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1. Introduction 

With the availability of powerful computers, the application of numerical methods to solve 
scientific and engineering problems is becoming the normal practice in engineering and 
scientific communities. Well-formed scientific theory with numerical methods may be used 
to study scientific and engineering problems. The numerical methods flourish where an 
experimental work is limited, but it may be imprudent to view a numerical method as a 
substitute for experimental work.  
The growth in computer technology has made it possible to consider the application of 
partial deferential equations in science and engineering on a larger scale than ever. When 
experimental work is cost prohibitive, well-formed theory with numerical methods may be 
used to obtain very valuable information. In engineering, experimental and numerical 
solutions are viewed as complimentary to one another in solving problems. It is common to 
use the experimental work to verify the numerical method and then extend the numerical 
method to solve new design and system. The fast growing computational capacity also 
make it practical to use numerical methods to solve problems even for nontechnical people.  
It is a common encounter that finite difference (FD) or finite element (FE) numerical 
methods-based applications are used to solve or simulate complex scientific and engineering 
problems. Furthermore, advances in mathematical models, methods, and computational 
capacity have made it possible to solve problems not only in science and engineering but 
also in social science, medicine, and economics. Finite elements and finite difference 
methods are the most frequently applied numerical approximations, although several 
numerical methods are available.  
Finite element method (FEM) utilizes discrete elements to obtain the approximate solution 
of the governing differential equation. The final FEM system equation is constructed from 
the discrete element equations.  However, the finite difference method (FDM) uses direct 
discrete points system interpretation to define the equation and uses the combination of all 
the points to produce the system equation.  Both systems generate large linear and/or 
nonlinear system equations that can be solved by the computer.  
Finite element and finite difference methods are widely used in numerical procedures to 
solve differential equations in science and engineering. They are also the basis for countless 
engineering computing and computational software. As the boundaries of numerical 
method applications expand to non-traditional fields, there is a greater need for basic 
understanding of numerical simulation.  
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Numerical Analysis – Theory and Application 4 

This chapter is intended to give basic insight into FEM and FDM by demonstrating simple 
examples and working through the solution process. Simple one- and two-dimensional 
elliptic and parabolic equations are used to illustrate both FEM and FDM. All the basic 
mathematics is presented by considering a simplistic element type to define a system 
equation. The next section is devoted to the finite element method. It begins by discussing 
one- and two-dimensional linear elements. Then, a detailed element equation, and the 
forming of a final system equation are illustrated by considering simple elliptic and 
parabolic equations. In addition, a small number of approximations and methods used to 
simplify the system equation are, presented. The third section presents the finite difference 
method. It starts by illustrating how finite difference equations are defined for one- and two-
dimensional fields.  Then, it is followed by illustrative elliptic and parabolic equations.  

2. Finite element method 

Of all numerical methods available for solving engineering and scientific problems, finite 
element method (FEM) and finite difference methods (FDM) are the two widely used due to 
their application universality. FEM is based on the idea that dividing the system equation 
into finite elements and using element equations in such a way that the assembled elements 
represent the original system. However, FDM is based on the derivative that at a point is 
replaced by a difference quotient over a small interval (Smith, 1985).    
It is impossible to document the basic concept of the finite element method since it evolves 

with time (Comini et al. 1994, Yue et al. 2010). However, the history and motivation of the 

finite element method as the basis for current numerical analysis is well documented 

(Clough, 2004; Zienkiewicz, 2004). 

Finite element starts by discretizing the region of interest into a finite number of elements. 

The nodal points of the elements allow for writing a shape or distribution function. 

Polynomials are the most applied interpolation functions in finite element approximation. 

The element equations are defined using the distribution function, and when the element 

equations are combined, they yield a continuous equation that can approximate the system 

solution. The nodal points and corresponding functional values with shape function are 

used to write the finite element approximation (Segerlind, 1984): 

 閤 噺 軽怠閤怠 髪軽態閤態 髪⋯髪 軽陳閤陳  (1) 

where 閤怠, 閤態, …閤陳are the functional values at the nodal points, and  軽怠, 軽態, …軽陳 are the 

shape functions. Thus, the system equation can be expressed by nodal values and element 

shape function.  

2.1 One-dimensional linear element 

Before we discuss the finite element application, we present the simple characteristic of a 

linear element. For simplicity, we will discuss only two nodes-based linear elements. But, 

depending on the number of nodes, any polynomial can be used to define the element 

characteristics. For two nodes element, the shape functions are defined using linear 

equations. Fig.1 shows one-dimensional linear element. 

The one-dimensional linear element (Fig. 1) is defined as a line segment with a length (健) 
between two nodes at 捲沈 and 捲珍 . The node functional value can be denoted by 閤沈 and 閤珍. 
When using the linear interpolation (shape), the value 閤  varies linearly between 捲沈 and 捲珍 as 
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Fig. 1. One-dimensional linear element 

閤 噺 兼捲 髪 倦 (2)

The functional value 閤 噺 閤沈 at node 件 噺 捲沈   and 閤 噺 閤珍 at 倹 噺 捲珍. Using the functional and 

nodal values with the linear equation Eq. 2., the slope and the intercept are estimated as   兼 噺 泥乳貸泥日掴乳貸掴日  and 倦 噺 泥日掴乳貸泥乳掴日掴乳貸掴日  (3)

Substituting  兼 and 倦  in Eq. 2 gives 閤 噺 磐泥日掴乳貸泥乳掴日掴乳貸掴日 卑 髪 磐泥乳貸泥日掴乳貸掴日 卑 捲      (4)

Rearranging Eq. 4 and substituting  健 for the element size (捲珍 伐 捲沈) yields  閤 噺 岾掴乳貸掴鎮 峇閤沈 髪 岾掴貸掴日鎮 峇閤珍   (5)

By defining the shape functions as 軽沈 噺 岾掴乳貸掴鎮 峇	 岫a岻軽珍 噺 岾掴貸掴日鎮 峇	 岫b岻   (6)

By introducing the shape function   軽沈 and	軽珍 in Eq. 5, the finite element equation can be 

rewritten as 閤 噺 軽沈閤沈 髪軽珍閤珍   (7)

The above equation is a one-dimensional linear standard finite element equation. It is 
represented by the shape functions 軽沈and 	軽珍 	nodal values 閤沈 and	閤珍.  
The two shape functions profiles for a unit element are shown in Fig. 2. The main characters 
of the shape functions are depicted. These shape functions have a value of 1 at its own node 
and 0 at the opposing end. The two shape functions also sum up to one throughout.    

2.2 Two-dimensional rectangular element 

With the current computational methods and resources available, it is not clear whether or 
not using the FEM or modified FDM will provide an advantage over the other. However, in 
the early days of numerical analysis, one of the major advantages of using the finite element 
method was the simplicity and ease that FEM allows to solve complex and irregular two-
dimensional problems (Clough 2004, Zienkiewicz, 2004, Dahlquist and Bjorck, 1974). 
Although several element shapes with various nodal points are used in many numerical 
simulations, our discussion is limited to simple rectangular elements. Our objective is to 
simply exhibit how two- dimensional elements are applied to define the elements and final 
system equation. 

閤沈  捲 倹 
閤珍  

件 健 
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Fig. 2. Linear shape functions 

Fig. 3 illustrates a linear rectangular element with four nodes. The nodes 件, 倹, 倦,		 and	健 have 

corresponding nodal values	閤沈 ,	閤珍, 閤賃and 閤鎮 at  岫捲沈 , 検沈,岻, 盤捲珍,, 検珍,匪, 岫捲賃	, 検賃	岻, 欠券穴	岫捲鎮 , 検鎮) . 
 

 

Fig. 3. Two-dimensional linear rectangular element. 

The linear rectangular interpolation equation is defined as 閤 噺 倦怠 髪 倦態捲 髪 倦戴検 髪 倦替捲検 (8)

Applying the nodal and functional values岫捲沈 , 検沈,岻 噺 	 岫ど,ど岻, 閤 噺 閤沈 	,岫捲珍 , 検珍,岻 噺 	 岫隙, ど岻, 閤 噺 閤珍, 岫捲賃 , 検賃	岻 噺 	 岫隙, 桁岻	, 閤 噺 閤賃, and 岫捲鎮 , 検鎮	岻 噺 	 岫ど, 桁岻, 閤 噺 閤鎮 in Eq. 8 yields four equations and 
four unknowns as 閤沈 噺 倦怠 	 岫欠岻閤珍 噺 倦怠 髪 倦態X 	 岫b岻閤賃 噺 倦怠 髪 倦態X 髪 倦戴Y 髪 倦替XY 岫c岻閤鎮 噺 倦怠 髪 倦戴Y 	 岫d岻  (9)

YY噺な
Y噺ど

X噺ど X噺な
岫捲沈 , 検沈岻 岫捲珍 , 検珍岻 

 

岫捲賃, 検賃岻 
検 

捲 

岫捲鎮 , 検鎮岻 

X
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Solving the unknown constants  倦怠 ,	倦態, 倦戴and 倦替 in terms of the nodal values give 倦怠 噺 閤沈 	 岫欠岻倦態 噺 なX 盤閤珍 伐 閤沈匪																												岫b岻倦替 噺 なXY 盤閤沈 伐 閤珍 髪 閤賃 伐 閤鎮匪					岫潔岻倦戴 噺 なY 岫閤鎮 伐 閤沈岻 	 岫d岻
 (10)

Substituting the above values equations (Eq. 10.) into Eq. 8 and reorganizing in terms of 
nodal values give to finite element equation as 

where  

Eq. 12 is two-dimensional rectangular shape functions based on element that is plotted in Fig. 
3. The shape functions (Eq. 12) are plotted in Fig. 4. The shape functions satisfy the conditions: 
1. the functions have a value of 1 at their own node and 0 at the other ends, 2. they vary 
linearly along the two adjacent edges, and 3. the shape functions sum up to one throughout.  
 

 

Fig. 4. Two-dimensional rectangular linear element shape functions distribution. 

閤 噺 軽沈閤沈 髪軽珍閤珍 髪軽賃閤賃 髪 軽鎮閤鎮 (11) 

	軽沈 噺 岾な 伐 捲隙峇 岾な 伐 検桁峇 岫a岻軽珍 噺 岾捲隙峇 岾な 伐 検桁峇															岫b岻		軽賃 噺 岾捲隙峇 岾検桁峇																					岫c岻軽鎮 噺 岾な 伐 捲隙峇 岾検桁峇 岫d岻
 (12) 
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Finite element equation uses the element shape function to define the relationship between 
the nodal points. Once the element equation is defined, by assembling the element 
systematically the final system equation is structured. Next, we illustrate the application of 
the finite element method in a one-dimensional elliptic equation. 

2.3 Elliptic equation in finite element method 

In order to discuss the basic concept of finite element application in an elliptic equation, we 
start by illustrating a one-dimensional equation. A one-dimensional elliptic equation of 
function		劇 can be written as: 

This elliptic equation is used to describe the steady state heat conduction with heat 

generation where	経,	劇, and 	芸 represent thermal diffusion, temperature, and heat 

generation. The distinctiveness of the solution of an elliptic equation is dependent on the 

boundary condition. Thus, it is sometimes called boundary value problem.  Providing the 

appropriate boundary condition at the two ends, the unique solution exists for temperature 

distribution. The boundary condition could be a prescribed value (Dirichlet), the flux 

(Neumann), or a combination of both (Vichnevetsky, 1981). In order to demonstrate how the 

finite element method is used to solve an elliptic equation, we simplify by assuming that 

material has constant and uniform diffusion with heat generation. Building the finite 

element elliptic equation involves discretization, forming the element equation, assembling 

the element equation systematically, and forming the final algebraic equation of the system. 

Moreover, the uniqueness and the stability of the system equation depend on the specified 

boundary conditions, thus solving the algebraic equation requires the boundary condition to 

be introduced before the final equation is solved. 

Before we start by forming the finite element equation of steady state heat conduction with 

heat generation, we have to address how the linear finite element equation is formed. One of 

the mathematical concepts used to generate the final system equation is called weighting 

residual method. In short, the weighting residual method is based on the fact that when an 

approximate solution is substituted in the differential equation, the error term resulted since 

the approximate solution does not completely satisfy the equation. Thus, the method of 

weighting residual is to force the product of residual and the weighting function to go to 

zero.  In the finite element method, the weighting residual for each element nodal value is 

defined and the integral is evaluated using the interpolation function as 

where 激 is the weighting function and 迎 is residual.  

The major requirement to evaluate the above integral equation is that the functions that 

belong to the trail and weighting functions must be continuous.  However, when the trail 

function is linear, the second derivative is not continuous and the integral cannot be 

evaluated as it is. Thus, in order to evaluate the integral with a lower degree of continuity by 

replacing the second derivative term with equivalent expression using the differentiation 

product rules, hence  

経 穴態劇穴捲態 髪 芸 噺 ど  (13) 

伐豹拳岫捲岻迎岫捲岻穴捲 噺 伐豹激岫捲岻 峭経 穴態劇穴捲態 髪 芸嶌穴捲 噺 ど (14) 
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Eq. 15 shows that the degree of minimum continuity required to evaluate the integral for 

trail function is reduced while the continuity for weighting function is increased. The 

minimum continuity requirement for both weighting and trail can be fulfill with linear 

function and the integral can be evaluated as long as the functions are continuous within the 

integral interval. The finite element method is evolved from this need of finding appropriate 

sets of functions. The finite element method uses a systematic way of using polynomial 

approximate function that permits the evaluation of the integral equation. Introducing Eq. 

15 in Eq. 14 gives the residual for the elliptic integral as   

The finite element method uses the interpolation function as a weighting and trail functions. 

Even a linear element can satisfy the continuity requirement to evaluate the integral. Once 

we define the integral, in this case function, the next step is to evaluate the residual integral. 

By evaluating the integral for each element, the element contribution to the final system 

equation can be determined.  

In order to determine the element contribution to the final system equation, we will consider 

linear element (結 ) with node 件  and 倹  (Fig. 1) and evaluating the residual integral (Eq. 16) 

using the elements interpolation function (Eq. 12). Thus, the residual equation becomes 

The integral splits into two parts since the weighting functions are defined by two functions 軽沈 and		軽珍 . Consequently, (迎沈勅岻 and (迎珍勅) represent the two weighting functions contributions 

to the element nodal value residual (件岻 and (倹), respectively. Fig. 5 shows that a system of 

linear interpolation functions. If we take the arbitrary element 結 that located anywhere in 

the field, except the two weighting functions  軽沈 and		軽珍 	, all of the other weighting 

equations are zero contribution. 

 

 

Fig. 5. System of elements shape function and nodes 

豹激穴態劇穴捲態 穴捲 噺 豹 穴穴捲 磐激 穴劇穴捲卑穴捲 伐 豹穴劇穴捲 穴激穴捲 穴捲 (15) 

迎 噺 伐豹経 穴穴捲 磐激 穴劇穴捲卑穴捲 髪 豹経 穴劇穴捲 穴激穴捲 穴捲 伐 豹芸激穴捲 (16) 

迎沈勅 噺 伐豹 経 穴穴捲 磐軽沈 穴劇穴捲卑珍
沈 穴捲 髪 豹 経 穴劇穴捲 穴軽沈穴捲珍

沈 穴捲 伐 豹 軽沈芸穴捲珍
沈 岫a岻

迎珍勅 噺 伐豹 経 穴穴捲 磐軽珍 穴劇穴捲卑珍
沈 穴捲 髪 豹 経 穴劇穴捲 穴軽珍穴捲珍

沈 穴捲 伐 豹 軽珍芸穴捲珍
沈 岫b岻 (17) 

軽態怠 
捲 な に 件 警 伐 な 警 

軽怠怠 
 

軽 

軽沈勅 
 

軽珍勅 
 

軽暢暢貸怠
 

 
軽暢貸怠暢貸怠

 

 

倹 健 
な 
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The integrals on the right can be evaluated using the linear interpolation functions (Eq. 6) 

characteristics and the finite element equation (Eq. 7). The interpolation function 

characteristics are 軽沈 噺 な,			 at 件		and	軽沈 噺 ど,		 at		倹	. Similarly, 軽珍 噺 な,			at 		倹	 and		軽珍 噺 ど, at   件	. 
Evaluating the first terms on the right (denote by 圏沈勅	and		圏珍勅	) gives    

These terms (Eq. 18) are the inter element contribution and vanish since the derivative terms 

vanished between the neighboring elements. Thus, the finite element system equation 

formed without these inter elements except when the flux (derivative) boundary condition 

is specified. When the flux boundary specified, they used to apply the flux condition at the 

boundaries. Furthermore, they are used to compute the flux term once the system equation 

is solved.  

We need the first derivative of the finite element equation (Eq. 7) and the interpolation 

functions (Eq. 6) in order to evaluate the second integrals on the right in Eq. 17. The first 

derivatives of the element equation using element length (健 ) is  

Furthermore, the derivatives of the weighting functions are  

Thus, the residual from the second terms (denote by		倦沈勅 	and		倦珍勅) in Eq. 17 become 

 

The last integrals in Eq. 17 are constant and evaluated using the linear weighting functions. 

Their contributions to the element residual are  

Substituting Eqs. 18, 21, and 22 in Eq. 17 yields 

圏沈勅 噺 伐豹 経 穴穴捲 磐軽沈 穴劇穴捲卑珍
沈 穴捲 噺 伐経軽沈 穴劇穴捲鞭沈珍 噺 D穴劇穴捲 岫a岻

圏珍勅 噺 伐豹 経 穴穴捲 磐軽珍 穴劇穴捲卑珍
沈 穴捲 噺 伐経軽珍 穴劇穴捲鞭沈珍 噺 伐D穴劇穴捲 岫b岻  (18) 

穴劇勅穴捲 噺 な健 盤伐劇沈 髪 劇珍匪 (19) 

穴軽沈穴捲 噺 伐な健 	 岫a岻穴軽珍穴捲 噺 な健 	 岫b岻  (20) 

倦沈勅 噺 経豹 磐穴軽沈穴捲 穴劇穴捲卑穴捲珍
沈 噺 経豹 峭伐な健 盤劇珍 伐 劇沈匪健 嶌 穴捲珍

沈 噺 経健 盤劇沈 伐 劇珍匪 		岫a岻
倦珍勅 噺 経豹 峭穴軽珍穴捲 穴劇穴捲嶌穴捲珍

沈 噺 経豹 峭な健 盤劇珍 伐 劇沈匪健 嶌 穴捲珍
沈 噺 経健 盤劇珍 伐 劇沈匪 		岫b岻 (21) 

血沈勅 噺 芸豹 軽沈穴捲珍
沈 噺 芸健 峭捲珍捲 伐	捲態に 嶌嶐沈珍 噺 芸健に 岫a岻

血珍勅 噺 芸豹 軽珍穴捲珍
沈 噺 芸健 峭 捲態に 伐 捲沈捲嶌嶐沈珍 噺 芸健に 岫b岻 (22) 
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For simplicity, we will introduce the matrix notation and rewrite the above terms of element 
contribution to residual equation in matrix form as  

The matrix representation becomes very important particularly when illustrating more than 
one component is contributing to the element residual. Furthermore, it also comes helpful in 
two- and three-three dimensional spaces.  
Thus, the residuals of element can represent as  

Eqs. 24 and 25 are representing the contribution of the element to the final system equation. 
The contribution are from the first right terms in Eq. 24 (denoted by 岶圏岼	at Eq.25) that are the 
inter element contribution and vanishes between the neighboring elements in the final 
system equation. The second terms, the element contribution to the final system equation, is 
referred as the stiffness matrix and is denoted by岷計峅. It can be easily determined from the 
interpolation function for each element as illustrated above and included in the final system 
equation. The final terms are referred as force vector and denoted by	岶血岼. The final system 
equation is built by assembling the element matrices step by step or systematically. Thus the 
system equation becomes 

The final system equation is formed by assembling each element’s contribution and 

adding the contribution of each element’s based on the nodal points. When the system 
residual becomes zero, the approximate solution can be used to estimate the system. The 
number of elements used to define the final system equation has significant effect on the 
element residual. Thus, increasing the number of elements decreases the element residual 
and improves the approximate (FEM) solution.   

2.3.1 Application of finite element for one-dimensional elliptic equation  

To illustrate the application of FEM in one-dimensional elliptic equation, we will consider 
the temperature distribution of an insulated rod length 詣 噺 な and thermal diffusivity	経 噺など.  A constant heat is also being generated at the rate of	芸 噺 など. The boundary conditions 
are specified as one end where	捲 噺 ど, 劇 噺 の and the opposite end where		捲 噺 な, 圏 噺 伐など. To 
illustrate the FEM solution this system, we uses four elements, the nodes of the elements are 
numbered from 1 to 5 and the element length is assumed to be uniform. Thus, the elliptic 
equation (Eq. 13) becomes  

迎沈勅 噺 経 穴劇穴捲鞭沈 髪 経健 盤劇沈 伐 劇珍匪 伐 芸健に 岫a岻迎珍勅 噺 伐経穴劇穴捲鞭珍 髪 経健 盤伐劇沈 髪 劇珍匪 伐 芸健に 岫b岻 (23) 

崕迎沈勅迎珍勅崗 噺 菌衿芹
衿緊 経 穴劇穴捲鞭沈伐経 穴劇穴捲鞭珍近衿謹

衿襟 髪 経健 峙 な 伐な伐な な 峩 犯劇沈劇珍般 伐 芸健に 	峽なな峺 (24) 

岶迎勅岼 噺 岶圏勅岼 髪 岷計勅峅岶劇勅岼 伐 岶血勅岼 (25) 

岶迎岼 噺 岶圏岼 髪 岷計峅岶劇岼 伐 岶血岼 噺 ど (26) 
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The residual of element (Eq. 25) becomes  

The prescribe boundary condition at the end where the temperature is fixed 劇怠 噺 の and at 
the opposite end where the flux boundary applied		圏泰 噺 など. The assembled final system 
equation for four elements becomes 

The finite element solution for the temperature profile produces the values	劇態 噺 ね.ひば, 劇戴 噺ね.ひな, 劇替 噺 ね.ばぱ, and	劇泰 噺 ね.はど	. Furthermore; using the same principle shown above in detail a 
computer program is developed and the computer solution for 10 and 20 elements is shown in 
Fig. 6. To show that the number of elements has effect in quality of the FEM solution. 
 

 

Fig. 6. Finite element approximation for steady state temperature profile for insulated rod  

2.3.2 Two dimensional elliptic equation in finite element method 

A two-dimensional elliptic equation is used to describe the steady state heat conduction 
with heat generation similar to the previous section but in a two-dimensional space. A two-
dimensional steady state flow of heat in isometric material is expressed by an elliptic 
equation as 

など穴態劇穴捲態 髪 など 噺 ど  (27) 

崕迎沈勅迎珍勅崗 噺 峽圏沈圏珍峺 髪 などど.にの 峙 な 伐な伐な な 峩 犯劇沈劇珍般 伐 など岫ど.にの岻に 峽なな峺 (28) 

頒 に 伐な ど ど伐な に 伐な どど 伐な に 伐など ど 伐な な 番畔劇態劇戴劇替劇泰販 噺 畔の.どぬなにのど.どはにのど.どはにの伐ど.なぱばの販 
(29) 

経 峭項態劇項捲態 髪 項態劇項検態嶌 髪 芸 噺 ど (30) 
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It represents a bounded area. The solution uniqueness is dependent on the boundary 

condition. Like one-dimensional cases, the boundary condition can be specified as either the 

functional value or flux. However, in two-dimensional cases, the boundary values are 

specified at the edges while the region is an area.  

In order to illustrate the finite solution of an elliptic equation, we will consider the 

temperature distribution in two-dimensional spaces that satisfies Eq. 30. The finite element 

solution satisfies the weighting integral function in two-dimensional space. For simplicity, 

we will use a linear rectangular element discussed in Sec. 2.2 to evaluate the integral for 

each elements and determine the elements contribution to the final system equation. Parallel 

to the one-dimensional finite element method, two-dimensional equations can be modeled 

by indentifying the implication of increasing dimensionality at the element integral. The 

interpolation functions for a linear rectangular element with four nodes are defined in (Eq. 

12). For simplicity, we use a linear rectangular element with four nodes and also we use a 

matrix notation (岷軽峅脹) to represent all nodal points of the elements instead of writing each 

node point contribution.  Thus, the residual integral for a two-dimensional elliptic equation 

(Eq. 30) becomes 

 

The major difference from the one-dimensional case is that the residual integral is area 

integral and the boundary is line integral.  Reducing the degree of continuity for the second 

derivative term by differentiation product rule (Eq. 15) further simplifies the element 

residual integral as 

 

Substituting the element equation (quadratic linear element)   劇勅 噺 岷軽峅岶劇岼 and rearranging 

the terms 

 

When the derivative boundary condition is applied, the first two terms are reduced to 

surface integral by using Green’s theorem (完 擢擢掴 岾岷軽峅脹 擢脹擢掴峇 穴畦 噺 完岾岷軽峅脹 擢脹擢掴峇 穴Γcosθ	). These 

two terms on the right can be replaced by an integral around the boundary using the 

outward normal. Thus, 

岶迎沈勅岼 噺 伐 豹岷軽峅脹 峭経 峭項態劇項捲態 髪 項態劇項検態嶌 髪 芸嶌穴畦 (31) 

岶迎沈勅岼 噺 伐経 峭豹 項項捲 磐岷軽峅脹 項劇項捲卑 伐 項岷軽峅脹項捲 項劇項捲 髪 項項検 磐岷軽峅脹 項劇項検卑 伐 項岷軽峅脹項検 項劇項検嶌 穴畦 伐 豹岷軽峅脹芸 穴畦 (32) 

岶迎沈勅岼 噺 伐経豹蕃 項項捲 磐岷軽峅脹 項劇項捲卑 髪 項項検 磐岷軽峅脹 項劇項検卑否穴畦髪 経 峭豹項岷軽峅脹項捲 項軽項捲 岶劇勅岼 髪	項岷軽峅脹項検 項軽項検 岶劇勅岼嶌 穴畦 伐豹岷軽峅脹岶芸勅岼 穴畦 

(33) 

伐経豹 項項捲 磐岷軽峅脹 項劇項捲卑 穴畦 髪 項項検 磐岷軽峅脹 項劇項検卑穴畦 噺 伐 経豹岷軽峅脹 磐項劇項捲 潔剣嫌肯 髪 項劇項検 嫌件券肯卑 穴康 (34) 
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The integral around the boundary of the element is done in a counterclockwise direction. 
For the rectangular element we considered here, it is the sum of four integrals. It includes 
the side where the boundary condition is specified and the inter-element side. The inter-
element integral vanishes due to the element continuity requirements. However, when the 
flux boundaries are specified, the surface integrals need to be evaluated where applicable. 
The general derivative boundary condition can be given as a function of the surface 
temperature, constant, or zero as 

 

where 項劇/項券 is the normal gradient at the surface. When the boundary condition is 
insulated,	項劇/項券 噺 ど	, thus	系怠 噺 系態 噺 ど. When the derivative is the function of the surface 
temperature and constant, the boundary surface integral can be evaluated along the 
specified surface. Therefore, introducing a relationship given by the element equation 劇勅 噺 岷軽峅岶劇岼 where 岷軽峅 represent the rectangular element interpolation functions (Eq. 12) 
and Eq. 35 is introduced in Eq. 34 gives 
 

 

Using Eq. 12, linear quadratic element, the above integral can be evaluated. The first integral 
has following terms 

 

 

and evaluated for arbitrary side 健沈珍 where 軽沈 and 軽珍 are the only contributing functions gives  
 

 

The second term in Eq. 36 for arbitrary side	健沈珍 becomes 
 

 

Furthermore, the middle terms integral in Eq. 33 can be evaluated using the first derivatives 

of rectangular shape function Eq. 12. as 

伐経 項劇項券 噺 系怠劇 髪 系態 (35) 

岶圏長頂勅 岼 噺 豹系怠岫岷軽峅脹岷軽峅岻 岶劇勅岼穴康 髪 豹岷軽峅脹 系態 穴康 (36) 

範計槌飯 噺 系怠豹琴欽欽
欽欣 軽沈態 軽沈軽珍 軽沈軽賃 軽沈軽鎮軽沈軽珍 軽珍態 軽珍軽賃 軽珍軽鎮軽沈軽賃 軽珍軽賃 軽賃態 軽賃軽鎮軽沈軽鎮 軽珍軽鎮 軽賃軽鎮 軽鎮態 筋禽禽

禽禁 穴康 (37) 

岷計長頂勅 峅 噺 系怠健沈珍は 頒に な ど どな に ど どど ど ど どど ど ど ど番 (38) 

岶血長頂勅 岼 噺 系態豹畔軽沈軽珍軽賃軽鎮販穴捲 噺
系態健沈珍		に 畔ななどど販 (39) 
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Using Fig. 3 and Eq. 12, the integral of the terms above yields  

Using the rectangular interpolation functions, the last integral is evaluated and gives the 
residual as  

Combining Eqs. 38, 39, 41, and 42 give all of the components contributing to the element 
residual integral (Eq. 33) in matrix form as  

2.3.3 Application of finite element for two-dimensional elliptic equation  
To illustrate a two-dimensional elliptic equation, we will consider the temperature 
distribution of a two-dimensional rectangular region (Fig. 7) with a thermal diffusivity	経 噺など. A constant heat is being generated at the rate of		芸 噺 など. Using four elements in each 
direction, the boundary conditions are specified where		検 噺 ど, 劇 噺 の and at the opposite end 
where 	検 噺 な,			圏 噺 ぬ劇 伐 は while the other regions are kept insulated. Assuming the material 
is isotropic and the elements are square. Thus, the elliptic two-dimensional equation (Eq. 30) 
becomes 

項岷軽峅脹項捲 項軽項捲 噺
琴欽欽
欽欽欽
欽欽欽
欣 項軽沈項捲 態 項軽沈項捲 項軽珍項捲 項軽沈項捲 項軽賃項捲 項軽沈項捲 項軽鎮項捲項軽沈項捲 項軽珍項捲 項軽珍項捲 態 項軽珍項捲 項軽賃項捲 項軽珍項捲 項軽鎮項捲項軽沈項捲 項軽賃項捲 項軽珍項捲 項軽賃項捲 項軽賃項捲 態 項軽賃項捲 項軽鎮項捲項軽沈項捲 項軽鎮項捲 項軽珍項捲 項軽鎮項捲 項軽賃項捲 項軽鎮項捲 項軽鎮項捲 態 筋禽禽

禽禽禽
禽禽禽
禁
								岫a岻		 (40) 

項岷軽峅脹項検 項軽項検 噺
琴欽欽
欽欽欽
欽欽欽
欣 項軽沈項検 態 項軽沈項検 項軽珍項検 項軽沈項検 項軽賃項検 項軽沈項検 項軽鎮項検項軽沈項検 項軽珍項検 項軽珍項検 態 項軽珍項検 項軽賃項検 項軽珍項検 項軽鎮項検項軽沈項検 項軽賃項検 項軽珍項検 項軽賃項検 項軽賃項検 態 項軽賃項検 項軽鎮項検項軽沈項検 項軽鎮項検 項軽珍項検 項軽鎮項検 項軽賃項検 項軽鎮項検 項軽鎮項検 態 筋禽禽

禽禽禽
禽禽禽
禁
											岫b岻		 (40) 

岷計勅峅 噺 経桁は隙 頒に 伐に 伐な な伐に に な 伐な伐な な に 伐にな 伐な 伐に に番 髪 経隙は桁 頒に な 伐な 伐にな に 伐に 伐な伐な 伐に に な伐に 伐な な に番	畔
劇沈劇珍劇賃劇鎮販 (41) 

岶血勅岼 噺 豹岷軽峅脹芸 穴畦 噺 芸豹畔軽沈軽珍軽賃軽鎮販穴畦 噺 芸隙桁ね 畔なななな販 (42) 

岶迎勅岼 噺 岷計勅峅 髪 岷計長頂勅 峅岶劇勅岼 髪 岶血長頂勅 岼 伐 岶血勅岼 (43) 
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For simplicity, we use 4 elements to describe a unit square region. The numbering and the 

boundary conditions are show in Fig. 7. For illustrative purposes, we select element 3 and 

show all contribution for the system residual matrix mainly the flux boundary that is 

applied ( 健腿貸胎		) top end. The element contribution becomes 

 

 

Fig. 7. Two-dimensional region divided into four square elements with boundary conditions  

When combines and applied the specified boundary condition, the final system equation 

becomes 6 by 6 matrix as 

As expected, the temperature profile is decreasing and symmetric as	劇替 噺 ね.ひば, 劇泰 噺ね.ひば, 劇滞 噺 ね.ひば, 劇胎 噺 ね.はひ, 劇腿 噺 ね.はひ, and	劇苔 噺 ね.はひ	. 

など峭項態劇項捲態 髪 項態劇項検態嶌 髪 など 噺 ど  (44) 

岶迎戴岼 噺 などは 頒ね 伐な 伐に 伐な伐な ね 伐な 伐に伐に 伐な ね 伐な伐な 伐に 伐な ね番 髪 岫ぬ岻岫ど.の岻は 頒ど ど ど どど ど ど どど ど に など ど な に番	畔
劇替劇泰劇腿劇胎販 伐 は岫ど.の岻に 畔どどなな販伐 など岫ど.の岻態ね 畔なななな販 

(45) 

琴欽欽
欽欽欣 ぱ 伐に ど 伐な 伐に ど伐に なは 伐に 伐に 伐に 伐にど 伐に ぱ ど 伐に 伐なな 伐に ど ね.ぬ 伐ど.ぱの ど伐にど 伐に伐に 伐に伐な 伐ど.ぱのど ぱ.は 伐ど.ぱの伐ど.ぱの ね.ぬ筋禽禽

禽禽禁
菌衿芹
衿緊劇替劇泰劇滞劇胎劇腿劇苔近衿謹

衿襟 噺 菌衿芹
衿緊なの.ばのぬな.のどなの.ばのな.にばのに.ののどな.にばの近衿謹

衿襟
 (46) 

y 

x 

1 2 3 

4 5 6 

7 8 9 

e(2) e(1) 

e(3) e(4) ∂T∂x 噺 ど ∂T∂x 噺 ど 

T 噺 の 

∂T∂y 噺 ぬT 伐 は 
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2.4 Parabolic equation in finite element method 

The major characteristics of parabolic equations are that they require boundary and initial 
conditions (Awrejcewicz & Krysko, 2010).  The general procedure for solving parabolic 
equations in finite element is by evaluating the residual integral with respect to space 
coordinates for fixed time. Using the initial value for the new value prediction, the time 
history is generated. In order to illustrate the fundamental procedure in solving a parabolic 
equation in the finite element method, we start by discussing a one-dimensional parabolic 
equation followed by two-dimensional equation. The one-dimensional scheme can be 
modified to include a two-dimensional equation with simple two-dimensional elements 
substitution.  

2.4.1 One-dimensional parabolic equation 

The cooling and heat process of material is considered parabolic in nature. The temperature 
change is expressed in terms of the rate of change in time and space. The heating and/or the 
cooling process of an insulated bar that is subjected to the different temperature can be 
considered a one-dimensional parabolic equation. In order to find the temperature in time, 
we need to solve the governing parabolic equation  

where 膏 is a rate constant. The finite element equation that gives the element contribution to 

the system residual is  

The first integral from the above equation is similar to Eq. 14 that yields the element 

contribution toward the residual integral as Eq. 25. What remain is solving the time-dependent 

integral, we use the average value assumption that the time derivatives ( 項劇/項建 噺 劇岌 ) varies 

linearly between the time interval. Using the shape function relationship that   

Then, the second term residual integral becomes   岶迎頂勅岼 噺 膏豹岷軽峅脹岷軽峅版劇岌 勅繁 穴捲 (50)

The integral above is defined as capacitance matrix (岷系勅峅) and can be evaluated using the 

linear element interpolation function for one-dimensional element (Eq. 6). The integral result 

for the linear element is  

岶迎頂勅岼 噺 膏健は 峙に なな に峩 崕劇岌沈劇岌珍崗 (51)

The element contribution for final system equation becomes 

経 項態劇項捲態 髪 芸 伐 膏 項劇項建 噺 ど  (47) 

岶迎勅岼 噺 伐 豹岷軽峅脹 峭経 項態劇項捲態 髪 芸 伐 膏 項劇項建嶌 穴捲 (48) 

版劇岌 勅繁 噺 岷軽峅版劇岌 勅繁 (49) 

岶迎勅岼 噺 岶圏勅岼 髪 岷計勅峅岶劇勅岼 伐 岶血勅岼 伐 岷系勅峅版劇岌 勅繁 (52) 
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When the element equation is assembled, the sums of the residual vanish. As a result, the 
final system equation becomes 

A time-dependent finite element equation requires solving the equation with time first. In 
order to approximate the time-dependent equation, the mean value-based equation is used. 
The mean (Sahoo & Riedel, 1998, Segerlind, 1984) rule is based on the hypothesis that the 
change in function (	穴血/穴建) at a location between two points (a, b) is proportional to the 
average change between two values of the function (血岻.  
The value at an arbitrary point 潔 that is between 欠 and 決	can be approximated as 

血岫潔岻 噺 血岫欠岻 髪 岫潔 伐 欠岻 血岫決岻 伐 血岫欠岻∆建  (55)

Let 岫潔 伐 欠岻/∆建  replaced by 糠 血 噺 岫な 伐 糠岻血岫欠岻 髪 糠血岫決岻 (56)

Parallel to the mean value approximation, the time-dependent finite element solution (Eq. 
53) can be approximated by introducing the vector containing the nodal values 

岷系峅版劇岌 繁 噺 岷計峅岶劇岼 髪 岶血岼長 伐 岷計峅岶劇岼 髪 岶血岼銚∆建  (57)

The functional value between  

Thus, the nodal value can be predicted based on the known initial value and the time scale. 
When	糠 噺 な/に, it is called the center difference method and the time-dependent finite 
element equation becomes 

The above system equation has an equal number of unknown value and equation and can 
be solved by linear solvers.  

2.4.2 Application of FEM in one-dimensional parabolic equation 

To illustrate the application of the FEM in solving a one-dimensional parabolic equation, we 

will consider a finite element solution of an insulated shaft that is initially at known 

temperature (1) and places in the environment where the ends are subjected to 0 

temperatures. The material diffusivity is 経 噺 など and heat capacity	膏 噺 な. It is assumed to be 

one-dimensional since the lateral temperature change is insignificant to compare with the 

horizontal (捲) direction. The length of a bar is 1 unit and for simplicity, we use four uniform 

elements (0.25) be used show the temperature distribution with time. Once the boundaries 

conditions are applied, the stiffness and capacitance matrix become 

伐岷系峅版劇岌 繁 髪 岷計峅岶劇岼 髪 岶圏岼 伐 岶血岼 噺 ど (53) 

穴血穴建 噺 血岫決岻 伐 血岫欠岻∆建  (54) 

岫岷系峅 髪 糠∆建岷計峅岻岶劇岼長 噺 岫岷系峅 伐 岫な 伐 糠岻∆建岷計峅岻岶劇岼銚 髪 ∆建岫岫な 伐 糠岻岶血岼銚 髪 糠 岶血岼長岻 (58) 

磐岷系峅 髪 ∆建に 岷計峅卑 岶劇岼長 噺 磐岷系峅 伐 ∆建に 岷計峅卑 岶劇岼銚 髪 ∆建に 岶血岼銚 髪 ∆建に 岶血岼長 (59) 
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Unless the material property and time step change with time, the coefficient matrix is only 
evaluated once. Using the center difference method, the system matrix becomes similar to 
Eq. 59. Thus, using the previous temperature values to estimate the new value recursively, 
the time cooling process may be predicted by the finite element method. Using the time step 
of 0.001 s, the temperature profile of 	劇態 噺 ど.ぬど, 劇戴 噺 ど.ねぬ, 劇替 噺 ど.ぬど estimated after 0.01 s. In 
addition, a computer program is written by extending the above principle for 20 elements. 
The cooling process is solved using 0.001 s time step. The temperature profile with several 
times is shown in Fig. 8.   As expected the rate cooling process with time is predicted using 
the finite element method and the solution also improves with elements number increases. 
 

 

Fig. 8. The rate of cooling predicted with 10 and 20 linear elements using the finite element 
method. 

2.4.3 Two-dimensional parabolic equation 

A two-dimensional parabolic equation is represented by   

The element contribution to the residual is 

岷計峅 噺 などど.にの 煩 に 伐な ど伐な に 伐など 伐な に 晩 岫a岻
岷系峅 噺 ど.にのは 煩ね な どな ね など な ね晩			岷血峅脹 噺 岷ど ど ど峅																										岫b岻

 (60) 

経 峭項態劇項捲態 髪 項態劇項検態嶌 髪 芸 伐 膏 項劇項建  (61) 

岶迎勅岼 噺 伐豹岷軽峅脹 峭経 峭項態劇項捲態 髪 項態劇項検態嶌 髪 芸 伐 膏 項劇項建嶌 穴畦 (62) 
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Parallel to the one-dimensional parabolic equation, the two-dimensional parabolic equation 
solution can be simply introduced by replacing the one-dimensional element integral for 
stiffness and capacitance matrix by the two-dimensional. In section 2.3.2, we showed that 
the first integral term using the linear rectangular element (Eq. 12 and the values in Fig 3.) 
yields the stiffness matrix and the derivative boundary conditions contribution (岷計長頂勅 峅 髪岷計勅峅). Parallel to the one-dimensional parabolic case (Sec. 2.4.1), the time-dependent integral 
can be evaluated using the rectangular element (Eq. 12). This new capacitance matrix for 
two-dimensional element becomes 

Thus, the two-dimensional parabolic equation is similar to Eq. 53, but the vector and the 
matrix are going to be larger since the four nodal values are involved per element. The 
vector element is 1 by 4, while the matrix is 4 by 4 except for the boundary vectors.  

2.4.4 Application of FEM in two-dimensional parabolic equation 

To illustrate a two-dimensional parabolic equation application, we will consider the 
temperature history of the two-dimensional rectangular region shown in Fig. 9. We selected 
this problem for simplicity and illustrative purposes. Thermal diffusivity	経 噺 など and 
constant heat is being generated at the rate of	芸 噺 など. The boundary conditions are specified 
as one end where	検 噺 ど, 劇 噺 の and 検 噺 な.の, 劇 噺 な while the other regions are kept 
insulated. Initially, the surface temperature is kept at 5 degree before it is introduced into 
the environment. The objective of this to show that how FEM is applied to solve this 
parabolic equation. The region is discretized using six square elements size of 0.5 units (2 in 
horizontal and 3 in vertical direction). 
The terms for two-dimensional, stiffness (Eq. 41),   capacitance (Eq. 63), and the applied heat 

(Eq. 42) and boundary conditions (Eqs. 38 and 39) become 

Using the initial condition  

岷系勅峅 噺 豹岷軽峅脹 膏岷軽峅穴畦 噺 膏 隙桁ぬは 頒ね に な にに ね に なな に ね にに な に ね番 (63) 

岷計峅 噺 などは 琴欽欽
欽欽欣 ぱ 伐に ど 伐な 伐に ど伐に なは 伐に 伐に 伐に 伐にど 伐に ぱ ど 伐に 伐な伐な 伐に ど ぱ 伐に ど伐に 伐に 伐に 伐に なは 伐にど 伐に 伐な ど 伐に ぱ 筋禽禽

禽禽禁																													岫a岻 (64) 

岷系峅 噺 ど.にのぬは 琴欽欽
欽欽欣 ぱ ね ど に な どね なは ね な ね など ね ぱ ど な にに な ど ぱ ね どな ね な ね なは ねど な に ど ね ぱ 筋禽禽

禽禽禁																																												岫決岻			
血 噺 岷伐なの.ばの 伐 ぬな.ばの 伐 なの.ばの 伐 ぬ.ばの 伐 ば.にの 伐 ぬ. ばの峅脹 岫潔岻

 (64) 

岶劇待岼 噺 岶の岼 (65) 
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with center difference (Eq. 59) and the 0.001s time step, the temperature distribution of 
(	劇替 噺 ぬ.ひに, 劇泰 噺 ぬ.ひな, 劇滞 噺 ぬ.ひに, 劇胎 噺 に.のぱ, 劇腿 噺 に.のば, and	劇苔 噺 に.のぱ	) is predicted after 0.1 
seconds.  
 

 

Fig. 9. Two dimensional square region using elements. 

3. Finite difference method 

The finite difference method is a direct interpretation of the differential equation into a 
discrete domain so that it can be solved using a numerical method.  It is a direct 
representation of the governing equation (絞血/絞捲 噺 岫血沈袋怠 伐 血沈岻/岫捲沈袋怠 伐 捲沈岻. Using the 
discontinuous but connected regions, the governing equation is defined within the interval. 
In addition to direct interpretation, the deferential equation, the basic finite difference form, 
also can be derived from the Taylor-series expansion. Next, we will discuss the definition of 
one- and two-dimensional finite difference equations. 

3.1 One-dimensional finite difference formulation 
In order to define a finite difference representation in a one-dimensional space, we define a 
line space along the x-axis. The Taylor-series expansion for function 血沈袋怠 about point (件) is, 

Let 岫捲沈袋怠 伐 捲沈岻 = Δ捲 

By rearranging  

血沈袋怠 噺 血沈 髪 血嫗岫捲沈袋怠 伐 捲沈岻 髪 怠態 血嫗嫗岫捲沈袋怠 伐 捲沈岻態 髪 怠滞 血嫗嫗嫗岫捲沈袋怠 伐 捲沈岻戴+… (66) 

血沈袋怠 噺 血沈 髪 血嫗Δ捲 髪 なに血嫗嫗Δ捲態 髪 なは血嫗嫗嫗Δ捲戴 髪⋯ (67) 

血嫗 噺 岫血沈袋怠 伐 血沈岻Δ捲 伐 なに血嫗嫗Δ捲 伐 なは血嫗嫗嫗Δ捲態 髪⋯ 
(68) 

y 

x 

1 2 3 

4 5 6 

7 8 9 

e(2) e(1) 

e(3) e(4) ∂T∂x 噺 ど ∂T∂x 噺 ど 

T 噺 の 

 

10 11 12 

T =1 

e(5) e(6) 
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The above expression may be referred to as a forward difference. Furthermore, a similar 
expression may also be obtained by the backward difference 

And center difference  

The higher order derivative of finite difference also may be derived from the Taylor-series 
expansion as 

Using recursively and eliminate the first derivative term with previous approximation  

The final second-order derivative can be expressed as 

Similarly, the third-order derivative may also be defined as 

It also important to recognize that by using more points to form a discrete derivative, the 

error term may be minimized.  For example, using five points instead of four in the equation 

above, the third-order derivate may be expressed as  

So that, the error term is no longer a linear function but quadratic.  

3.2 Two-dimensional finite difference expression 

Parallel to one-dimensional forward, backward, and center difference expressions, the finite 
difference representation for a two-dimensional expression also can be defined. Similar to 
partial derivative, first, take the derivative two-dimensional space with one of the variables 
followed by the other as required.  The first order partial derivatives of a function 血 噺血岫捲, 検岻 in two- dimensional space (捲, 検岻 are expressed as 

血嫗 噺 岫血沈 伐 血沈貸怠岻Δ捲  
(69) 

血嫗 噺 岫血沈袋怠 伐 血沈貸怠岻にΔ捲  
(70) 

血沈袋怠 噺 血沈 髪 血嫗Δ捲 髪 なに血嫗嫗Δ捲態 髪 なは血嫗嫗嫗Δ捲戴 髪⋯ (71) 

なに 血嫗嫗Δ捲態 噺 血沈袋怠 伐 血沈 伐 岫血沈袋怠 伐 血沈貸怠岻に 伐 なは血嫗嫗嫗Δ捲戴 髪⋯ (72) 

血嫗嫗 噺 なΔ捲態 岫血沈袋怠 伐 に血沈 髪 血沈貸怠岻 伐 剣岫Δ捲岻 髪 ⋯ (73) 

血嫗嫗嫗 噺 なΔ捲戴 岫伐血沈 髪 ぬ血沈袋怠 伐 ぬ血沈袋態 髪 血沈袋戴岻 伐 剣岫Δ捲岻 (74) 

血嫗嫗嫗 噺 なにΔ捲戴 岫伐血沈貸態 髪 に血沈貸怠 伐 に血沈袋怠 髪 血沈袋態岻 伐 剣岫Δ捲態岻 (75) 

血掴嫗 噺 なにΔ捲 盤血沈袋怠,珍 伐 血沈貸怠,珍匪 岫欠岻血槻嫗 噺 なにΔ検 盤血沈,珍袋怠 伐 血沈,珍貸怠匪 岫決岻  (76) 
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Similarly, the second-order derivatives in 捲 and 検 direction are 

Analogous to the partial derivate in the	捲	and		検 direction, the function derivative with 捲	and	検, or vice versa, can be obtained by taking the first partial in one of the directions 
followed by the other. The final expression of the partial derivative is the same whether 
the		捲	or 検 direction is used first or second. 

3.3 Finite difference approximation of elliptic equation 

Parallel to the previous sections, we start by considering the one-dimensional elliptic 
equation and how the FDM equation is formed. The major difference between the finite 
difference and the finite element method is that the finite difference method is based on the 
functional value at the nodal points, while the finite element is based on using the weighting 
function of the element to estimate the nodal values. We start by replacing the elliptic 
equation (Eq. 13) with the finite difference equation as  

For simplicity,  Δ捲 噺 月 and be uniform, and 件 噺 な, に… 	軽,	thus 

The solution of the elliptic equation is required the boundary condition. Thus, the boundary 
condition must be specified at, 件 噺 な	and	件 噺 軽	. The number of equations and the unknown 
depends on the boundary condition whether or not the particular value or the derivative 
values are specified. When the derivative boundary condition is specified, the general flux 
equation (Eq. 35) with all discrete finite derivative methods (Sec. 3.1) can be used to replace 
the derivative boundary condition. The flux at the boundary can be estimated using the 
forward, backward, and center difference. Forward or backward difference can be used to 
define the flux using the boundary point and an ideal point next to it (穴劇/穴券 噺 岫劇長袋怠 伐劇長岻/月. Moreover, for a more accurate estimate, the center difference may be used (穴劇/穴券 噺岫劇長貸怠 伐 劇長袋怠岻/に月). Both methods require the introduction of a new ideal point outside the 
region. The ideal point is eventually eliminated by combining the equations that include the 
specified boundary condition and the boundary node equation.  

3.3.1 Application of FDM in one-dimensional elliptic equation 
To illustrate a one-dimensional elliptic equation, we will consider the temperature 
distribution of a one-dimensional rod that is discussed in Sec. 2.3.1. Thus, when the material 
properties with all the assumption applied to the finite difference elliptic equation (Eq. 72) 
becomes  

血掴嫗嫗 噺 なΔ捲態 岫血沈袋怠,珍 伐 に血沈,珍 髪 血沈貸怠,珍岻 岫欠岻血槻嫗嫗 噺 なΔ検態 盤血沈,珍袋怠 伐 に血沈,珍 髪 血沈,珍貸怠 匪 岫決岻  (77) 

血槻掴嫗嫗 噺 なねΔ検Δ捲 盤血沈袋怠,珍袋怠 伐 血沈貸怠,珍袋怠匪 伐 岫血沈袋怠,珍貸怠 伐 血沈貸怠,珍貸怠岻 (78) 

経Δ捲態 岫劇沈袋怠 伐 に劇沈 髪 劇沈貸怠岻 髪 芸 噺 ど (79) 

経月態 岫劇沈貸怠 伐 に劇沈 髪 劇沈袋怠岻 髪 芸 噺 ど (80) 
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When the prescribed boundary condition at the end where the temperature is fixed applied, 劇怠	  becomes 5. Using the forward difference, the prescribed flux boundary at the opposite 
end gives the equation 

where 劇滞 噺 劇泰 伐 など月/経. 劇滞 can be illuminated between the boundary condition and the last 
equation. Using all the element equation, the finite difference expression of the system 
becomes  

The finite difference solution for the temperature profile produces the values	劇態 噺 の.どど, 劇戴 噺 ね.ひね, 劇替 噺 ね.ぱな, and 劇泰 噺 ね.はに. Indeed, the matrixes in Eq. 29 and Eq. 83 have some 
striking similarity considering they are formed from two different methods. As expected, the 
profiles in both FE and FD methods are the same. It is not also expected that the nodal values 
have differences. Furthermore, the computer solution for 10 and 20 elements is shown in Fig. 
10.  The profile indicates that with more nodal values, a better result can be estimated. 
 

 

Fig. 10. Finite difference approximated temperature profile for one-dimensional elliptic 
equation rod.  

3.3.2 Tow-dimensional elliptic finite difference solution 

As previously discussed, elliptic equations are generally associated with steady state 
problems. The finite difference representation of two-dimensional elliptic equation (Eq. 30) 
for steady state temperature distribution is 

などど.にの態 岫劇沈貸怠 伐 に劇沈 髪 劇沈袋怠岻 髪 など 噺 ど  (81) 

項劇項券 噺 経 劇滞 伐 劇泰月 噺 伐など  (82) 

頒伐に な ど どな 伐に な どど な 伐に など ど な 伐な番畔
劇態劇戴劇替劇泰販 噺 畔伐の.どはにの伐ど.どはにの伐ど.どはにのど.なぱばの 販 (83) 
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For simplicity, we let		Δ捲 噺 Δ検 噺 月, and assuming the diffusion is isotropic, we get 

As discussed earlier, the boundary condition may be a functional value and/or the flux at 
the edge, and the uniqueness of the solution depends on the boundary condition. There are 
vast methods developed over the years for direct and iterative solution methods in the form 
of explicit and implicit forms. As the name implies, the direct method involves a fixed 
number of operations to find a solution. In contrast, the iterative method starts with an 
approximation that successively improves (Dahlquist and Bjorck, 1974). Eq. 85 may be 
arranged in terms 	件	  or 	倹	  so that the known value be solved using all the other known 
values.  Furthermore by recognizing the relationship pattern among the neighboring points, 
the system equation can be generated as  

To illustrate the FD solution for two-dimensional elliptic equation, we will consider the 
problem discoursed before in Sec. 2.3.3 and Fig. 7. Thus, the FD system equation becomes 

Solving Eq. 87 gives the temperature value for all nodal points as		劇替 噺 の.ど, 劇泰 噺 の.ど, 劇滞 噺の.ど, 劇胎 噺 ね.ば, 劇腿 噺 ね.ば, and	劇苔 噺 ね.ば	. The estimated temperature profile is similar to FEM 
solution in Sec. 2.3.3 with some nodal value variation.  

3.4 Finite difference approximation of parabolic equation  

The parabolic equation is a function of space and time. Thus, it involves at least two 
variables, time and space.  It is always expressed in partial form since at least two variables 
are involved. The solution requires the boundary condition and the initial condition. The 
finite difference parabolic equation is different from an elliptic equation since the solution 
starts from the known time and propagates with increases in time.  

3.4.1 One-dimensional parabolic finite difference equation  

To illustrate the application of the finite difference method in solving a parabolic equation, 
we will consider the cooling process with time as previously noted in (Sec. 2.4.1). The one- 
dimensional finite difference time dependent equation can be generated by replacing one of 
the dimensions with time in Sec. 3.1. Furthermore, for parabolic equation the first and 
second derivative with time and space need to be defined. Thus, one-dimensional finite 
element parabolic equation becomes  

経Δ捲態 盤劇沈袋怠,珍 伐 に劇沈,珍 髪 劇沈貸怠,珍匪 髪 経Δ検態 	盤劇沈,珍袋怠 伐 に劇沈,珍 髪 劇沈,珍貸怠匪 髪 芸 噺 ど (84) 

経月態 盤劇沈袋怠,珍 髪 劇沈貸怠,珍 髪 劇沈,珍袋怠 髪 劇沈,珍貸怠 伐 ね劇沈,珍匪 髪 芸 噺 ど (85) 

劇沈袋怠,珍 噺 盤ね劇沈,珍 伐 劇沈貸怠,珍 伐 劇沈,珍袋怠 伐 劇沈,珍貸怠匪 伐 月態経 芸 (86) 

琴欽欽
欽欽欣 伐ね に ど な ど どな 伐ね な ど な どど に 伐ね ど ど なな ど ど 伐ぬ.なの に どどど など どな など 伐ぬ.なの なに 伐ぬ.なの筋禽禽

禽禽禁
菌衿芹
衿緊劇替劇泰劇滞劇胎劇腿劇苔近衿謹

衿襟 噺 菌衿芹
衿緊伐の.にの伐の.にの伐の.にの伐ど.のの伐ど.のの伐ど.のの近衿謹

衿襟
 (87) 
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The subscript 件 and 酵 are used to reprecent the space dimension (捲) and time (建), 
respectively. One can see that with the known boundary condition and initial condition and 
using the appropriate time step, the new value of  劇 may be predicted. A very simplistic 
explanation of the finite difference expression above can be given by letting the boundary 

condition 岫件 髪 な岻 and 岫件 伐 な岻 and the initial condition 盤劇沈,邸匪  be known. Thus, the only 
unknown value is 劇沈,邸袋怠 that is a function of the time step (Δ建岻 the element size (Δ捲). The 
time step and the stability of the system are major parts of the parabolic equation. For 
example, for an explicit FD equation, the value for Δt/Δ捲態 判 ど.の for the system to be stable 
and stability is a major part of numerical solutions (Smith, 1985; Dahlquist &Bjorck, 1974).   

3.4.2 Application of FDM in one-dimensional parabolic equation  
In order to demonstrate the application of FDM in parabolic equation, we will consider 
previously discussed cooling process of a thin insulated bar that initially at some 
temperature is placed in the environment where the heat allows to flow from the ends (Sec. 
2.4.1).  Similarly, , we will use four elements where the element size becomes 0.25. And let 
the time step be 0.001. Thus, the finite difference expression becomes 

The boundary conditions are 劇怠 噺 劇泰 噺 ど and the initial condition is 建 噺 ど,	 all 劇 噺 な .Thus, 
the system equations becomes  

Using the time step of 0.001 s, the temperature profile of 	劇態 噺 ど.ぬに, 劇戴 噺 ど.ねの, 劇替 噺 ど.ぬに 
estimated after 0.01 s. Furthermore, using the same process above, we wrote the computer 
program using 10 and 20 elements and solved the elliptic equation using 0.001s time step. 
The temperature profile with time is shown in Fig.  10.  As expected, the rate cooling process 
with time is predicted using the finite element method.  

3.4.3 Two-dimensional finite difference parabolic equation 

Parallel to the above one-dimensional finite difference parabolic equation, the two- 
dimensional equation can be simply introduced by modifying the two-dimensional 
notation. The notation is modified to accommodate the time variable by using the 
superscripts instead of the subscripts for time. Thus, the finite difference two-dimensional 
parabolic (Eq. 61) becomes 

Parallel to the previous one-dimensional case (Sec. 3.4.1), the boundary condition may be 
prescribed in several ways as a functional value and/or a flux depending on the situation. 
Since it is a time function, it also requires the initial condition. 

膏 岫劇沈,邸袋怠 伐 劇沈,邸岻Δ建 噺 経 なΔ捲態 盤劇沈袋怠,邸 伐 に劇沈,邸 髪 劇沈貸怠,邸匪 髪 芸 (88) 

岫劇沈,邸袋怠 伐 劇沈,邸岻ど.どどな 噺 などど.にの態 盤劇沈袋怠,邸 伐 に劇沈,邸 髪 劇沈貸怠,邸匪 (89) 

崔劇態,邸袋怠劇戴,邸袋怠劇替,邸袋怠崢 噺 煩ど.はぱ ど.なは どど.なは ど.はぱ ど.なはど ど.なは ど.はぱ晩 崔劇態,邸劇戴,邸劇替,邸崢 (90) 

膏 岫劇沈,珍邸袋怠 伐 劇沈,珍邸 岻Δ建 噺 経Δ捲態 盤劇沈袋怠,珍邸 伐 に劇沈,珍邸 髪 劇沈貸怠,珍邸 匪 髪 経Δ検態 盤劇沈,珍袋怠邸 伐 に劇沈,邸邸 髪 劇沈,珍袋怠邸 匪 髪 芸 (91) 
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Fig. 11. The rate of cooling predicted with 10 and 20 linear elements using the finite 
difference method. 

3.4.4 Application of FDM in two-dimensional finite difference parabolic equation 

To illustrate the finite difference method application in solving two-dimensional parabolic 

equation, we will consider the temperature distribution of the two-dimensional rectangular 

region previously discussed in Sec. 2.4.4 and shown in Fig. 9.  Using six elements, 2 in 

horizontal and 3 in vertical direction with specified boundary conditions, the two-

dimensional FD parabolic equation becomes   

Rearranging and forming in matrix form 

Thus, finite difference two-dimensional elliptic equation (Eq. 93) solution can be generated 

by solving the space equation for a fixed time first (solving the second right term in the 

bracket first) and using that to get the new estimate. By using the time estimate recursively, 

the time process may be generated. Similar to Sec. 2.4.4, the 0.001s time step, the 

temperature distribution of (	劇替 噺 ぬ.ひの, 劇泰 噺 ぬ.ひの, 劇滞 噺 ぬ.ひの, 劇胎 噺 に.はに, 劇腿 噺 に.はに, and	劇苔 噺に.はに	) is predicted after 0.1 seconds. The predicted values have similar profile and values 

with FEM solution in Sec. 2.4.4.	

岫劇沈,珍邸袋怠 伐 劇沈,珍邸 岻Δ建 噺 などど.の態 盤劇沈袋怠,珍邸 伐 に劇沈,珍邸 髪 劇沈貸怠,珍邸 匪 髪 などど.の態 盤劇沈,珍袋怠邸 伐 に劇沈,邸邸 髪 劇沈,珍袋怠邸 匪 髪 岫など岻ど.の態など  (92) 

菌衿芹
衿緊劇替劇泰劇滞劇胎劇腿劇苔近衿謹

衿襟痛袋∆痛
噺
菌衿芹
衿緊劇替劇泰劇滞劇胎劇腿劇苔近衿謹

衿襟痛
髪 などΔ建ど.の態 均勤

勤勤僅琴欽欽
欽欽欣伐ね に ど な ど どな 伐ね な ど な どど に 伐ね ど ど なな ど ど 伐ね に どど な ど な 伐ね など ど な ど に 伐ね筋禽禽

禽禽禁
菌衿芹
衿緊劇替劇泰劇滞劇胎劇腿劇苔近衿謹

衿襟痛
髪 菌衿芹
衿緊の.にのの.にのの.にのな.にのな.にのな.にの近衿謹

衿襟
斤錦
錦錦巾 

(93) 
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4. Concluding remarks 

In this chapter, we illustrated numerical solutions of elliptic and parabolic equations using 
both finite element and finite difference methods.  Elliptic and parabolic equations are 
encountered in numerous areas of engineering and science. Finite element and finite 
difference methods are the two most frequently applied numerical approximations, 
although several numerical methods are available. We illustrated how finite element 
method utilizes discrete elements to obtain the approximate solution of the governing 
differential equation. In addition, we showed how the final system equation is constructed 
from the discrete element equations. In addition, we also showed how finite difference 
method uses points over intervals to define the equation and the combination of all the 
points to produce the system equation. Both systems generate large linear and/or nonlinear 
system equations that can be solved by computer.  
FEM and FDM are evolving with technology. The growth in computer technology has made it 
even more possible to consider using them in many science and engineering applications. In 
addition, more people without science and engineering backgrounds are becoming numerical 
simulation users. Consequently, the fundamental understanding of numerical simulation is 
becoming increasingly very important. Thus, this chapter intended to give some fundamental 
introduction into FEM and FDM by considering simple and familiar examples. We illustrated 
the similarity and the differences in finite difference and finite element methods by 
considering the simple elliptic and parabolic equations. Indeed, for the problems considered, 
one can see that the similarity and the difference from the final system equations and 
approximate solution. We designed the chapter to be introductory. By considering simple 
examples, we have illustrated FEM and FDM are reasonable ways of estimating solutions. 
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