately 25 - 30% or 10 - 15%, when the 
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number of heat transfer units N is between 2 and  5 and the isentropic efficiencies are  
η1 = η2 = 0.9 or 0.8 respectively, as is shown in Fig. 9. 
Now, if η1 = η2 = 0.8 (I = 1.5625) ; yNE = 0.45 then N 3.5  (see Fig. 9) and for the equations 
(64): εH = 0.74076 and εL = 0.80795. Thus, one cannot assume that the effectiveness are the 
same: εH = εL < 1 ; whilst I > 1. Current literature on the Brayton-like cycles, that have taken 
the same less than one effectiveness and with internal irreversibilities, should be reviewed. 
To conclude, εH = εL if and only if the allocation is balanced (y = ½) and the unique 

thermodynamic possibility is: optimal allocation balanced (yNE = yE = ½); that is εH = εL. And 
εH<εL if and only if I>1 there is internal irreversibilities. 

4. Conclusions 

Relevant information about the optimal allocation of the heat exchangers in power cycles 
has been described in this work. For both Carnot-like and Brayton cycles, this allocation is 
unbalanced. The expressions for the Carnot model herein presented are given by the 
Criterion 1 which is a strong contribution to the problem (following the spirit of Carnot’s 
work): to seek invariant optimal relations for different operation regimes of Carnot-like 
models, independently from the heat transfer law. The equations (26)-(28) have the above 
characteristics. Nevertheless, the optimal isentropic temperatures ratio depends of the heat 
transfer law and of the operation regime of the engine as was shown in the subsection 2.2 
(Fig. 5). Moreover, the equations (26) can be satisfied for other objective functions and other 
characteristic parameter: For instance, algebraic combination of power and/or efficiency 
and costs per unit heat transfer; as long as these objective functions and parameters have 
thermodynamic sense. Of course, the objective function must satisfy similar conditions to 
the equations (20) and (21). But this was not covered by this chapter's scope. 

The study performed for the Brayton model combined and extended the optimal operation 
conditions of endoreversible and non-isentropic cycles since this model provides more 
realistic values for efficiency to maximum work and optimal allocation (size) for the heat 
exchangers than the values corresponding to the non-isentropic or the endoreversible 

operations. A relevant conclusion is that the allocation always is unbalanced (yNE < ½). 
Furthermore, the following correlation can be applied between the effectiveness of the 
exchanger heat of the hot and cold sides: 

 NE

1
z

H L-N
NE

1 - 
ε  = ε

1 - z e
  (69) 

where zNE is calculated by the equation (68) and shown in Fig. 7, which can be used in the 
current literature on the Brayton-like cycles. In subsection 3.1 the problem of when to fit a 
regenerator in a non-isentropic Brayton cycle was presented and criterion 3 was established. 
On the other hand, the qualitative and asymptotic analysis proposed showed that the non-
isentropic and endoreversible Brayton cycles are limit cases of the model of irreversible 
Brayton cycle presented which leads to maintain the performance conditions of these limit 
cases according to their asymptotic behavior. Therefore, the non-isentropic and 
endoreversible Brayton cycles were not affected by our analytical approximation and 
remained invariant within the framework of the model herein presented. Moreover, the 
optimal analytical expressions for the optimal isentropic temperatures ratio, optimal 
allocation (size) for the heat exchangers, efficiency to maximum work and maximum work 
obtained can be more useful than those we found in the existing literature. 
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Finally, further work could comprise the analysis of the allocation of heat exchangers for a 
combined (Brayton and Carnot) cycle with the characteristics and integrating the 
methodologies herein presented. 
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