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Rapid Prototyping for Robotics 

  
Imme Ebert-Uphoff, Clement M. Gosselin, David W. Rosen & Thierry Laliberte 

 
 
 
1. Introduction   
 

The design of robotic mechanisms is a complex process involving geometric, kinematic, 
dynamic, tolerance and stress analyses. In the design of a real system, the construction  of 
a physical prototype is often considered. Indeed, a physical prototype helps the designer 
to identify the fundamental characteristics and the potential pitfalls of the proposed 
architecture. However, the design and fabrication of a prototype using traditional 
techniques is rather long, tedious and costly. In this context, the availability of rapid 
prototyping machines can be exploited in order to allow designers of robotic mechanisms 
or other systems to build prototypes rapidly and at a low cost.  
This chapter summarizes the research experience of two research groups, one at 
Universit´e Laval, the other at Georgia Tech, concerning the rapid prototyping of 
mechanisms. The two groups employed two different types of RP technology, Fused 
Deposition Modeling (FDM) and Stereolithography (SL), respectively, and the use of both 
is described in this chapter.  
The two types of Rapid Prototyping technologies considered here, FDM and SL, are both 
based on the principle of Additive Fabrication, i.e. parts are built by adding material to 
the whole, as opposed to subtracting material from the whole (as is done in traditional 
machining processes). FDM and SL both build three-dimensional parts from a CAD 
model by building one layer after the other, which facilitates the construction of parts 
with any desired internal and external geometry in a fraction of the time and cost 
necessary to build them using a conventional process (Ashley, 1995). Additive Fabrication 
therefore provides several advantages for the quick and efficient construction of 
mechanical prototypes:  

� Quick turn-around time, thus facilitating many design iterations;  
� No limits on part complexity, as parts with complex geometry can be built just as 

quickly and cheaply as parts with simple geometry;  
� Since most components are “self-made”, there are no issues of components being 

available only in certain sizes from a manufacturer;  
� Since the designer has access to the interior of the part during the build process, 

Additive Fabrication provides novel design possibilities (Binnard, 1999). These 
capabilities can be exploited to yield short-cuts that eliminate the need for fasteners 
and the need for assembly of the prototypes.  

 

Depending on the stage of development of the system to be prototyped, different 
strategies may be employed:  

(A) At an early stage of experimentation the main goal is to quickly achieve a prototype 
that provides the basic functionality of the desired system. Implementation details 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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are usually irrelevant at this stage, allowing for use of RP-specific short-cuts in the 
implementation to yield faster turn-around time. 

(B) At the final design stages it is often desired that all parts of the prototype resemble 
the mechanism to be manufactured in as much detail as possible to test all aspects of 
the design.  

 
1.1 Components of Robotic Mechanisms and Their Fabrication & Integration in Rapid 

Prototyping  
 

Prototypes of robotic mechanisms require a variety of different components, which, in the 
context of this chapter, are categorized in the following three groups:  
 

1. Rigid links;  
2. Joints between the rigid links that enable motion;  
3. External components that are required for the prototype, but that are not fabricated 

using Rapid Prototyping. Examples: actuators, sensors, circuits, etc. 
 

This chapter discusses how RP can be used to generate a prototype of a mechanism that 
contains all of these components in an efficient manner. Different approaches exist for the 
fabrication and integration of the components as outlined below:  
 

1. Rigid Links: Rigid links of any shape are easy to fabricate in Rapid Prototyping. Since 
the construction of rigid parts is the classic use of Rapid Prototyping, much research 
has been reported in this area and this topic is not further discussed in this chapter.  

2. Joints Between Rigid Links: Mechanical joints can be fabricated as conventional 
(kinematic) joints or as compliant joints. Furthermore, conventional joints can be 
built in several parts, requiring assembly afterwards, or in a single step. All of these 
possibilities are discussed in this chapter.  

3. Integration of external components (actuators, sensors, etc.): These components can 
be attached to the prototype through screws and fasteners, in order to mimic the 
design of the the final mechanism to be manufactured in as much detail as possible. 
As an alternative approach, one can seek to add actuators and sensors at the interior 
of parts by inserting them while the part is being built. This may eliminate the 
assembly process, the design of fasteners, etc., and thus speed up the prototyping 
process considerably at an early stage. Both of these approaches are considered in 
this chapter.  

 
1.2 Organization of this Chapter  
 

The remainder of this chapter is organized as follows: Section 2. reviews different types of 
RP technologies with emphasis on FDM and SL technologies. Section 3. reviews related 
research on the use of RP for automation and robotics.  
Section 4. describes the use of FDM technology to build mechanical prototypes of 
mechanisms. A database of joint models, gears and fasteners, suitable for fabrication in 
FDM machines is introduced that provides the building blocks for the prototyping of 
mechanisms. All joints are of conventional type (with assembly) and external components 
are attached in the traditional way, mimicking the implementation of the final mechanism 
to be manufactured in as much detail as possible. Examples of several passive and 
actuated mechanisms are provided.  
Section 5. discusses the fabrication of joints using SL technology. Conventional joints are 
discussed first and it is shown that the joint models developed in Section 4. can easily be 
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adopted for joint fabrication using SL technology. Then the fabrication of non-assembly 
conventional joints and non-assembly compliant joints using SL machines is discussed.  
Section 6. explores the insertion of external components at the inside of parts during the 
build process. This research is more exploratory, but may ultimately lead to quicker turn-
around times for prototypes in many applications, by eliminating the need for the design 
of fasteners and the assembly process at early stages of design.  
Section 7. finally presents conclusions.  
 

2. Rapid Prototyping Technologies  
 

A wide variety of rapid prototyping technologies exists (for an excellent overview, see Kai 
& Fai (1997)) and many of them can be used for applications in Automation and Robotics 
(Wohlers, 1993). The principal idea underlying rapid prototyping technologies is that 
parts and devices are fabricated using a layer-based, additive process. A wide variety of 
material deposition methods, processing methods, and materials have been explored. For 
example, in the Selective Laser Sintering (SLS) process, a laser sinters, or melts, polymer 
powder particles together to form a part cross-section, while in Stereolithography a laser 
induces a chemical gelling reaction in a liquid photopolymer to fabricate the cross-section. 
In Fused-Deposition Modeling, a heated extrusion head extrudes polymer filament to 
trace out a part cross-section. These, and additional technologies, have been used in many 
applications other than making plastic prototypes, including medical visualization 
models, patterns for investment casting, molds for injection molding, and even some 
production uses (Jacobs, 1996).  
Two technologies, FDM and SL, are used throughout this chapter to exemplify the 
capabilities of RP technology, with SL currently being the most widely used method of 
Rapid Prototyping world-wide. Parts fabricated by SL and FDM are typically of polymer 
material and ABS polymer, respectively, which may not be rigid enough for some 
applications. However, most of the discussion is not limited to those two technologies. If 
desired, other RP technologies, such as Selective Laser Sintering or Laser Engineered Net 
Shaping (LENS), can be employed to obtain metal parts with improved material 
properties.  
 
2.1 Fused Deposition Modeling  
 

One of the machines used here is a FDM 2000 rapid prototyping machine from Stratasys 
Inc., with the Fused Deposition Modeling technology (FDM). In the FDM technology, a 
thin thread of fused material is deposited layer by layer. The material usually used is ABS 
polymer. A supporting material is necessary where a new slice does not have any support 
from previous slices. Once the whole part is made, the supporting material is removed 
and some finishing is done if necessary. The main advantages of this specific technology 
are simplicity of use and relatively low cost. There are some limitations regarding the 
dimensional accuracy and the surface finish. Since the section of the part already built is 
not refused when the new material is deposited, the bounding between the layers and 
between the threads is not complete. Therefore, the parts are anisotropic and the material 
is weaker in the direction of fabrication, which corresponds to the direction of the slicing.  
Each rapid prototyping technology has its own software. This software is able to 
understand a standard type of file named STL (Wohler, 1992). Most of the CAD packages 
are able to create an STL file of a part. In this work, the STL files are generated from Pro-
Engineer. From this STL file, the software processes the model of the part into the 
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appropriate format. For the FDM technology, the part is first moved in an appropriate 
orientation. Then, the part is sliced in horizontal layers. The necessary support material is 
then created to hold the sections of the part which do not lie on lower layers.  
Finally, the roads—the paths where the threads of material are deposited—are created for 
each slice. This process can be performed automatically. However, depending on the 
desired properties of the part, parameters of the roads (size, spacing and pattern) can be 
modified manually. In order to clarify the process, an example is presented in Figure 1 (a), 
(b), (c) and (d).   
 

                                
                          a)                                                                   b) 
 

               
                       c)                                                                   d) 
 

Figure 1. Example of the software process: (a) Part in STL format in its original orientation. (b) Part properly 
oriented and sliced. (c) Support material added to the sliced part. (d) Roads in one of the slices. Note that the 
roads of the support material include gaps between them for easy removal 

 
2.2 Background on Stereolithography 
 
Stereolithography (SL) is currently the most widely used RP method and it is used as the 
second example throughout the chapter. SL is a method of rapidly prototyping parts by 
using a photo-polymer resin cured by an ultraviolet laser layer by layer. This allows the 
user to go quickly from a CAD file to a physical three-dimensional manifestation of the 
part. 
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Figure  2. Stereolithography Apparatus (SLA 250) from 3D Systems with a Schematic of the Process 
 

A photograph of a stereolithography apparatus (SLA) along with a schematic of the SL 
process is shown in Figure 2. A typical SLA consists of an ultraviolet laser, beam focusing 
optics, two galvanometers that each consist of a mirror oriented by a small motor, a vat of 
photo-polymer resin, and a build platform that raises and lowers the build part. 
A typical build process is completed in the following manner. A laser generates a laser 
beam that is conditioned and refocused using beam focusing optics. The beam is then 
reflected by two mirrors that can each rotate about a single fixed axis. Using these two 
mirrors the beam can be directed to any point (x,y) on the vat surface. The resin at the 
surface of the vat is cured along the trajectory created by the laser. Thus, by scanning the 
shape of the part’s cross section, one layer of the part is constructed. 
The platform holding the part is then lowered by one layer (generally 0.05 - 0.2 mm) into 
the vat and the process continues with the next layer. Before the next layer is built, a 
recoating mechanism, in form of a blade, slides over the surface to distribute the liquid 
resin evenly on the surface of the part to be built. 
Section 6.2 describes the construction of a functional model of the SLA 250 shown in 
Figure 2, including all mechanical and optical components, built in an SLA 250 machine. 

 
2.3 Glossary of Terms 
 

For the convenience of the reader the following summarizes the acronyms used 
throughout this chapter:  
 

RP Rapid Prototyping – a method of fabricating a physical three-dimensional 
manifestation of a part from the CAD file of the part; 

AF Additive Fabrication – is defined as building products in a process of adding 
material to the whole, as opposed to subtracting material (as is traditionally done). 
All of the following are examples of Additive Fabrication. 

SL Stereolithography – is a layered manufacturing technique that builds 3D objects 
layer by layer using an ultraviolet laser and photosensitive polymer resin. 

SLA Stereolithography Apparatus – is the acronym for a Stereolithography machine. 
SLS Selective Laser Sintering – is a layered manufacturing technique that builds 3D 

objects layer by layer using a heat generating CO2 laser and powders made of 
materials including polycarbonate, nylon, and metal. 
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FDM Fused Deposition Modeling – is a layered manufacturing technique that builds 3D 
objects layer by layer using two nozzles which place ABS or polyamide (as the 
building material) and modified ABS (as the support material). 

 

Note that British units of measurement are used frequently in this chapter, since these 
units are used with RP machines. Metric equivalents follow in parentheses. 
 
 

3. Related Research on the Use of RP for Automation and Robotics 
 

The traditional use of Rapid Prototyping is the fabrication of rigid parts. However, in 
recent years several research groups have discovered the potential of producing (robotic) 
mechanisms using RP, including Lalibert´e et al. (1999), Alam et al. (1999), Diez (2001), 
Rajagopolan & Cutkosky (1998, 1999) and Binnard (1999). 
The fabrication of joints is a crucial first step for the fabrication of mechanisms 
using RP. Lalibert´e et al. (1999, 2000) present the generic design of joints using the FDM 
process. Joints for SL and Selective Laser Sintering processes are presented by Alam et al. 
(1999) and Won et al. (2000). Kataria (2000) discusses the fabrication and required 
clearances for various non-assembly prismatic joints and revolute joints for both SLA-250 
and SLA-3500 machines. Diez (2001) discusses the fabrication of a very different type of 
joint for SL technology: compliant joints are considered, i.e. joints consisting of a single 
part that can be bent in some fashion. 
Joints presented in Lalibert´e et al. (1999, 2000) require assembly after fabrication, while 
the joints presented in Alam et al. (1999); Won et al. (2000); Kataria (2000); Diez (2001) are 
fabricated in already assembled form. Rajagopolan & Cutkosky (1998) present a 
framework for the analysis of the effect of geometry gaps and clearances on mechanism 
assemblies in RP, which applies to assembly and non-assembly joint types. 
Numerous complex passive and actuated mechanisms using the above joint types were 
successfully fabricated using RP, including a robotic hand (Won et al., 2000) and several 
parallel platform mechanisms (Lalibert´e et al., 2000). Additional examples are provided in 
this chapter. 
Lipson & Pollack (2000) investigated the automatic design and manufacture of what they 
call “robotic lifeforms”, where manufacture was by FDM. They programmed software to 
automatically design robots to move autonomously on a horizontal plane by utilizing 
evolutionary computation. The output of their software consists of STL files for input 
directly to an FDM machine. Joints were fabricated in already assembled form, and 
actuators and sensors were assembled to the robots after fabrication. 
Successful insertion of embedded electronic components in RP during the build process 
was reported for electronic games already in 1992 (Beck et al., 1992). Several research 
groups are seeking to apply this idea, i.e. the insertion of components during the build 
process, to the fabrication of mechanisms in RP. By inserting actuators and sensors during 
the build process and using non-assembly joints, no assembly is required after the build 
process. A group at Stanford University developed a design framework for this purpose, 
termed “Design by Composition for Rapid Prototyping”, see Binnard (1999) and related 
research by Binnard & Cutkosky (1998) and Cham et al. (1999). A group at Georgia Tech 
developed design strategies for the insertion of components for SL Technology, see Kataria 
(2000) and Kataria & Rosen (2000). Furthermore, the conceptual design of enhanced 
stereolithography machines, that may better support the insertion of components in the 
future, was discussed by Geving et al. (2000) and Geving & Ebert-Uphoff (2000). 
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4. Rapid Prototyping of Mechanisms Using Fused Deposition Modeling 
 

This section presents the rapid prototyping of mechanisms using a commercially available 
CAD package and a FDM rapid prototyping machine. A database of lower kinematic pairs 
(joints) is developed using the CAD package and parameters of fabrication are determined 
experimentally for each of the joints. These joints are then used in the design of the 
prototypes where the links are developed and adapted to the particular geometries of the 
mechanisms to be built. Also, a procedure is developed to build gears and Geneva 
mechanisms. Examples of mechanisms are then studied and their design is presented. For 
each mechanism, the joints are described and the design of the links is discussed. Some of 
the physical prototypes built using the FDM rapid prototyping machine are shown. 
 
4.1 Lower Kinematic Pairs and their Fabrication 
 

The main distinction between the rapid prototyping of mechanical parts and the rapid 
prototyping of robotic mechanisms is the need to include moving joints in the latter. Joints 
are undoubtedly the most critical components of robotic mechanisms and the effectiveness 
of prototypes of robotic mechanisms is largely dependent on the ability to produce joints 
with adequate accuracy. Hence, the prototyping of moving joints is at the core of this work 
and will be addressed first.  
Before mechanisms can be built, a database of lower kinematic pairs (joints) is developed 
and experimentally tuned. These joints will constitute the building blocks which will then 
be adapted and scaled to be included in specific mechanisms. These lower kinematic pairs 
are the revolute, Hooke, spherical, prismatic and cylindrical joints. These joints are the 
most critical parts of the mechanisms.  
Because of the anisotropy of the material deposited layer by layer, the parts must be 
properly oriented to obtain the desired strength. This is not only true for joints but for all 
parts. This can be observed in Figures 1 (b) and 3, where the same part is properly oriented 
in Figure 1 (b) and not properly oriented in Figure 3. Deposition layers oriented 
perpendicular to a hole axis increase the strength of the hole. For example, the holes in the 
part of Figure 1 (b) are strong compared to the holes in the part of Figure 3. Deposition 
layers oriented perpendicular to a pin axis decrease the strength of the pin. For example, 
the pins at the right end of the part are strong in the part of Figure 1 (b) but fragile in the 
part of Figure 3. Since the joints involve moving contacts, the dimensional accuracy and 
the surface 
 
 

 
Figure  3. Example of a sliced part not properly oriented 
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finish are critical. The tolerance of the parts is ±0.005 inches (0.127mm), which is relatively 
large for moving joints. Also, it can be seen from experimentation that a cylinder built 
horizontally is oval instead of circular. To obtain proper performances, test parts are built 
with progressive clearances, assembled and tested. Moreover, because the parts are built 
in layers of 0.010 (0.254mm) inches, the surfaces that are not perfectly vertical will include 
“steps” associated with the layers and their surface finish will be rather poor in the 
directions not aligned with layers. Therefore, it is advantageous to keep the walls perfectly 
vertical or to keep sliding movements aligned with the layers. For example, as can be seen 
in Figures 1 (b) and 3, the holes and shafts are smoother when their axis is perpendicular 
to the orientation of the deposition layers. 
As previously mentioned, mechanisms built with the FDM process are built in separate 
parts and assembled manually. Most of the joints are assembled using the elastic 
deformation of the material. Therefore, a compromise must be found between the stiffness 
of the joints and their ability to be assembled without rupture. The maximum elastic 
deformation has been found to be around 1.5%, but deformations of 3%—with some 
plastic deformation—are acceptable if necessary. Some features of the geometry of the 
parts are established using stress-deformation equations. 
Finally, some joints may have very deep and narrow holes and it would be very difficult 
to remove the support material. Fortunately, with the FDM process, it is possible to make 
what is referred to as bridging. With appropriate settings, the hot thread of material is 
stretched and does not collapse for a short distance (up to 6 mm) when it is applied 
without support. Therefore, it is possible to build small ceilings without support. To 
establish the maximum bridging distance without collapse, a test part with different gap 
lengths is built without support in the gaps. This is illustrated in Figure 4. Note that the 
threads of the layer covering the gaps are oriented in the longitudinal direction of the part 
to make bridging possible. 
 

 
 

Figure  4. Bridging test : the bridging is correct up to the fourth gap 
 
 

The database of joints is now described: 
 
Revolute Joints 
 

Two types of revolute joints are represented in Figure 5 (a) and (b). 
The first type of revolute joint is made of a grooved shaft to be inserted in a hole and held 
by a snap ring. The snap ring can be bought or made by the rapid prototyping machine. It 
is preferable to build the part with the hole aligned vertically in order to obtain a stronger 
part and a rounder and smoother hole. It is better to build the shaft horizontally to 
improve its strength. However, it is preferable to build it vertically to produce a part with 
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better smoothness and roundness. Most of the time, the shafts are built horizontally since 
strength is more critical. 
The second type of revolute joint is made of a fork-shaped part with two small shafts and 
a hole. The fork is opened to fit the small shafts at the ends of the hole. Again, it is better to 
build the part with the hole vertically to obtain a stronger part and a smoother hole. Since 
the shafts are placed on each side of the part, they work only in shear stress, which is less 
demanding than the bending stress sustained by the first type of joint. Therefore, the 
shafts are built vertically. The shape of the fork is an important factor to obtain adequate 
stiffness while providing sufficient compliance for the assembly. Note that this type of 
joint is very smooth but cannot be rotated 360 degrees. Upon fabrication, the first type of 
joint is assembled by inserting the shaft in the hole and snapping the ring in the groove. 
The second type of joint is assembled by opening the fork and snapping the shafts of the 
moving part in the holes. 
 
 

                            
 

a) b) 
 

Figure  5. Revolute joints: (a) type 1 (b) type 2 
 

 
A Hooke joint is represented in Figure 6. The Hooke joint is composed of a small cross and 
two fork-shaped parts. Upon fabrication of the three parts, the joint is assembled as 
follows: the pins of the cross are inserted in the holes of the fork-shaped parts by opening 
the fork.  
 

 
Figure  6. Hooke joint 
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The forks are built with the holes vertically oriented for strength and roundness. The pins 
of the cross are built horizontally for strength. Again, the shape of the fork is an important 
factor to obtain proper stiffness while providing sufficient compliance for the assembly. 
The Hooke joints can be suitably operated at ±45 degrees. 
 
Spherical Joints 
 

A spherical joint is represented in Figure 7. The spherical joint is made of a sphere at the 
end of a cylinder and a spherical cap segmented in four sections to allow some expansion 
during the assembly. The assembly of the joint is performed by pushing the sphere into 
the spherical cap. The cap is preferably built horizontally to give more strength to the 
sections. The sphere and its cylinder are preferably made of two parts. The cylinder is built 
horizontally for strength. The sphere is built perpendicular to the cylinder to keep the 
layers of the sphere and the layers the cap unaligned in all configurations to avoid any 
gripping. These parts are then assembled press fit or bound. The spherical joint can be 
operated in a cone of ±30 degrees. 
 

 

 
 

Figure  7. Spherical joint 

 
Prismatic Joints 
 

A prismatic joint is represented in Figure 8 (a). The prismatic joint is made of a square 
section and its corresponding square tube. In order to obtain proper strength, both parts 
must be built horizontally. Therefore, the tube should be filled with support material to 
support the roof of the square tube. Since the tube can be very deep and narrow, it would 
be very difficult to remove the support material and bridging is used. A groove is made 
along the bar, except at the ends. A small flexible stopper is made at the end of the tube 
and inserted into the groove to keep the motion of the bar in a certain range. The two parts 
are assembled as follows: the stopper is maintained open to allow the insertion of the bar 
in the tube. For some applications, it is interesting to have a prismatic joint that can keep a 
certain position even if there is some force applied on it (for instance, to avoid the 
collapsing of a prototype under gravitational forces). This can be accomplished by creating 
a wave along the sliding bar and a flexible rod on the tube. The rod will tend to stay in the 
trough of the waves, allowing to keep givenconfigurations. This is illustrated in Figure 8 
(b). 
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                               a)                                                                            b)  
 

Figure 8. (a) Prismatic joint with wavy moving bar. (b) Zoomed cross section of the prismatic joint with the 
wave mechanism (top) and the stopper (bottom) 

 
Cylindrical Joints 
 

A cylindrical joint is represented in Figure 9. The cylindrical joint is made of a rod inserted 
in a tube. As for the prismatic joint, both parts must be built horizontally in order to obtain 
proper strength. For the tube, bridging is used to avoid use of support material. Since the 
roof is not planar, the shape of the tube is modified to allow bridging without affecting the 
desired properties. In order to stop the travel of the joint and allow a smooth rotation, a 
press-fit sleeve is added to the rod and a press-fit cap is added to the tube. 
 
 

                                                
                              a)                                                                       b) 
 

Figure 9. (a) Cylindrical joint with parts of Hooke joints at the ends. (b) A cross section of the cylindrical joint 
illustrates the shape of the tube to allow bridging 

 
4.2 Rigid Assembly of Parts 
 

In the fabrication of mechanisms, parts must often be rigidly assembled. Indeed, some 
parts are too large to be built in one piece and different features of a same part must 
sometimes be oriented in different directions to accommodate the anisotropy of the 
material. However, some assemblies should not be permanently mounted, in order to 
allow many versions of a part of an assembly to be exchanged. To assemble the parts 
permanently, glue or strong press fit has shown to be satisfactory. Some non-permanent 
assemblies have also been developed, as light press fit. Another example, the twist binder, 
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represented in Figure 10, is useful to easily mount and unmount parts where the 
translating forces are important but the torque in at least one direction is weak or zero. 
 

 
 
Figure 10. Twist binder : a T-shaped part is inserted in a slotted part, then turned 90 degrees to a press-fit 
locked position 

 
4.3 Gears 
 

This section discusses the fabrication of spur gears with teeth made using the commonly 
used involute profile. The theory related to involute gearing will be shortly summarized 
for the rapid prototyping needs. The following values are known: the diametral pitch Pd, 
the pressure angle Φ and the number of teeth N or the pitch diameter Dp. These two last 
values are related by Pd = N/Dp. The following values are then computed : outside 
diameter is Do = Dp + (2/Pd), the root diameter is Dr = Dp − (2.5/Pd), the base diameter 
is Db = Dp cos Φ and the thickness of the tooth is t = π/2Pd. Note that while Di refers to 
diameter values, Ri refers to the corresponding radius value. For more details refer to 
Oberg et al. (1988). To create the gear teeth in the CAD package, a skeleton curve of the 
involute profile must first be defined parametrically. Referring to Figure 11, the involute 
curve can be described by 
 
                                                   X = −Rb sin (ǂ − ǃ) + Rb_ cos (ǂ − ǃ) (1) 

 

                                                       = Rb cos (ǂ − ǃ) + Rb_ sin (ǂ − ǃ)  (2) 
 
where Rb is the base radius, ǂ is the parametric angle and ǃ is an offset angle related to the 
thickness t of the tooth. The parametric angle ǂ varies from 0 to ǂo, which is related to the 
outside diameter of the gear Do. The values of ǃ and ǂo are found from the following 
equations. 
 
                                                            = π/2N + tan(Φ) − Φ −V/Rp (3) 
 

                                                                ǂo = tan[arccos(Db/Do)] (4) 
 
where V is an offset to allow sufficient backlash. Good results are obtained with V =0.001 
inch (0.0254 mm). 
With these equations and some experiments, a procedure has been developed for the CAD 
package. 

1. Extrusion of a circle of diameter Db if Db > Dr or Dr if Dr > Db. 
2. Creation of a coordinate system (see Figure 11). 
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3. Creation of the parametric involute curve found from the preceding equations. 
4. Mirror copy of this curve from the plane YOZ. 
5. Creation of an outside diameter circle. 
6. Extrusion of the tooth from the parametric involute curves and the outside diameter 

circle. 
7. Copy of this tooth each 360/N degrees. 
8. If Dr < Db, creation of a cut between the teeth to Dr and copy of this cut. 
9. Creation of fillets, holes, hubs, etc. 

 
A similar and adapted procedure can be used to obtain internal spur gears. 
Regarding the orientation of the gears in the prototyping machine, it is advantageous 
to keep their axis vertical for smoothness of operation and strength. With proper 
adjustment of the parameters of the rapid prototyping machine, gears with diametral pitch 
as fine as 32 (approximately 0.8 module) can be properly fabricated and used. Future work 
includes the development of helical, miter and bevel gears. 
 
 

 
 

Figure  11. The involute profile of a gear tooth 

 
4.4 Examples of Mechanisms Using FDM 
 

To build a complete mechanism, one has to create the appropriate links and include the 
joints presented previously. Because of the nature of the rapid prototyping process, these 
links can be of almost any shape. Here, the anisotropy of the material is the main factor to 
be considered in order to obtain links of appropriate strength. This section presents some 
examples of mechanisms built in the Robotics laboratory at Laval University using the 
joints previously presented. In addition to the mechanisms presented here, the following 
mechanisms have been built: four-bar and five-bar spherical mechanisms, four-bar spatial 
mechanisms, serial manipulators, 3-DOF planar parallel mechanism, 3-, 4- and 5-DOF 
spatial parallel mechanisms and several others.  

 
Simple Mechanisms 
 

Several simple mechanisms have been built. The Bennett linkage is a good example. A 
prototype of the Bennett mechanism (Phillips, 1990) — a well known spatial four-bar 
overconstrained linkage — has been built for classroom demonstration purposes. The 
CAD model and the prototype are presented in Figure 12 (a) and (b).  



 30

                  
                                          
                                       a)                                                                              b) 
 

Figure 12. Bennett mechanism: (a) CAD model (b) prototype 

 
Three-DOF Spherical Mechanism: the Agile Eye 
 

The Agile Eye (Gosselin & Hamel, 1994), represented in Figure 13 (a) and (b), is an 
example of mechanism involving complex geometries that are easily made with rapid 
prototyping. Each of the three legs has three revolute joints. Note that the bottom link of 
the legs is made of two parts in order to align the layers with the general orientation of the 
legs. 

                          
 

a)                                                                                    b)  
 
Figure 13. Agile eye: (a) CAD model (b) prototype 

 
Three-DOF, Four-DOF, Five-DOF and Six-DOF Platforms 
 

Several three-, four-, five- and six-DOF parallel platforms have been built. For instance, the 
six-DOF (Gough-Stewart) (Dasgupta & Mruthyunjaya, 2000) platform illustrates the use of 
a variety of the joints developed above (Figure 14 (a) and (b)). Each of the legs comprises a 
Hooke joint, a prismatic joint and a spherical joint, giving 6 DOF. The ends of the legs can 
be assembled to the upper and lower platforms using a twist binder. With these binders, 
the legs and the platforms are modular. Therefore, it is easy to try different geometries of 
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platforms or different types of legs without having to rebuild the whole mechanism for 
each version. The plastic prototypes of parallel robotic mechanisms are very useful to 
visualize the singularities. In general, singularities can be found from mathematical 
analysis but are often difficult to physically visualize. 
 

                            
 

a)                                                                                            b) 
 
Figure 14. Gough-Stewart platform: (a) CAD model (b) prototype. Note the use of waves in the prismatic 
joints to avoid collapse of the platform 

 
Example of Geared-Pair Mechanism: Planetary Gear System 
 

The rapid prototyping of gears is useful for the development of complex systems. For 
example, a planetary gear system is presented in Figure 15. This planetary gear system is 
made with a 2-inch (50.8 mm) internal gear and 24 diametral pitch (approximately 1.0 
module) teeth. The prototype works very smoothly. Gears with 48 diametral pitch 
(approximately 0.5 module) teeth or finer are difficult to obtain because of the resolution 
of the machine.  
 
Examples of Actuated Mechanisms  
 

Some of the prototypes built are motorized, as the novel 6-DOF mechanism (Gosselin et 
al., 1999) represented in Figure 16 (a) and (b). Since larger stresses can be generated at the 
actuator shafts, an aluminum part is mounted on the shafts and then inserted in the ABS 
part. All the other joints of the mechanism are in ABS polymer and could 
 

 
Figure 15. CAD model of a planetary gear system 
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easily sustain the induced forces even when the end-effector of this mechanism 
experienced accelerations of more than one g. Another example is a 3-DOF spherical 
haptic device with only pure rotations of the end effector, represented in Figure 17 (a) and 
(b). In this prototype, metal parts and bearings are used in combination with plastic parts. 
The main advantage of rapid prototyping in this example is the complexity of the 
geometry of the moving parts, some of which would be extremely difficult to machine 
using conventional processes. Although satisfactory results have been obtained with this 
spherical haptic device, the compliance of the plastic parts remains an important limitation 
if high performance is required. 
 

       
 

a)                                                                                b)  
 

Figure 16. Novel six-DOF mechanism: (a) CAD model (b) prototype 

 
Prototyping of a Robotic Hand 
 

The rapid prototyping technique presented above has been especially useful in the design 
of a robotic hand (Lalibert´e & Gosselin, 2001, 2003), illustrated in Figure 18. 
 

  
 

a)                                                                          b) 
 

Figure 17. Three-DOF spherical haptic device: (a) CAD model (b) prototype 
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Several novel features are included in this versatile grasping hand, which has ten degrees 
of freedom but only two actuators. 
Plastic models of the new features have been built during the first steps of the design 
process in order to validate their functionality or to help choosing among several possible 
solutions which were difficult to compare by simulation. Among others, prototypes of 
fingers were very useful to check possible mechanical interferences between the numerous 
parts of the compact assembly. Also, the prototyping of a new geared differential system 
has been useful for validation and demonstration. 
The prototype of the robotic hand has been built almost entirely of plastic except for off-
the-shelf metal screws, nuts and springs. The number of parts, without the screws, 
retaining rings and bushings, is approximately 200. The prototype has been tested to 
validate its functionality and real grasping tasks were performed using actuators. If a part 
of a sub-system was not satisfactory, it was modified on the CAD software, rebuilt and 
assembled, generally in the same day, making the tuning cycle very short. The mechanical 
efficiency of the system has been measured and compared with the simulation results in 
order to validate the theoretical model of the grasping forces. In order to identify the 
weakest parts of the system, the hand has been overloaded. The resulting broken part 
could then be modified. As should be expected, the load that could be applied on the 
plastic prototype was much lower than for the metal version. However, knowing the 
relative strength of the plastic and metal, test data could be extrapolated. 
For instance, one particular part with a very complex shape was tested mechanically using 
the plastic prototype since its resistance was difficult to obtain through simulation. For the 
fabrication of the real metal hand, the plastic prototype was a very good complement to 
the drawings. First, the design of the metal hand was completed with much more 
confidence from the validation and testing of the plastic prototype. Also, the plastic parts 
were used to help the machinists understand the most complex geometries before they 
fabricated the metal parts. 
 

                  
 

 a)                                                                        b)  
 

Figure 18. Underactuated 10-dof robotic hand: (a) CAD model (b) prototype 

 
The prototype has been a remarkably useful tool for explanation and demonstration 
purposes. Also, the plastic prototype made it possible to apply for a patent with 
confidence before the construction of the metal version was completed. 
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Overall, the plastic prototype allowed to validate the new concepts, perform tests (even 
partially destructive), present the idea to decision makers and submit a patent months 
before the real metal version was ready. 
 

5. Fabrication of Joints Using SL Technology 
 

Analogously to mechanism prototyping using FDM, the fabrication of joints is also the 
essential first step for mechanism prototyping using SL and is discussed below. 
 
5.1 Joints Originally Designed for FDM Machine and Built in SL Machine 
 

The group at Universit´e Laval made the CAD files for several of the joints presented in 
the previous section available to the group at Georgia Tech. The following joints, which 
had been designed for fabrication in the FDM 2000 machine at Laval, were then built in 
the SLA-250 machine at Georgia Tech: the revolute joint of type 2 shown on the right of 
Figure 5, the Hooke joint shown in Figure 6 and the spherical joint shown in Figure 7. 
The revolute joint and the spherical joint were fabricated successfully in the SL machine by 
simply adjusting the tolerances, i.e. the size of the gaps between moving parts, to the SL 
machine. For the Hooke joint some additional changes were necessary: since the stiffness 
for the parts made in the SLA-250 (using Resin SOMOS 7110) is much higher than the 
stiffness of the parts made in the FDM machine (ABS polymer), it was impossible to bend 
the arms of the Hooke joint enough to assemble the joint, i.e. to slide the center block with 
the four pins into its proper position. This problem was overcome by changing several 
dimensions of the parts to make it more flexible and by adding a small indentation at the 
inside of the joints to guide the pins of the block into its proper location. In any case, only 
small changes were necessary to use the joints successfully in the SL machine. This 
demonstrates the universality of the database presented in Section 4. for a wide variety of 
Rapid Prototyping processes. 
 
5.2 Non-Assembly Joints of Conventional Type 
 

All joints presented in Section 4. consist of several parts that must be assembled after 
fabrication. The high resolution of SL machines encouraged us to investigate the 
fabrication of joints that do not require assembly. As a first step we considered joints of the 
conventional type, i.e. joints consisting of two or more parts moving with respect to each 
other, but built in already assembled form. An example is the prismatic joint shown in 
Figure 19, where the sliding bars were built inside the guides in the SL machine in a single 
step. Clearances must be chosen large enough to ensure that the bars do not adhere to the 
guides, and any liquid resin trapped in the gaps must be removed by pressured air before 
post-curing is applied. No support structures were located in the prismatic joint regions. 
 
 

 
 

Figure 19. Horizontal Prismatic Joint Experiment 
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To test SL build limitations for horizontal prismatic joints, the part shown in Figure 19 was 
utilized. A dovetail cross section joint shape was used. Clearance within the joint was 
increased from 0.006 (0.152mm) to 0.012 inches (0.305mm) in increments of 0.002 inches 
(0.051mm). The parts were cleaned with TPM and alcohol before postcuring, and care was 
taken that the resin in the joints was removed completely. The experiment was conducted 
in both Georgia Tech SL machines, the SLA-250 and SLA- 3500. The SLA-250 was working 
at 21 mW laser power while SLA-3500 was working at 230 mW laser power. A similar 
experiment was performed for vertical cylindrical prismatic joints. Various clearances 
were used, increasing from 0.006 inches (0.152mm) to 0.016 inches(0.406mm) in increments 
of 0.002 inches (0.051mm). The results obtained from these experiments are summarized in 
Table 1. 
 

 
 

Table 1. Clearances for Kinematic Joints 

 
 
5.3 Non-Assembly Joints of Compliant Type 
 

All the joints discussed so far in this chapter are of a conventional form in the sense that 
they consist of two or more pieces that are separated by a gap. In contrast, a compliant 
joint consists of a single piece that can be bent in some fashion.  
Compliant joints have been evaluated as a substitution for traditional joints by many 
researchers, including Howell & Midha (1994, 1996), Goldfarb & Speich (1999), Speich & 
Goldfarb (2000), Frecker et al. (1997) and Paros & Weisbord (1965). Typical disadvantages 
of compliant joints include limited range-of-motion and non-ideal kinematic behavior. 
Advantages include absence of Coulomb friction, no backlash and ease of fabrication (due 
to monolithic structure). 
Goldfarb & Speich (1999) identified the “compound split-tube joint”, shown in Figure 20, 
as a suitable compliant implementation of a revolute joint. The compound splittube joint 
exhibits the properties of traditional hinges in many ways: it rotates about a relatively 
constant axis, allows rotation about this axis easily, and restricts translation and rotation 
about any other axes. In contrast, most other types of compliant joints are compliant in 
more axes than the intended axis (Goldfarb & Speich, 1999). 
While Goldfarb and Speich considered joints manufactured of steel, we succeeded in 
reproducing the same basic properties for split-tube joints built using Stereolithography. 
The Stereolithography fabricated part is shown in Figure 20 along with the CAD model of 
the compound split tube. These compliant joints are used as the joints in the two 
mechanisms presented in the following subsection. 
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5.4 Examples of Mechanisms 
 

Snake-like Mechanism Using Non-Assembly Joints of Conventional Type 
 

Figure 21 shows the first development stage of a miniature snake-like tendon-driven 
mechanism, inspired by the underactuated snake-like mechanisms introduced by Hirose 
(1993). The type of joint used in a “point-contact axle” developed specifically 
 

  
 

Figure  20. Virtual and Fabricated Compound Split Tube Model 

 
for non-assembly fabrication of miniature mechanisms in SL machines (for details, see 
Miller (2001)). The mechanism is 10 cm long (fully outstretched) and consists of 6 links that 
are connected by point-contact axles. Pulleys are also already built in. The snake was built 
in a single step requiring no assembly. After some further refinements, tendons will be 
added to the mechanism. 
 

 
 

Figure  21. Snake-like mechanism with built-in joints and pulleys. CAD model of a single segment (left) and 
of two connected segments (center) and prototype (right) 

 
Actuated Mechanisms Using Compliant Joints 
 

Two mechanisms were developed to demonstrate the use of compliant joints to build 
miniature, actuated, robotic devices: the 2R robot and the robotic hand. Both of these 
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mechanisms utilized Shape Memory Alloy (SMA) wires for actuation, and show the 
potential for building non-assembly miniature robotic devices with Additive Fabrication. 
The 2R robot, seen in Figure 22, is a small planar robot with two degrees of freedom. It is 
approximately 3.5 cm tall with a 2 x 1.5 cm base. Two SMA wires produce motion and two 
compound split tubes act as joints. The attachments for the actuators are already built into 
the SL part, so that the SMA wires can be attached within minutes after fabrication. The 
SMA wires can be seen in Figure 22 and are inserted using socalled spring slots to reduce 
any slack in the wires in its zero position (for details see Diez (2001).) 
 
 

 
 

Figure  22. 2R Robot 

 
 

 
 

Figure  23. 2R Robot Actuated 

 
The motion achieved by the SMA wires can be seen in Figure 23. In the first frame, no 
actuation has occurred. In the second frame, the upper link has been actuated as indicated 
by the arrow. Finally, the third frame shows the lower link being actuated while the upper 
link is also actuated. Although this motion is small, it shows clear potential for tasks such 
as micro assembly. 
 
Robotic Hand with Compliant Joints 
 

Won et al. (2000) developed a robotic hand fabricated in SL that uses non-assembly joints 
of the conventional type. A different design of a robotic hand fabricated in SL is shown in 
Figure 24 which uses only compliant joints. There are 14 compliant joints in the 5 fingers 
(each finger has 3 joints and the thumb has 2). 
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Each finger was built as a single part already including all joints. While it would have been 
possible to build the whole hand as a single part, we preferred to build it as six separate 
parts (5 fingers and the palm) for easy maintenance. That way, if a finger breaks, it can 
easily be replaced. Again Shape-Memory Alloy wires are used as actuators. A total of 9 
independent wires are used in the hand: The thumb is actuated with one SMA wire, while 
the fingers are actuated with two each. The knuckle joints are independently actuated and 
each finger’s top two joints are actuated jointly, i.e. each finger is underactuated by one 
degree-of-freedom. 
The wires are inserted both by spring slots (5 wires) and by sliders (4 wires) that remove 
all slack from the wires when the wires are inserted (for details see Diez (2001)). Similarly 
to the 2R robot, the attachment slots for the wires are already built in and the wires can be 
added within a few minutes after fabrication. Each finger on the hand moves a cumulative 
50o. The hand is sized at near human size for demonstration purposes. 
 
 
 

 
 

Figure  24. Two views of Robotic Hand 
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For this type of application the compliant joints have an additional advantage: Since 
Shape-Memory Alloy Wires only provide force in one direction, a return force is required 
to return them to their original shape when they cool down. The compliant joints act as 
joints with built-in springs and thus provide the required return force for the wires. 
Similarly, the inherent spring character of the compliant joints is also of advantage when 
prototyping other mechanisms that employ springs to return to a neutral position, such as 
various tendon-driven robotic mechanisms.  
 

6. Novel Design Possibilities of Additive Fabrication for the Prototyping of 
Mechanisms 

 
As discussed earlier, the main goal of prototyping at an early stage of experimentation is 
to quickly achieve a prototype that provides the basic functionality of the desired system. 
Implementation details are usually irrelevant at this stage, allowing for use of RP-specific 
short-cuts in the implementation to yield faster turn-around time. This section explores 
one of the capabilities unique to Additive Fabrication that may be useful for this purpose, 
namely the possibility to include inserts during the build process, thus eliminating the 
design of fasteners and the assembly process. SL technology is used to exemplify these 
unique capabilities. 
 
 
6.1 Strategies for Insertion of Actuators and Sensors in SL 
 

In the construction of functional prototypes, it is often advantageous to embed 
components into parts while building the parts in SL machines. This avoids post-
fabrication assembly needs and can greatly reduce the number of separate parts that have 
to be fabricated and assembled. Furthermore, SL resins tend to adhere well to embedded 
components, reducing the need for fasteners. However, these advantages are not without 
limitations. Some part shapes must be modified to accommodate the embedding of 
components during builds, and the SL build process must also be modified. The 
advantages and limitations are explored in this subsection.  
We have fabricated many devices with a wide range of embedded components, including 
small metal parts (bolts, nuts, bushing), electric motors, gears, silicon wafers, printed 
circuit boards, and strip sensors. These components are representative of those necessary 
for many types of prototype robotic mechanisms. Some care and preparation is often 
needed to embed some components, particularly if resin could contaminate the 
component or make the component inoperable when solidified. Device complexity is 
greatly facilitated when the capability to fabricate kinematic joints is coupled with 
embedded inserts since functional mechanisms can be fabricated entirely within the SL 
vat, greatly simplifying the prototyping process.  
Figure 25 shows one example of a mechanism with four embedded metal components: 
two bushings, one leadscrew, and a nut that is embedded with the elevator (to mate with 
the leadscrew). Additionally, the ”leadscrew-top” fits into the top of the leadscrew, but 
was assembled after removal from the SL machine.  
A second example is a model of the recoating system in a SL machine, shown in Figure 26. 
As discussed in Section 2.2, the recoating mechanism of a SL machine consists of a blade 
that slides over the surface of the vat after a layer has been completed, to distribute the 
liquid resin evenly on the surface of the part to be built. In this case, two components were 
embedded during the build, a rack gear and a motor and speed-reducer assembly. The 
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recoating blade slides relative to the stationary structure via two prismatic joints, 
fabricated as assembled. 
 

 
 

Figure  25.  Elevator Model with 4 Embedded Components 
 

Generally electric motors should be coated with wax or similar substance so that the liquid 
SL resin does not penetrate themotor housing and cause the motor to seize. Otherwise, no 
modifications to any of these components is required. 
The tolerances for the inserts vary depending on size, load capacity, length of contact 
surface, type of joint, orientation, layer thickness etc. Though more study is needed in this 
area, the basic tolerances that we have identified are indicated along with the experiments 
below. 
 
 

 
 

Figure  26. Recoating Mechanism for SL Machine 
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The fits for SL depend heavily on the surface roughness of the insert surface. Table 2 
indicates the dimensions for clearance, transition and interference fits between inserts and 
SL parts. It should be noted that it is possible to insert components during the build for 
clearance and transition fits, but it is extremely difficult to insert a component having an 
interference fit since it requires considerable force that may damage the part or break the 
support structures skewing the existing build. 
Figure 27 explains the critical dimensions specified in Table 2 that summarize thefits, 
based on our experiments. However, it is possible that tolerances and fits will vary on 
different machines, different laser powers, and for different resins. 
 
 
 

 
 

Figure  27. Critical Dimensions for Fits between Inserts and SL Parts 
 
 

 
Table 2. Fits Between Inserts and SL Parts 

 
6.2 Functional Model of an SLA-250 Built in an SLA-250 
 

The most complex experiment performed at Georgia Tech was the construction of a model 
of the SLA-250 machine shown in Figure 28. The mechanical, optical and recoating 
subsystems of the original SLA 250 (discussed in Section 2.2 and shown in Figure 2) were 
modeled and fabricated in the SLA 250 at 1 : ¼  scale. The model includes all the 
components of the original machine: 

� The mechanical platform with the vat that can be raised and lowered, using a 
leadscrew and a motor; 
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� The recoating blade that moves horizontally, using a second motor and a pair of 
sliding contacts; 

� A small laser pointer that emulates the laser of the original machine; 
� Two galvanometers, i.e. mirrors mounted onto motors, that redirect the laser onto any 

point on the vat surface. 
 

 
 

Figure  28. Functional prototype of an SLA-250 

 
 

The model measures 152x152x257 mm. Enclosures were built in the RP machine for 
several of the components before insertion, see Kataria & Rosen (2000). Then the model 
was built in a single step in the SLA 250 machine, including 11 inserts, 4 sliding contact 
joints and one rotating contact joint. The model is fully functional. 
For completeness, the following provides a list of all components. The inserts included: 
 

1. Mechanical Components: Two bushings, lead-screw (2 parts), a nut, and a rack gear. 
2. Electrical Components: Two gear-motors (one inserted with the lead-screw part 2) 
3. Electronic and other Components: A set of galvanometers and a laser pointer. 

 
The sliding contact joints included the bottom and top parts of the joint for the recoater 
guide (planar surfaces) and the left and right elevator guides (cylindrical shafts andholes). 
The rotating contact joint was for the hinge at the top of the chamber thatencases the 
galvanometer and laser. 
This prototype proves the feasibility of building around inserts and illustrates the ultimate 
potential of the concept. Limitations observed include the need to redesign parts of the 
structure to accommodate some of the inserts and the need to redesign some parts to 
facilitate the removal of support structures. In fact, if we would build this model again, we 
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would build it in modules, rather than as a single build. For example, thelead-screw SLA 
platform mechanism built well as a stand-alone experiment, but was difficult to clean up 
after this build. The recoating mechanism was similarly difficult toclean up. 
 
6.3 Discussion - Challenges and Development of RP Technology for the Insertion of 

Components 
 

An important aspect of common stereolithography machines is that they employ 
ultraviolet lasers to solidify the resin. Since most mechanical and electronic componentsare 
not sensitive to ultra-violet light and no significant heat is produced in the process,the 
inserted components are not damaged in the process. On the other hand, the liquidresin 
used in stereolithography may easily be contaminated by substances on theinserted 
components. For some inserts it is sufficient to clean them with alcohol before insertion, 
while others are coated manually with a small layer of resin and cured in the UV oven 
before insertion. Additionally, liquid resin may infiltrate inserts, such as electric motors, 
rendering them inoperable. Care must be taken to protect both the resin and components 
when inserting components in the resin vat. 
The fact that inserted components may temporarily stick out of the part to be builtcan 
cause interference with the machine. For SL machines, interference can occurbetween the 
insert and the re-coating system that applies new layers of resin on top of the build part. 
Lastly, the laser beam of the SL machine can be blocked by an insert,resulting in a laser 
shadow which prevents material to be cured. Other RP processes share some of these and 
other limitations (e.g. excessive heat). 
These limitations have spurred the development of a generalized 
Stereolithographymachine to overcome these problems, see Geving et al. (2000); Geving & 
Ebert-Uphoff(2000). 3D Systems, the primary manufacturer of SL machines, and other 
membercompanies of the Rapid Prototyping and Manufacturing Institute (RPMI) actively 
supportthese efforts that will make it easier for the user to include inserts in SL machines. 

 
7. Conclusions 
 

The rapid prototyping framework presented in this chapter provides fast, simple and 
inexpensivemethods for the design and fabrication of prototypes of robotic 
mechanisms.As evidenced by the examples presented above, the prototypes can be of 
great help togain more insight into the functionality of the mechanisms, as well as to 
convey theconcepts to others, especially to non-technical people. Furthermore, physical 
prototypescan be used to validate geometric and kinematic properties such as 
mechanicalinterferences, transmission characteristics, singularities and workspace. 
Actuated prototypes have also been successfully built and controlled. Actuated 
mechanisms can be used in lightweight applications or for demonstration purposes. The 
main limitation in such cases is the compliance and limited strength of the plasticparts, 
which limits the forces and torques that can be produced. 
Finally, several comprehensive examples have been given to illustrate how the 
rapidprototyping framework presented here can be used throughout the design process. 
Two robotic hands and a SLA machine model demonstrate a wide variety of link and 
jointfabrication methods, as well as the possibility of embedding sensors and actuators 
directlyinto mechanisms. In these examples, rapid prototyping has been used to 
demonstrate,validate, experimentally test (including destructive tests), modify, redesign 
and,in one case, support the machining of a metal prototype. 
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The use of Rapid Prototyping for the prototyping of robotic mechanisms is in its early 
stages. Much research remains to be done in order to (1) explore the full  potential of RP 
for robotic mechanisms and identify the most promising research directions; (2)develop 
RP machines with additional functionality that are targeted to this new use.Given the 
rapid and inexpensive nature of the processes described here, it is believed that the 
framework presented in this paper can be a significant advantage in the designof robotic 
mechanisms. 
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