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Heat Conduction in Nonlinear Media 

Michael M. Tilleman 
Elbit Systems of America (Kollsman), LLC.,  

220 Daniel Webster Highway, Merrimack, NH 03054 
USA 

 

1. Introduction 

The objective of this chapter is to demonstrate a closed form solution to a unique problem in 
heat transfer, that of heat transfer in nonlinear media. For this purpose identified are cases 
in which the nonlinear phenomenon dominates, where properties of a medium exhibit 
nonlinear response to heating, and the solution methodology is described. Further in this 
chapter presented is a set of analytical solutions applicable to various geometrical forms 
including the cases of: infinite and finite cylinders with axisymmetrical source, finite 
cylinder with axisymmetrical and axially varying sources, slender disk, infinite and finite 
parallelepiped with centrally symmetric source, finite parallelepiped with axially varying 
source and the resulting stress due to temperature distribution. In this abstract an example 
is shown of a solution for a particular case, that of an infinite cylinder.  
In many cases equations governing the phenomenon of heat transfer are solved assuming 
constant physical properties of the media concerned. That is where a whole class of closed 
form solutions is found, if regular boundaries and boundary conditions are provided. 
However, at instances in which the coefficient of heat conduction, specific heat and thermal 
diffusivity, are functions of temperature, those solutions are no longer applicable. For those 
cases another family of closed form solutions is found and described herewith. 
The analytical solution to the thermally nonlinear problem assumes a certain dependence of 
the coefficient of thermal conductivity, k, on temperature. This case is usually found in 
instances of large temperature gradients in media, for instance in active optical materials 
with intense electro-optical fields. They are realized in laser gain media, nonlinear optical 
crystals and saturable absorbers. One of the most frequently used host materials for lasers is 
Yttrium Aluminum Garnet, YAG, in which an inverse proportionality to temperature well 
approximates measured k values over a vast temperature range. What we applied for the 
solution of such a problem is the Kirchoff’s transformation ( Joyce, 1975), whereby the heat 
equation can be linearized and solved. However, the use of this method is limited to 
materials whose k is integrable in temperature, T. Only for these cases the linearization of 
the heat equation can be made. For instance in the case of AgGaSe2, a nonlinear optical 
crystal useful for harmonic generation, the dependence is k=A+B/T ( Aggarwal & Fan, 2005) 
that is an integrable function in T, therefore solvable by the present method. Evidence has it, 
though, that most of the known optical crystals have similarly thermal coefficient enabling 
the use of the present solution. Another strategy used in many of the present solutions is the 
use of the Green’s function as kernel in the integral expression. Owing to the strong 
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dependence of additional properties of these materials, for instance thermal expansion 
coefficient and thermal rate of refractive index (dn/dT) on temperature, the solution to the 
heat transfer problem presents an important tool to understand the reaction of these media 
to intense heating.  
The analysis begins by defining the governing equation and the boundary conditions. 
Governing is the Poisson equation expressed as: 

 ( ) 0k T Q∇ ⋅ ∇ + =  (1) 

where: k=k(T) is the thermal conductivity and Q is the heat source term defined as 
deposited power per unit volume. To solve for cylinders or rectangular parallelepipeds 
either a polar or Cartesian coordinate systems need be considered as necessary.  

1.1 Coefficient of thermal conductivity 

The coefficient of thermal conductivity is a product of the material density, thermal 
diffusivity and specific heat. Approximation to theory and the fitting to a broad body of 
measured values suggest an inverse linear approximation: 

 ( ) 0
0

T
k T k

T
=  (2) 

where k0 is the coefficient of thermal conductivity at T0 whose values for several materials 

are summarized.( Aggarwal et al., 2005) This simple function, similar to that suggested for 

Nd:YLF in (Pfistner et al., 1994) and ( Hardman et al., 1999), closely fits theory and agrees 

very well with data in the range between cryogenic temperature and 770K. It is worth 

mentioning that though the specific approximation of Eq.  2 holds true for some materials, 

there are other materials for which alternative approximations may become a better fit. 

1.2 The nonlinear poisson equation for a cylinder with axisymmetrical source 

Let us consider the Poisson equation of Eq. 1 in cylindrical coordinates, using the expression 

for k of Eq. 2: 

 ( ) ( )0
, , 0 , , , , 0r z r z

T
k T Q r z

T
ϕ ϕ ϕ⎡ ⎤∇ ⋅ ∇ + =⎢ ⎥⎣ ⎦

 (3) 

Consistent with Kirchoff’s transformation this equation can be rewritten as: 

 ( ) ( ) ( )2
0 0 , , , , 0 0 , ,

0

1
, ,  ln , ,r z r z r z

T
k T T Q r z k T Q r z

T T
ϕ ϕ ϕϕ ϕ∇ ⋅ ∇ + = ∇ +  (4) 

then one arrives at: 

 ( ) ( )2
, , , , , , 0r zK r z Q r zϕ θ ϕ ϕ∇ + =  (5) 

Being a linear equation in θ where: 

 ( ) ( )
0

, ,
, , ln

T r z
r z

T

ϕ
θ ϕ =  (6) 
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and K is a constant: 

 0 0K k T=  (7) 

The above notation is cylindrical. Notwithstanding, this linearization holds true for any 
orthogonal coordinate system. It should be emphasized that Eq. 5 represents any steady-
state heat equation, where θ and K may be an arbitrary representation of any compound 
temperature-heat conduction function. Ultimately this case degenerates to the linear case 
where the heat conduction coefficient is independent of temperature.  
Assuming a distributed heat source one has: 

 
02

( , , ) ( , , )
P eff

P
Q r z f r z

r L
ϕ ϕ

π
=  (8) 

where P is the power deposited in the medium, rP is the effective radius of the heating zone 
in the cylinder, Leff is the effective length of the medium which may be, for instance, a 
cylindrical rod or parallelepiped and f0 is an arbitrary spatial distribution function of the 
deposited power. 
The boundary conditions for the problem are prescribed by a given cooling mechanism, 
which may consist of a coolant fluid or a solid heat sink, and physical surroundings of the 
device. Typically at least one side of the heated medium is held in good thermal contact 
with the cooling mechanism. Being either kept in vacuum or exposed to gas the other sides 
of the medium may be considered insulated due to lack of any considerable heat transfer. At 
the areas of the rod through which heat flow occurs, say at r=rW, one may specify the 
boundary by a known temperature, i.e. a Dirichlet condition: 

 0( , , )WT r z Tϕ =  (9) 

Otherwise, in the case the heat flux out of the system is known, the boundary is specified by 
a Neumann condition: 

 
ˆ

T
k q

n

∂
=

∂
 (10) 

and on all the insulated sides the heat flux vanishes, thus: 

 0
ˆ

T

n

∂
=

∂
 (11) 

2. Cylindrical rods 

Consistent with Kirchoff’s transformation (  Joyce, 1975) Eq. 5 is expressed in cylindrical 
coordinates as:  

 ( ) ( ) ( ) ( )
2 2

2 2 2
, , , , , , , 0

K K
r r z r z K r z Q r z

r r r r z

∂ ∂ ∂ ∂θ ϕ θ ϕ θ ϕ ϕ
∂ ∂ ∂ϕ ∂

+ + + =  (12) 

2.1 Rod of finite length 

This case is illustrated in  Figure 1(a). Sketched is a rod held by two conducting mounts at 
the ends, surrounded on its perimeter by a source emitting electromagnetic radiation. Such a 
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source may be a black-body emitter, incandescent lamp, light emitting diode or laser, to 
name a few. The rod absorbs the radiation converting it to heat. In order to approximate 
cases of: 1) rod with evenly spaced side heating and varying axial heating rate or boundary 
condition, and 2) end heating with arbitrarily distributed source or boundary conditions, it 
is sufficient to assume an axisymmetrical case with a finite rod. Then the governing equation 
becomes: 

 ( ) ( ) ( )
2

2
, , , 0

K
r r z K r z Q r z

r r r z

∂ ∂ ∂θ θ
∂ ∂ ∂

+ + =  (13) 

 

        

                  (a)                                                    (b)                                                            (c) 

Fig. 1. Three cylindrical optical devices: a) rod held by heatsink mounts on both ends with 
radially symmetrical side induction heaters, b) rod held by a heatsink along its length with 
end induction heater and c) end induction heated thin disk (dark) with a cap 

2.1.1 Side heating 
The boundary conditions for a rod may model various cooling configurations including 
conductive and convective cooling means. A possible configuration is conduction cooling, 
where a heat sink with a mount holds the rod over part of its length. This configuration 
justifies the assumption of either Dirichlet or Neumann boundary conditions or their 
combination specified around the rod circumference: 

 ( ) ( ) ( ) ( ) ( ) ( )1 2

, ,
,              

W W

W

r r r r

T r z r z
T r z f z or k T K f z

r r

∂ ∂θ
∂ ∂= =

= = =  (14) 

The Dirichlet boundary condition is particularly suitable for cases where the boundary is 
held at a set temperature such as the case of heat sinking to Peltier junction or cryogenic 
cooling. In terms of the function θ it becomes: 

 ( ) ( )1

0

, lnW

f z
r z

T
θ =  (15) 

Then, the Neumann condition is suitable for cases where the boundary provides a certain 
heat flux across it, as specified in Eq. 14. At the rod ends the facets are assumed insulated, 
specified by Neumann condition, such that: 

Heat 
Induction

Thin Disk 
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0 /2

0
z z Lz z

∂θ ∂θ
∂ ∂= =

= =  (16) 

where the origin is at the rod center and z = L/2 is half the rod length. Modeling of the heat 
source assumes a region confined both radially and axially inside the rod: 

 

( )02
   ;     0    

2/ 2
( , )

0              ;           
2

P

P l
f r z

r l
Q r z

l
z

π
⎧ ≤ ≤⎪⎪= ⎨
⎪ <⎪⎩

 (17) 

where l is the length of the source region in the rod such that l≤L.  
To solve the set of equations 13 – 16 it is convenient to employ the Green’s function G(r,z) in 
which case for the mixed boundary conditions the general solution becomes:  

 ( ) ( ) ( ) ( ) ( )
/2 /2

3

0 0 0

1
, , , , , , , ,

WrL L

W Wr z r f V r z r d Q G r z d d
K

θ ζ ζ ζ ξ ζ ξ ζ ξ ξ ζ= +∫ ∫ ∫  (18) 

where the function f3(ζ) assumes either f1(ζ) or f2(ζ) defined in Eq.  14 and the function 

V(r,z,rW,ζ) is either ∂G(r,z,ξ,ζ)/∂ξ at ξ=rW or G(r,z,rW,ζ), depending on the type of boundary 
condition around the rod circumference (Dirichlet or Neumann). Green’s function is 
constructed by solving the homogeneous Eq. 13, or the Laplace equation, satisfying the 
specified boundary conditions of Eqs.14 and 16, and by the function holding throughout the 
domain.(  Polianin, 2002) Thus G takes the form as demonstrated in (Polianin, 2002): 

 ( )
( ) ( )

( )

0 , 0 ,

2 2
1 1 2 2

, ,

cos 2 cos 2
2

, , ,
2

s m s m

s
m nW

s m s s m W

z
J r J n n

L L
G r z

r L n
J r

L

ζμ μ ξ π π
ξ ζ

πμ μ

∞ ∞

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑  (19) 

where the subscript s assumes the value of either 0 or 1 corresponding to a Neumann or 

Dirichlet type boundary condition, respectively. The coefficients μm are the roots of the 
equation: 

 
( )

( )

0

0

0 ; 0

0 ; 1 

W

m
r

m W

d
J r s

dr

J r s

μ

μ

= =

= =

 (20) 

To present a complete solution one still needs to define the functions f0(r) used in Eq.  17. Let 
two cases be considered:  
1. Uniform heat source distribution where: 

( )0

1    ;   0     

0        ;        
P

P

r r
f r

r r

≤ ≤⎧
= ⎨ <⎩

 

2. Gaussian heat source profile: 
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( )
2

0 exp 2
P

r
f r

r

⎡ ⎤⎛ ⎞⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

Considering a Dirichlet boundary condition for case 1 one may solve the problem for θ −θW, 
whereby the first term in Eq. 18 becomes θW and the solution is expressed as: 

 

( ) ( )

( ) ( )

( )

/2

12
0 0

1 1, 0 1,

2 2
1 1 2 2

1, 1, 1 1,

2
, , , ,

cos 2

sin
2

pr l

W
P

m p m

W
m nW P

m m m W

P
r z G r z d d

r lK

z
J r J r n

P l L
c n

Lr r LK n
J r

L

θ θ ξ ζ ζξ ξ
π

μ μ π
θ π

π πμ μ μ

∞ ∞

= =

= +

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠= + ⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫

∑ ∑
 (21) 

Considering a Neumann boundary condition for case (1), and assuming a case where the 
heat is relieved from the rod by conductive mounts holding the rod perimeter between ±S/2 
and ±L/2 Eq. 18, the solution is: 

 

( ) ( ) ( )

( )

( )

( ) ( )

/2 /2

0 02
/2 0 0

1, 0 1,

2
1 1 2

1, 1 1,

1 0, 0 0,

2

2
, , , , , , ,

sin cos 2
2

cos

   sin

prL l
B abs

W W
PS

m mB

W m n
m m W

m p m

W P

q P
r z r G r z r d G r z d d

K r lK

J rq S S z
c n n

K r L L Ln
J r

L

J r J r
P l

c n
Lr r LK

ηθ ζ ζ ξ ζ ζξ ξ
π

μ μ
π π

πμ μ

μ μ
π

π

∞ ∞

= =

= +

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎝ ⎠⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∑ ∑

( )
2

1 1 2 2
0, 0, 0 0,

2

2m n
m m m W

z
n

L

n
J r

L

π

πμ μ μ

∞ ∞

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

 (22) 

where qB is the heat flux through the cooling mounts. For a very long rod the solutions in 
Eqs. 21 and 22 approach the asymptotic solution for a two dimensional, axisymmetrical 
geometry, which for the Dirichlet boundary condition becomes: 

 ( )

22

2

2

exp 1       ;   0
4

2

                      ;   

eff

eff

P

L K
W

P
P eff P

Peff W
L KW

P W

r P r
r r

r L K rP
T r T

L hr
r

r r r
r

π

π

π
π∞

⎧ ⎡ ⎤⎛ ⎞⎛ ⎞⎪ − ≤ ≤⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎛ ⎞ ⎢ ⎥⎪⎝ ⎠ ⎝ ⎠⎣ ⎦⎜ ⎟= + ⎨⎜ ⎟⎪⎝ ⎠ ⎛ ⎞⎪ < ≤⎜ ⎟⎪ ⎝ ⎠⎩

 (23) 

For the heat source of case 2 with Gaussian radial distribution the integrand becomes a 
product of Bessel function of the first kind of order zero and Gauss function. Then, the 
integral in the second term of Eq. 18 becomes: 

 ( )00
exp 2

Wr

m
P

J d
r

ξμ ξ ξ ξ
⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∫  (24) 
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which has a closed form solution strictly for the case of rW→∞, being ( Abramowitz & 

Stegun, 1964): 

 
( )22

exp
4 8

m PP rr μ⎡ ⎤
⎢ ⎥−
⎢ ⎥⎣ ⎦

 (25) 

It turns out that for rW/ rP =1, 1.25, 1.5, 1.75 the above result has an error of 15%, 6%, 1.5% 

and less than 1% relative to a numerical approximation, respectively. Because in real 

scenarios rW/ rP >1, this result is applicable to the present solution assuming a Dirichlet 

boundary condition, yielding:  

( ) ( ) ( )

( )

2
0 1,

1,

2 2
1 1 2 2

1, 1 1,

cos 2

, exp sin
84 2

m
m P

W
m nW

m m W

z
J r n

rP l L
r z c n

Lr LK n
J r

L

μ πμ
θ θ π

π πμ μ

∞ ∞

= =

⎛ ⎞
⎡ ⎤ ⎜ ⎟⎛ ⎞ ⎝ ⎠⎢ ⎥= + − ⎜ ⎟⎢ ⎥ ⎡ ⎤⎝ ⎠ ⎛ ⎞⎣ ⎦ +⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑  (26) 

The temperature in the cylinder for each case is derived via Eq.  6 using the values of θ in 

Eqs.21, 22 and 26. 

2.1.2 End heating 

This case is illustrated in   Figure 1(b). Treating the problem of end heating is not much 
different than the above model for side heating. The main difference is in defining the heat 
source as an exponentially decaying function along the rod axis. Thus in end heating the 

temperature becomes maximized at the rod facet. The temperature surge is milder if an end-
cap made up of a non-heating material, is bonded to the rod at the entrance. A non-heating 
material may be one which does not contain a heat source. The non-heating end-cap 
conducts the heat generated in the rod. Assumed in the present model is an identical 

coefficient of thermal conductivity in the heating and non- heating materials. For the sake of 
smooth transition from the previous section a notation is selected such where L/2 expresses 
the entire rod length. In sum the heat source in the rod becomes:  

 ( )02

0   ;
2

( , ) exp    ;   0     0
2 2

0   ;

C

C C P
P

P

L
z z

P L L
Q r z z z f r z z r r

r

r r

α α
π

⎧ − <⎪
⎪

⎡ ⎤⎪ ⎛ ⎞= − − − ≤ ≤ − ∩ ≤ ≤⎨ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪
⎪ <
⎪
⎩

 (27) 

where zC is the thickness of the end cap, becoming zero for the case with no cap. As in the 

previous section also here considered are two cases of radial heat induction distribution: a 

flat-top beam and Gaussian. Also cooling of the rod is modeled by assuming either setting 

the radial rod wall at a constant temperature or by a conductive mount holding the rod 

between the lengths of S/2 and L/2 on each side.  

The solution for a rod with uniform heat source and Dirichlet conditions on the cylinder 

circumference becomes: 
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( )

( )

( ) ( )

( ) ( )
( )

2

2

1 1, 0 1,

22
1 1 2 2 1, 1 1,2

1,

2
,

2
1 cos 2 sin 2 exp

2
  cos 2

2
2

W
P W

n C C
C

m P m

m n m m W
m

LP
r z

r r K

z zn L
n n z

J r J rL L L z
n

LJ rn
n L

L

αθ θ
π

ππ π α
μ μα

π
μ μππ α μ

∞ ∞

= =

= +

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − − −⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎣ ⎦⎣ ⎦⎩ ⎭× ⎜ ⎟⎡ ⎤ ⎝ ⎠⎛ ⎞⎡ ⎤+ +⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

 (28) 

Considering the Neumann boundary condition the solution is expressed as: 

 

( ) ( ) ( )

( )

( )

( ) ( )

/2 /2

0 02
/2 0 0

1, 0 1,

2
1 1 2

1, 1 1,

1 0, 0 0,

2

0, 0,

2
, , , , , , ,

sin cos 2
2

   sin

prL l
B

W W
PS

m mB

W m n
m m W

m p m

W P
m

q P
r z r G r z r d G r z d d

K r lK

J rq S S z
c n n

K r L L Ln
J r

L

J r J rP l
c n

Lr r LK

θ ζ ζ ξ ζ ζξ ξ
π

μ μ
π π

πμ μ

μ μ
π

π
μ μ

∞ ∞

= =

= +

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎝ ⎠⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

∫ ∫ ∫

∑ ∑

( )
2

1 1 2 2
0 0,

cos 2
2m n

m m W

z
n

Ln
J r

L

π
π μ

∞ ∞

= =

⎛ ⎞
⎜ ⎟⎡ ⎤ ⎝ ⎠⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

 (29) 

Finally, the solution for a rod with a Gaussian heat source and Dirichlet conditions on the 
cylinder circumference becomes: 

( )

( )
( )

( ) ( )

( )
( )

2

2

2

1

0 1,

22
1 1 2 2 1 1,2

1,

,
2

2
exp 1 cos 2 sin 2 exp

8 2

  cos 2
2

2

W
W

m p n C C
C

m

m n m W
m

LP
r z

r K

r z zn L
n n z

L L L
J r z

n
LJ rn

n L
L

αθ θ
π

μ ππ π α
α μ

π
μππ α μ

∞ ∞

= =

= +

⎡ ⎤
⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥− − + − − −⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦⎩ ⎭⎢ ⎥ ⎛ ⎞⎣ ⎦× ⎜ ⎟⎡ ⎤ ⎝ ⎠⎛ ⎞⎡ ⎤+ +⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

 (30) 

2.2 Example for a cylindrical rod 
Several cases are calculated showing the profiles of temperature in nonlinear materials. To 
allow a reasonable comparison between the various cases the following parameters are set: 
material Yb:YAG, rod diameter 5 mm, radiation absorbing zone diameter 2.5 mm and 
cryogenic cooling at 77K. Assumed is a circumferential, radially directed radiation forming 
a uniform heat zone.  
To estimate the effect of the rod aspect ratio on the axial temperature distribution let a heat 
density of 410 W/cm3 be set while varying the rod length. Plotted in  Figure 2(a) is the axial 
temperature for half a rod from center to facet with a varying length. Observe that for short 
rods the temperature is relatively small, growing with length to an asymptotic value. 
Further length increase causes the temperature profile to flatten out reaching an asymptotic 
value set by an infinitely long rod. A length of 50 mm may be considered as the value at 
which the rod is well approximated by an infinitely long rod. Then, the temperature profile 
is calculated assuming power magnitudes of P=240, 400 and 800 W and a rod length of 50 
mm, corresponding to heat density rates of 245, 410 and 815 W/cm3, respectively. Shown in 
 Figure 2(b) is the radial distribution through a rod center for using finite and infinite rod 
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models yielding essentially identical results. Also in  Figure 2(b) a comparison is made with 
a calculation based on the linear solution where k is assumed constant equal to that for the 
median temperature in the rod. In  Figure 2(c) plotted are the temperature radial profiles for 
all three heat density levels, compared again to the linear approach, exhibiting a gradually 
growing discrepancy between the two for large power levels. It follows that the linear 
approach is unjustifiable for large heat loads, say above 200 W/cm3. 
 

 

(a) 

  

                                      (b)                                                                                (c) 

Fig. 2. Temperature in a rod: a) axial distribution for heat density of 410 W/cm3, b) radial 
distribution for heat density of 410 W/cm3, comparing rod with finite and infinite length 
and with the linear solution, and c) radial distribution for heat density of 245, 410 and 815 
W/cm3, comparing the nonlinear with linear solutions 

2.3 Heated thin disk 

Illustrated in  Figure 1(c), the heated disk experiences greatly diminished radial temperature 
gradients due to its large area at an axial end being cooled. The thermal problem is solved as 
in the section above with the difference that here one of the axial facets is attached to a heat 
sink thus setting the temperature. The other facet is assumed either insulated or bonded to a 
non-heating layer, a cap. Specifying the boundary conditions for the disk radial wall is 
twofold: it is insulated for a non-heating disk whereas for a capped disk it has a set 
temperature, same as the heat-sunk end. Note that for the case of the uncapped end there is 
no substantial advantage to adding thermal contact to the radial wall due to the large aspect 
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ratio of the disk. On the other hand, for the capped-end case radial cooling must be assumed 
to render the cap useful.  
Further assumed is a heat source with flat-top profile enveloped by a circular cylinder with 
a radius of rP. Denoting the disk thickness as t the heat source density is expressed as: 

 ( ) 2

0   ;

; 0

0 ;

C

p
P

p

t z z

P
Q r r r

r t

r r

π

⎧ − <
⎪
⎪= ≤ ≤⎨
⎪
⎪ <⎩

 (31) 

Then, the boundary conditions are:  

  

( ) ( )

( )W

, ,
0 ; 0 for uncapped disk

, for capped disk

Wz t r r

W

r z r z

z r

r z

∂θ ∂θ
∂ ∂

θ θ
= =

= =

=

 (32) 

and the end cooled boundary condition becomes: 

 ( ),0 Wrθ θ=  (33) 

Green’s function for the Neumann and Dirichlet cases denoted by the subscript s (=0, 1) 
becomes: 
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Thereby the solution takes the form: 
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 (35) 

with the physical stipulation that for s=0 zC=0. Thence the temperature is derived as:  
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∑ ∑  (36) 

Evidently the temperature grows exponentially with the dissipated heat density.  
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                                    (a)                                                                               (b) 

 
                                    (c)                                                                               (d) 

 
                                    (e)                                                                               (f) 

 
                                    (g)                                                                               (h) 

Fig. 3. Radial and axial temperature profiles in a thin disk assuming a cap length of 0 (a,b), 
0.25 mm (c,d), 0.75 mm (e,f) and 1.25 mm (g,h) 
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2.4 Example for a thin disk 

To calculate the temperature in the disk the following parameters are set: material Yb:YAG, 
disk diameter 5 mm, heat source diameter or thickness 2.5 mm, slab lengths 50 mm, disk 
thickness 0.25 mm, heat density rate 100 W/cm3 and cryogenic cooling at 77K. 
Consistent with most realistic scenarios consider end heating of the thin disk with uniform 
radial distribution within a radius of rP of a disk attached to a heat sink. To enhance heat 
dissipation assumed is also a non-heating cap in good thermal contact with the disk and a 
heat sink around its perimeter. For simplicity the cap is considered possessing the identical 
values of coefficient of thermal conduction of the absorbing disk. Thus attached to the disk 
with the thickness of 0.25 mm is a cap with a varying thickness of 0, 0.25, 0.75 and 1.75 mm.  
For a heat sink temperature of 77K, disk diameter of 5 mm, source diameter of 2.5 mm and 
power P=400 W the temperature axial and radial profiles are plotted in  Figure 3. On 
inspecting the graphs (a) – (h) one finds a dramatic drop in the maximum temperature of 
above 300K to below 90K resulting from increasing the cap thickness from nil to 1.75 mm. 
Another interesting point is that the axial location of the hottest spot remains at roughly the 

doped disk facet. Next, the axial and radial profiles of Δn radial component are plotted in 

 Figure 3. On inspecting the graphs (a) – (h) one finds a dramatic decrease in the Δn 

magnitude from 2.5×10-3 to below 4×10-5 with increasing the cap thickness. Also the axial 

location of the peak Δn remains at the doped disk facet. 

3. Slab geometry 

For active optical media having the shape of a parallelepiped it is most convenient to treat 
Eq. 5 in Cartesian coordinates, where consistent with Kirchoff’s transformation (  Joyce, 1975) 
it is expresses as:  

 ( ) ( )
2 2 2

2 2 2
, , , , 0K x y z Q x y z

x y z
θ

⎛ ⎞∂ ∂ ∂
+ + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 (37) 

3.1 Slab of infinite length 
The case of a very long slab relative to its lateral sides is well approximated by an infinitely 
long slab is schematically shown in  Figure 4(a). Here the slab is held on one side in thermal 
contact with the heat sink, having its width in the z direction and thickness in x direction, 
both much shorter than its length in the y direction. Heating sources such as lasers, emit 
radiation which forms inside the slab a laser gain zone a fraction of which generates heat 
due to the quantum defect and other non-radiative relaxation processes. 
Considered is a side-heated model having a slander spot shape on the slab side. It has 
predominantly a Gaussian intensity distribution in the fast-axis plane, i.e. along x, and a 
uniform distribution along y.  
I choose to specify the boundary conditions as: 

 
00

( , ) ( , ) ( , )
0

xy y b

T x y T x y T x y

y y x == =

∂ ∂ ∂
= = =

∂ ∂ ∂
 (38) 

and:  

 ( , ) WT a y T=  (39) 
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where TW is the temperature of the heat-sink at the interface with the slab wall. In the notation 

of the non-dimensional temperature θ the two-dimensional Poisson equation becomes: 

 ( ) ( )2 2

2 2

,
, 0

Q x y
x y

Kx y
θ

⎛ ⎞∂ ∂
+ + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

 (40) 

with the boundary conditions thus converted to: 

 
00
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0 ; ( , ) W

xy y b
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a y

y y x

θ θ θ
θ θ

== =

∂ ∂ ∂
= = = =

∂ ∂ ∂
 (41) 

For a constant θW this allows a solution for the function ( , ) Wx yθ θ−  with a zero boundary 
value at x=a.  
Assumed for this case is a heat source: 

 ( ) ( )0( , ) exp
2 P

P
Q x y y f x

r L

α α= −  (42) 

where α is the absorption coefficient of the laser radiation, rP is the small aperture of the 
radiation beam, a, b and L are the x , y and z dimensions of the slab (a,b<<L). If the slab side 
at y=b reflects the inducing beam then the heat source becomes: 

 ( ) ( ) ( )0

exp
( , ) cosh

P

P b
Q x y b y f x

r L

α α
α

−
⎡ ⎤= −⎣ ⎦  (43) 

The formal solution to the equation set 40 – 41 is: 

 ( ) ( ) ( )
0 0

1
, , , , ,

a b

Wx y Q G x y d d
K

θ θ ξ η ξ η ξ η= + ∫ ∫  (44) 

where the Green’s function construction is stipulated by solving the homogeneous Eq. 40, or 
the Laplace equation, by satisfying the boundary conditions and by its holding throughout 
the domain. It results in: 
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where: 

 1
;

2
l m

l
p q m

b a

π π ⎛ ⎞= = +⎜ ⎟
⎝ ⎠

 (46) 

To present a complete solution one still needs to define the functions f0(x) used in Eq. 42. Let 
two cases be considered:  
1. uniform heat source distribution in the x axis where: 

( )0

1 ;       
2 2

0     ;      
2 2

P P

P P

a a
r x r

f x
a a

x r r x

⎧ − ≤ ≤ +⎪⎪= ⎨
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2. Gaussian heat source profile: 

( )
2

0

/2
exp 2

P

x a
f x

r

⎡ ⎤⎛ ⎞−⎢ ⎥= − ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 

Considering case (1), Eq. 44 is integrated to the closed form solution: 
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when no electromagnetic radiation is reflected from slab end, and to: 
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when the electromagnetic radiation is fully reflected from slab end. 
Then for case (2) the solution takes the form: 
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(49) 

where pm is defined in Eq. 46. On inspecting Eqs. 47 and 49 one observes that for a>>rP the 
solution is insensitive to the magnitude of rP.  

3.2 Slab of finite length 

The heat conduction problem in a slab of finite length is three dimensional, covering the 
cases illustrated by  Figure 4(a) and (b), where a slab is held on one side in thermal contact 
with a heat sink and is either side heated (a), or end heated (b). The coordinate system is 
chosen to represent length in z axis and comparable width sizes in x and y axis. The 
governing equation is the Poisson equation in Cartesian coordinates, with respect to all 
three axes as given in Eq. 37. Several configurations of heat inductions are considered:  
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1) side heat induction in the y direction where the source has an oblong spot shape and a 
Gaussian intensity distribution in x, 2) side heat induction with alternating directions of + y 
and –y, and 3) end heat source in the z direction having a circular spot shape and Gaussian 
intensity distribution. Also solved is a case for a heat source additional to that occurring in 
the heating path, which originates from fluorescence and photon trapping in the slab bulk 
and walls. Finally, several cases of slab cooling are considered: 1) contact with heat sink on 
one of the slab sides, 2) contact with heat sink on two of the slab sides, and 3) contact with 
heat sink on all four of the slab sides.  
 

      

                           (a)                                                                               (b) 

Fig. 4. Two parallelepipeds: a) slab attached to a heatsink on one side, with a slender side 

pump and, b) slab attached to heatsink on one side with an end pump 

3.2.1 Side heating 

In this case the crystal is considered three dimensional, in thermal contact with a heat sink 

on one side, thus there are five Neumann and a single Dirichlet type boundary conditions. 

They are expressed as: 
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 (50) 

and: '( , , ) ( , , ) 0Wa y z a y zθ θ θ= − =  
Consequently the Green’s function becomes:  
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where the function Hnm(z,ζ) is: 
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and the coefficients pn, qm and βnm are: 
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π β
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Further, allowing for a non-absorbing cap having thickness of bC on the radiation side the 
heat source is defined as: 
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 (54) 

where LP is the radiation length and the term f0 defines the lateral profile of the source, 
assumed either as flat top or Gaussian: 
1. flat top:   
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 (55) 

2. Gaussian: 
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 (56) 

The formal solution takes the shape: 
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which after substituting the functions given in Eqs. 51 and 54 and carrying out the 
integration becomes: 
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Observe that for rP=a/2 the term ( ) ( )sin cos /2n P np r p a  becomes ( )1 /2
n− , and for L=LP the 

term in the square parenthesis becomes merely tanh nmLβ thus rendering the solution in Eq. 
58 independent of z.  
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Often radiation sources are placed successively on both sides of a slab. In order to solve for 

this case one needs only to add a second source placed on the other side of the slab, whereby 

the governing equation and boundary conditions remain as stated above, however the heat 

source is defined as: 
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where the term f0 is assumed either flat top: 
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The solution to this problem becomes:  
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 (61) 

The complete solution to the slab induced by two sources disposed successively on opposite 

sides of the slab is the combination of Eqs.58 and 61. Note that by this technique one can to 

arbitrarily add additional induction sources on the slab sides arriving at a closed form 

solution for each configuration. Finally, using this solution the temperature is again derived 

via Eq. 6.  

3.2.2 End heating 

Treating the problem of end heat induction is in fact exactly that as the above model for 

side heat induction however with changing the characteristics of the source. The heat 

source is now considered axisymmetrical with a Gaussian power distribution. In end 

heating the temperature is maximized at the slab facet. This surge may be relieved by 

bonding to the entrance facet of the slab a non-heating end-cap segment. Lacking a heat 

source yet being heat conductive contributes to removing heat from the slab facet. In the 

present model it is assumed that the coefficient of thermal conductivity in both materials 

is identical. For this case with the radiator aligned to the slab centerline the heat source 

term is rewritten as: 
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where f0 is given by: 
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Again, the heat source in the slab can be expressed by Eq. 57, which after substituting the 
functions given in Eqs.51 and 54 and carrying out the integration becomes: 
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where: 
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Note that in the above equation the index n, coefficient pn and length a can be replaced by m, 
coefficient qm and length b, respectively. Next, the function F can be further simplified 
considering the values of the coefficients pn and qm as given in Eq. 53 provides the following 
values: 
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 (66) 

It should be mentioned that the F function is a close approximation to a combination of error 
functions of complex arguments as shown in (Abramowitz & Stegun, 1964).  
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3.2.3 Additional case – slab attached to a heat sink on two sides 

Selecting next to carry out the solution for the case of a slab held in thermal contact with a 

heat sink on two adjacent walls, the boundary conditions are specified as: 
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and:  

 ( , , ) ( , , ) WT a y z T x b z T= =  (68) 

Relative to the dimensionless temperature θ the boundary conditions become: 
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and: ( , , ) ( , , ) 0a y z x b zθ θ= =  
The formal solution is given by Eq. 57 with the heat source Q given by Eq. 62. The Green’s 

function is constructed according to that the rules explained in the previous section, thus 

becoming as in Eqs.51 and 52 however with the set of coefficients pn, qm and βnm are 
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 (70) 

Because both walls attached to the heat sink are held at the uniform temperature of TW, the 

solution is identical to that in Eqs.64 and 65 with the difference of the coefficient qm and that 

the summation over m begins at 0.  

3.2.4 Additional case – slab attached to a heat sink on four sides 

In comparison with a slab in contact with a heat sink on two sides a surrounding heat sink 
on four sides is expected to further lower the temperature elevation due to heating. Unlike 
in the case where the slab is held by two sides, where the boundary conditions have four 
Neumann and two Dirichlet type conditions, for this case there are two Neumann and four 
Dirichlet type conditions expressed as: 
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and: (0, , ) ( , , ) ( ,0, ) ( , , ) 0y z a y z x z x b zθ θ θ θ= = = =  
One may approach a solution using symmetry considerations solving in the x and y 

coordinates instead of the domain 0→a and 0→b, respectively, in the domain 0→a/2 and 

0→b/2. Since in this case the heat source Q given by Eq. 62 is slightly modified to conform 
with the symmetry consideration such that the f0 function is expressed as: 
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 (72) 
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In this domain the solution is identical to the case of a slab held by a heat sink on two sides, 
for which the solution is given by Eq. 64 where the Fn function is expressed as: 

 ( ) ( )

( )

2

2

2

02

4

2
0 2

2 2
erf

2

, exp
8

1 cos cosh
2 2

2

P

a

r

P

n P k
n n

n P
n

k

P

a a
e

rr
p r

F p a
kp re

p a
a

k
r

π

⎛ ⎞
−⎜ ⎟

⎝ ⎠

−∞

=

⎧ ⎫
⎛ ⎞⎪ ⎪+⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎪ ⎪⎡ ⎤ ⎪ ⎪⎢ ⎥= − ⎨ ⎬

⎢ ⎥ ⎡ ⎤⎛ ⎞⎪ ⎪⎣ ⎦ × −⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎣ ⎦⎛ ⎞⎪ ⎪+ ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑
 (73) 

Further, the set of coefficients pn, qm and βnm as expressed in Eq. 70. 

3.3 Example for slab 

To calculate the temperature in the slab the following parameters are set: material Yb:YAG, 
square slab side 5 mm, heat source diameter or thickness 2.5 mm, slab lengths 50 mm, heat 
density rate 100 W/cm3 and cryogenic cooling at 77K. 
Assumed in this case is a Yb:YAG slab side having heat induced by a flat top beam, with a 
reflecting opposite wall spaced by a varying width of 5, 10 and 20 mm from the first wall, 

where the slab height is 5 mm, its length is 50 mm and the radiation footprint is 2.5×50 mm. 
The assumed power is P=400 W and the slab is attached to a heat sink held at 77K by its 
wide side. For the three slab widths the vertical and horizontal temperature distributions are 
plotted in  Figure 5(a) and (b). A considerable variation is found for the vertical temperature 
whereas horizontal the temperature remains nearly unchanged. 

4. Concluding remarks 

Closed form solutions to the nonlinear steady-state heat equation in a cylindrical rod, thin 
disk and parallelepiped are presented. Hinging on using Kirchoff’s transformation, this 
solution is applicable to any material in which the coefficient of thermal conductivity is 
integrable in temperature. In turn, these solutions enable solving further the equation of 
elasticity and that of a propagating optical beam in an inhomogeneous medium where the 
refractive index is radially modulated.  
Exemplary calculations are made for a Yb:YAG crystal with temperature spanning the range 
of 77K – 770K. It is shown that under the condition of large heating loads, say above 200 
W/cm3, predicting the temperature according to a linear approximation underestimates the 
temperature. Thus, in order to obtain accurate results one must use the nonlinear solution 
arrived at in this study. The predicted temperatures escalate rapidly with thermal loading 
reaching 120 K and almost 200 K on the optical path for a respective heating by 400 and 800 
W, in a cryogenically cooled rod. If the cooling level is raised to room temperature, then by 
heating the rod at 400 W, the temperature at the center will exceed 700K. 
Under the heat induction condition of heating at 500 W and cryogenic cooling the maximum 
temperature reached in a thin disk, having a thickness of ¼ mm, is less than 90K provided it 
has a cap at least seven times the disk thickness. Without the cap the maximum would 
exceed 300K. For a slab pumped with identical power and cryogenically cooled on one side 
the maximal temperature varies between 125K and 500K, depending on the slab width 
spanning the range from 20 to 5 mm, respectively.  

www.intechopen.com



 
Heat Conduction in Nonlinear Media   

 

687 

 

(a) 

 

(b) 

Fig. 5. Plot of characteristics in a slab: a) vertical temperature distribution, and b) horizontal 
temperature distribution 
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