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1. Introduction 

Musashi1 (Msi1) is an evolutionary conserved RNA-binding protein that plays important 
roles in neural stem cell maintenance, nervous system development, and tumorigenesis. In 
glioblastoma, Msi1 is found to be highly expressed and to control a network of cancer-
related genes. In this chapter, we will review the participation of RNA-binding proteins in 
tumorigenesis and the role of Msi1 in stem cells and in glioblastoma. Furthermore, we will 
discuss the results of a study done with The Cancer Genome Atlas (TCGA) dataset to map 
genes highly correlated in expression with Msi1 as an avenue to understand its function in 
gliomagenesis.  

2. Musashi1 and RNA-binding proteins 

2.1 RNA-binding proteins 

RNA-binding proteins (RBPs) are instrumental in RNA metabolism, from biogenesis to 

degradation affecting molecular processes associated with mRNA capping, 3’ end 

formation, splicing, transport, localization, stability, and translation (Figure 1). RNA-

binding proteins associate with target RNA ligands forming the so-called ribonucleoprotein 

complexes (RNPs). Changes that affect RBP expression and/or function, either temporally 

or spatially, can have a profound impact on the fate of their target RNAs. 

Recent genomic analyses suggest that RNA-binding proteins target mRNAs that code for 

proteins of similar function, forming the so-called RNA operon (Keene, 2007). In this 

scenario, RNA-binding proteins coordinate the expression of newly synthesized transcripts 

in order to ensure the needs of the cells are met. This relationship is not linear and any 

particularly mRNA may be bound by many different RNA-binding proteins thus forming a 

higher order of regulation termed the RNA regulon. Since RNA-binding proteins regulate 

large subsets of mRNA, it is conceivable that changes in expression or function can have a 

profound impact on human disease.    
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Fig. 1. RNA-binding proteins have diverse functions in RNA metabolism. A schematic of the 
life cycle of an mRNA and various functions, in black boxes, where RNA-binding proteins 
participate is shown. m7G denotes the 7-methylguanosine cap and poly(A) denotes the 
poly(A) tail of mRNAs.  

2.2 RNA-binding proteins and cancer 
 

RNA-binding proteins can regulate operons formed by mRNAs involved in cell 
proliferation, apoptosis, growth, angiogenesis, and invasion/metastasis, processes which, if 
dysregulated can lead to or potentiate cancer (Lukong et al., 2008). In recent times, the 
recognition of the impact RNA-binding proteins have on tumorigenesis has been emerging. 
For example, eIF4E is an important RNA-binding protein that acts downstream of the 
mTOR pathway (Wendel et al., 2007). This protein functions normally as a component of the 
translation initiation complex. When elevated, eIF4e contributes to tumor formation by 
increasing the translation of oncogenes and genes involved in cell proliferation.  
It is estimated that the human genome encodes ~1000 different RNA-binding proteins. A 
recent study from our lab utilized a comprehensive in silico approach to analyze the 
expression pattern of RNA-binding proteins in normal and tumor tissues (Galante et al., 
2009). In this study, we analyzed 383 RNA-binding proteins in 12 different tissue/tumor 
types. 53 proteins have been shown to be aberrantly expressed in at least two tumor types, 
with the majority of them being upregulated, suggesting that RNA-binding proteins may be 
oncogenic or potentiate certain characteristics in cancer. One example is Musashi1, whose 
increased expression pattern has been shown in malignancies such as glioblastoma, 
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medulloblastoma, breast, and colon cancer (Kanemura et al., 2001; Toda et al., 2001; Sureban 
et al., 2008; Wang et al., 2010).  

2.3 The Musashi1 RNA-binding protein 

Musashi (Msi) is an evolutionarily conserved RNA-binding protein (RBP) that controls 

translation through its interaction with specific motifs located in the 3’ untranslated region 

of target messenger mRNAs (Okano et al., 2005). Msi1 represses the translation of Numb 

(Imai et al., 2001), a negative regulator of Notch, p21Cip1, an inhibitor of cyclin-dependent 

kinases (Battelli et al., 2006), and doublecortin (Dcx), a microtubule-binding protein 

involved in neural stem cell migration (Horisawa et al., 2009), but promotes the translation 

of Robo3, a receptor involved in axonal guidance (Kuwako et al., 2010). Additional targets 

for Msi1, many of which pertain to the cell cycle, apoptosis, proliferation and differentiation 

were identified by RIP-chip analysis (de Sousa Abreu et al., 2009). The ability of Msi1 to 

either positively or negatively control protein expression suggests the duality of its function 

in translation. Musashi1 inhibits translation through its interaction with poly (A)-binding 

protein (PABP), thus disrupting the formation of an active translation complex (Kawahara et 

al., 2008). The mechanism by which Msi1 activates translation is not yet known.  
Msi1 was identified in Drosophila as a protein involved in sensory organ development and 
asymmetric cell division (Nakamura et al., 1994). In Drosophila, mutations in Musashi results 
in a double sensory shaft. The name Musashi is a tribute to the famous 17th century samurai, 
Miyamoto Musashi, who developed the two sword technique. In metazoans, Musashi has 
two paralogs, Msi1 and Msi2, which have similar RNA-binding properties (Sakakibara et al., 
1996; Sakakibara et al., 2001; Sakakibara et al., 2002). Although Msi1 and Msi2 have differing 
patterns of expression and roles within the cell (Aubert et al., 2003; Chan et al., 2006; Siddall 
et al., 2006; Sugiyama-Nakagiri et al., 2006; Sgubin et al., 2007; Kharas et al., 2010), both Msi1 
and Msi2 are required for brain stem cell self-renewal (Sakakibara et al., 2002). In 
mammalian cells, Msi1 denotes multipotent stem cells in the brain (Sakakibara et al., 1996; 
Keyoung et al., 2001; McGuckin et al., 2004; Uchida et al., 2004), intestine (Kayahara et al., 
2003; Nishimura et al., 2003; Sakatani et al., 2005) , breast (Clarke, 2005; Wang et al., 2008), 
and hair follicles (Sugiyama-Nakagiri et al., 2006). 

2.4 Function of Musashi1 in normal and cancer stem cells 

In breast cancer cells, Musashi1 maintains the expression of the embryonic stem cell (ESC) 
markers c-Myc, Nanog, Sox2, Bmi1 and Oct4 (Wang et al., 2010). These markers when 
collectively expressed in differentiated cells were able to reprogram cells, conferring them 
stem-like characteristics (Yu et al., 2007; Gonzalez et al., 2009; Yu et al., 2009; Stadtfeld et al., 
2010). An embryonic stem cell signature in breast cancer is associated with a lower five-year 
survival rate (Wang et al., 2010). The expression of embryonic stem cell markers are usually 
found in other malignant tumors such as cervical cancer, retinoblastoma, poorly 
differentiated lung cancer, medulloblastoma, glioblastoma, bladder cancer, and basal-type 
breast cancer, and predicts lower overall survival (Ben-Porath et al., 2008; Hassan et al., 
2009; Hemmati et al., 2003; Seigel et al., 2007; Stevenson et al., 2009; Ye et al., 2008).  
Msi1 expression is particularly important for the proper development of the brain as 
suggested by a genetically engineered msi1-/- in a C57BL6 background which results in a 
mouse with obstructive hydrocephalus and ependymal abnormalities (Sakakibara et al., 
2002). Additionally, Msi1 is known as a neural stem cell marker useful for studying the 
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migration and biology of neural stem/progenitor cells during development (Kaneko et al., 
2000; Chan et al., 2006). In a recent study, Msi1 was shown to be required for neuronal 
migration of precerebellar neurons via its target gene, Robo3 (Kuwako et al., 2010). Robo3 is 
a receptor found on astrocytes and is required to receive signals from migrating neurons 
through the secretion of the Slit1 diffusable protein. Slit1 signals the change of astrocyte 
morphology to create astrocytic tunnels, allowing migrating neurons to navigate through 
the dense meshwork of the adult brain (Kaneko et al., 2010).   
Consistent with its role in self-renewal, Msi1 expression is positively correlated with a label-
retaining and side population human breast epithelial cells enriched in ERα, p21Cip1, CK19 
and double-positive CK14/CK18 progenitor cells (Smalley and Clarke, 2005; Clarke et al., 
2005). When Msi1 is overexpressed in murine mammary epithelial cells, CD24hi/Sca-1+, 
CD24hi/CD29+, CK14+/CK18+ and CK6+ and CK19+ expression is enhanced in mammary 
stem and progenitor cells (Glazer et al., 2008; Wang et al., 2008). Msi1 acts in a unique 
autocrine pathway which consists of increased secretion of the growth factor Proliferin, loss 
of the Wnt inhibitor DKK3, activation of Wnt and Notch signaling (Glazer et al., 2008; Wang 
et al., 2008). This results in a gene expression profile indicative of the cell cycle, growth 
factor signaling, invasion, adhesion, survival and embryonic stem cells. In addition, 
CD24+/CD29hi mouse mammary cells contain multipotent self-renewing mammary stem 
cells which can reconstitute a complete mammary gland from a single mammary stem cell 
and represent a cancer stem cell population in tumors from MMTV-Wnt1 and p53-null in 
murine breast cancer models (Shackleton et al., 2006; Zhang et al., 2008). CD24 expression is 
controlled through the IGF2 receptor which binds to Proliferin and coexpressed in Msi1-
positive cells (Glazer et al., 2008; Wang et al., 2008). In colon cancer, high expression of Msi1 
is observed as a result of increased IGF2 expression in intestinal crypt cells due to loss of 
imprinting, thus predisposing the crypt cells to become malignant (Sakatani et al., 2005; Cui 
et al., 2006). Loss of imprinting of IGF2 is observed in other cancers such as 
medulloblastoma (Corcoran et al., 2008). In studies done in our lab using the cross-linked 
and immunoprecipitation, or CLIP analysis in U251 glioblastoma cells, IGF2 was identified 
as a potential target of Musashi1 (Penalva lab, unpublished results), suggesting a potential 
mechanism by which Msi1 may control tumor progression. 

3. Musashi1 as a critical regulator in brain tumors 

Musashi1 expression has been seen to be elevated in brain tumors such as glioma and 
medulloblastoma. In gliomas, high Msi1 expression was identified as a poor prognostic 
factor (Kanemura et al., 2001). In in vivo xenograft models, silencing of Musashi1 by small 
interfering RNAs caused a reduction in tumor growth of both glioblastoma and 
medulloblastoma cells (Penalva lab, unpublished results). We summarized below the 
connections between Msi1 and brain tumor-related pathways. 

3.1 Notch pathway 

Musashi1 and Notch 1 expression correlate in areas of tumor proliferation and infiltration 
(Kanemura et al., 2001). Furthermore, suppression subtractive hybridization experiments 
established an association between Msi1 and Notch pathway activation in medulloblastoma 
cells (Yokota et al., 2004). Notch is a well-conserved signaling pathway that regulates cell 
fate, cell proliferation, and cell death during development (Artavanis-Tsakonas et al., 1999).  
Upon binding, cleavage of the Notch receptor occurs in two separate events. The first event 
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is catalyzed by the ADAM-family of metalloproteinases. The second event is catalyzed by 
the γ-secretase protein complex; this complex consists of four proteins, presenilin, nicastrin, 
PEN2, and APH2 (Fortini, 2002). Cleavage by the γ-secretase protein complex releases the 
Notch intracellular domain, or NICD, which then localizes in the nucleus and transactivates 
transcription (Schweisguth, 2004). Musashi1 interacts with the Notch pathway via post-
transcriptional regulation of the negative Notch regulator, Numb. Upon binding to the 3’ 
untranslated region of Numb, Musashi1 causes translational repression, thus effectively 
releasing Notch inhibition (Imai et al., 2001). 

3.2 Wnt pathway 

Wnt is an essential signaling pathway required for developmental processes such as body 

axis specification and morphogenic signaling (Cadigan and Nusse, 1997). Wnt is a family of 

secreted cysteine-rich glycoproteins that act in a paracrine-like fashion over short distances 

to activate signaling pathways. Msi1 influences Wnt pathway activation by repressing the 

translation of p21, a cyclin-dependent kinase inhibitor, required for the transition between 

the G1 and S phase of the cell cycle (Battelli et al., 2006). Additionally, p21 negatively 

regulates Wnt4 transcription, thus connecting cell cycle regulation with the Wnt signaling 

pathway (Devgan et al., 2005).  

3.3 Hedgehog pathway 

The Hedgehog pathway initiates with the secretion of Hedgehog ligand from different 

tissues during development (Ingham and McMahon, 2001). Upon binding, the Hedgehog 

ligand inactivates the Patched-1 Hedgehog receptor, leading to the release of the catalytic 

inhibition on the Smoothened G-protein-coupled receptor signal transduction molecule 

(Villavicencio et al., 2000; Chen et al., 2002). This event activates the Hedgehog signal 

transduction cascade with the subsequent activation of transcription by the glioma-

associated oncogene zinc finger transcription factor GLI2 and GLI3 of Hedgehog target 

genes (Dahmane et al., 2001). Msi1 interacts with the Hedgehog pathway by interfering with 

the expression of several key Hedgehog components such as SMO and GLI1. Morover, 

inhibition of Msi1 causes increased sensitivity to cyclopamine, a Hedgehog pathway 

inhibitor, resulting in a decrease in cell proliferation (Sanchez-Diaz et al., 2008).   

3.4 Mining through the cancer genome atlas 

To better understand the participation of Msi1 in glioblastoma, we conducted an expression 

correlation study to identify genes closely associated with Msi1. Glioblastoma (GBM) data 

from The Cancer Genome Atlas (TCGA) consortium was collected representing microarrays 

performed on GBM in nearly 500 patients (The Cancer Genome Atlas Research Network, 

2008). The microarray results were downloaded from 7 distinct batches of experiments and 

then filtered for only those tumors assayed by the Agilent 244K platform and then combined 

to form a single dataset comprising expression results for 17815 genes across all patients. 

Due to data access restrictions patients could not be stratified by age, gender, or race. The 

data were re-normalized using quantile normalization, and the correlation with Msi1 and all 

other genes was computed for each batch stratum. The mean correlation across batches was 

computed for each gene, and the absolute value of the correlation was used to sort the genes 

from most correlated to least correlated with MSI1. 
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The genes with significant expression correlation with Musahi1 (~250 genes) were then 
analyzed for ontological information pertaining to disease states (Figure 2 and 3), biological 
processes (Figure 4), and functional association using Ariadne Genomics Pathway Studio 
(Figure 5). Identified genes were not found to have significant change in correlation levels 
across the four known subtypes of glioblastoma tumors (Classical, Mesenchymal, Proneural, 
and Neural) as defined by the TCGA (Parsons et al., 2008). Approximately 10% of the genes 
were shown to have interactions with other genes within the group (Figure 5). Major nodes 
in this network include CSF3 (Granulocyte colony stimulating factor), GnRH 
(Gonadotropin-releasing hormone), RARA (Retinoic acid receptor alpha), and RELB. All of 
these genes have a strong positive correlation with MSI1 expression in the TCGA expression 
data.  
 
 

 

Fig. 2. Msi1-correlated genes are involved in disease processes. The table above shows the 
incidence of genes from the TCGA data set shown to be correlated with MSI1 in various 
diseases. Genes in red were positively correlated with MSI1 expression while genes in green 
were negatively correlated with MSI1 expression. 
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Fig. 3. Msi1-correlated genes have implication in important disease states. Genes and 
Disease were sorted by incidence count which is also given adjacent to or bellow each group 
respectively. Genes in red were positively correlated with MSI1 expression while genes in 
green were negatively correlated with MSI1 expression. 

3.5 Genes that correlate with Msi1 expression are important players in glioblastoma 

Among the genes identified in the TCGA analysis, a few should be highlighted based on its 
importance and role in gliomagenesis. We will summarize the functions of granulocyte 
colony stimulating factor 3 (CSF3), gonadotropin-releasing hormone (GnRH), retinoic acid 
receptor alpha (RARA), Notch3/4, DNA ligase IV (LIG4), excision repair cross-
complementing rodent repair deficiency, complementation group 2 (ERCC2), and (C-X3-C 
motif) ligand 1 (CX3CL1).  

3.5.1 Granulocyte colony stimulating factor 3 

Granulocyte colony stimulating factor (CSF3) is a cytokine that controls the production, 
differentiation, and function of granulocytes. In the central nervous system, CSF3 plays an 
important role by inducing neurogenesis, maintain neuroplasticity, halting tissue 
degradation through inhibition of apoptosis and promoting cell survival through the 
MAPK, PI3K, and Akt pathways (Schneider et al., 2005).  
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Fig. 4. Msi1-correlated genes are involved in many cancer-related processes. The table above 
shows the incidence of genes correlated with MSI1 in various pathways. Genes in red were 
positively correlated with MSI1 expression while genes in green were negatively correlated 
with MSI1 expression. 

3.5.2 Gonadotropin-releasing hormone 

Gonadotropin-releasing hormone (GnRH) is a tropic peptide hormone that facilitates the 

release of follicle-stimulating hormone and luteinizing hormone from the anterior pituitary. 

GnRH-mediated signaling may be important for the growth and maintenance of gliomas. 

The use of the GnRH agonist Zoladex results in inhibition of cell proliferation in two 

glioblastoma cell lines (U87MG and U373) thus presenting GnRH signaling as a potential 

therapeutic target (Marelli et al., 2009).   

3.5.3 Retinoic acid receptor alpha 

Retinoic acid receptor alpha (RARA) is a ligand-dependent nuclear receptor that upon 

binding to retinoic acid, can affect processes such as development, differentiation, apoptosis, 

and transcription of clock genes. Glioblastoma is extremely sensitive to retinoic acid, which 

flattens cell morphology, forming intercellular cross-bridges, and reduces anchorage-

independent growth (Mukherjee and Das, 1995). Treatment of glioblastoma cells in vitro 

results in growth arrest and induces differentiation through the Notch pathway (Ying et al., 

2011).    
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Fig. 5. Msi1-correlated genes interact in a wide network in glioblastoma. The image above 
shows the interactions amongst genes from the TCGA data set shown to be correlated with 
Msi1. Genes in red were positively correlated with Msi1 expression while genes in green 
were negatively correlated with Msi1 expression. The mitochondria, nucleus, and cell 
membrane are shown and genes are placed accordingly. Connections that involved positive 
changes in expression / up regulation are drawn with a "plus" symbol while those involving 
negative changes in expression / down regulation are shown with a bar. If no information 
was present or the effect was unclear only the direction of the connection was shown with 
an arrow. 
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3.5.4 Notch receptors  

Notch3 and Notch4 receptors have been previously implicated in association with Msi1. 
Msi1 has been previously demonstrated to negatively affect Numb expression, a negative 
effector of the Notch pathway. Notch3 and Notch4 have previously been demonstrated to 
play important roles in the tumorigenesis and glioblastoma biology. Enhanced Notch3/4 
expression is observed in astrocytomas and medulloblastomas in part due to the loss of the 
FBXW7, a Skp1-Cul1-F-box E2 ubiquitin ligase (Hagedorn et al., 2007; Xu et al., 2009). 
Notch3 activation has been implicated in gliomagenesis (Pierfelice et al., 2011).  

3.5.5 DNA repair enzymes 

A hurdle in treatment of glioblastoma with adjuvant chemotherapy or radiation therapy is 

the enhanced ability for the cell to repair DNA resultant of damage induced by the 

chemotherapeutic or radiation. Two genes, LIG4 and ERCC2, are found to be correlated 

with Msi1. LIG4, or DNA ligase IV, expression causes cells to be resistant to treatment by the 

nitrosourea chloroethylating agent, nimustine (ACNU) through the role of DNA ligase IV in 

nonhomologous end joining and siRNA silencing of LIG4 results in increased cell death 

when induced with ACNU (Kondo et al., 2010). In human genetic studies, polymorphisms 

of LIG4, particularly SNP2 rs3093739:T>C, was associated with increased risk for 

developing gliomas, probably due to increased DNA damage and the inability for the cell to 

repair the damage effectively, thus leading to tumor formation (Liu et al., 2008). ERCC2, or 

excision repair cross-complementing rodent repair deficiency, complementation group 2, is 

another DNA repair gene whose expression is associated with Msi1. ERCC2 is involved in 

transcription-coupled nucleotide excision repair through its binding to the basal 

transcription factor BTF2/TFIIH complex. Allelic loss of ERCC2 is associated with a 

younger age of diagnosis of glioma; however, the loss of the ERCC2 gene is not associated 

with a difference in response to therapy or survival (Liang et al., 1995). More recently, 

polymorphisms in the ERCC2 gene have been revealed. Particularly, homozygosity at codon 

156 for the silent AA allele results in high incidences of glioma (odds ratio 2.3), probably 

through an alteration in relationship with a currently unidentified gene and ERCC2 

(Caggana et al., 2001). In a follow up study, it was seen that a single nucleotide 

polymorphism, rs13181, for ERCC2 confers a significant, protective effect (McKean-Cowdin 

et al., 2009). 

3.5.6 Chemokine (C-X3-C motif) ligand 1 

Glioblastoma also have an enhanced ability to invade adjacent normal brain tissue; one gene 
that has been implicated in invasion is the chemokine ligand, CX3CL1 chemokine (C-X3-C 
motif) ligand 1 gene mediating the cross-talk between neurons and microglia. The 
chemokine receptor CX3CR1 and the ligand, CX3CL1, expression is increased in human 
glioblastoma samples and neural cancer stem cells at the mRNA and protein level (Erreni et 
al., 2010; Locatelli et al., 2010). The high expression levels are inversely correlated with 
patient overall survival (Erreni et al., 2010). CX3CL1 is localized in the outer layer of cells of 
glioblastoma tumorspheres, suggesting the involvement of the chemokine system in 
intracellular adhesion (Erreni et al., 2010). The high levels of CX3CL1/CX3CR1 results in the 
recruitment of glioma-infiltrating microglia, which displays high levels of adhesion and 
migration in vitro; this suggests an important role for the chemokine system in tumor 
promotion (Held-Feindt et al., 2010). 
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4. Conclusion 

Musashi1 plays a role in glioblastoma and other tumor types by affecting a complex 
network of genes implicated in numerous cancer-related processes and biological pathways. 
This is evident from the TCGA study we discussed in this chapter. Further wet-lab 
experimentation is required to understand the different branches of Musashi1 regulation 
and hopefully to provide insight for the development of novel glioblastoma therapeutics.  
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