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1. Introduction 

Nowadays, the attempts in the textile and clothing industry have moved towards more 
innovative and high quality products in order to differentiate themselves and be more 
competitive. The new demand for innovative textiles is increasingly oriented to match 
material innovation, new technologies and fashion. The new products are not only different 
for their lines, patterns and volumes but also for what they can do. Recently, microcapsules 
have been applied to many functional and technical textiles. Examples of this include 
fragrances, aromatic deodorants, cosmetics, insect repellents, antibiotics, polychromic, drug 
delivery for medical textiles and thermo-regulating systems. This kind of fabrics, that 
introduces new functionalities without affecting the look and feel of the textile, is commonly 
denominated as smart textiles. 
Microencapsulated phase change materials (PCM) can be incorporated into textile structures 
to produce fabrics of enhanced thermal properties. A thermo-regulating fabric is an intelligent 
textile that has the property of offering suitable response to changes in external temperature 
changes or to external and environmental stimuli. The level of thermal comfort depends on 
the heat exchange between the human body and the environment that surrounds it. 
Microcapsule production may be achieved by means of physical and chemical techniques. 
The use of some techniques has been limited to the high cost of processing, regulatory 
affairs, and the use of organic solvents, which are concern for health and the environment. 
In this way, a method based on a suspension like polymerization process for the encapsulation 
of phase change materials has been selected. This PCM encapsulation method is simply, 
inexpensive and technically easy. 
Suspension like polymerization involves the dispersion of the monomer or monomers, 
mainly as a liquid in small droplets, into an agitated stabilizing medium consisting of water 
containing small amounts of suspension agents and without using aqueous phase inhibitors 
of secondary nucleation or modifiers. The initiator is dissolved in the monomer-PCM 
mixture and PCM material does not take part on the polymerization kinetic. In the proper 
conditions the polymer reacts mainly in the interface of the drop forming a shell around the 
PCM core since this interface is the only locus of polymerization. However, not all the 
recipes and conditions for suspension polymerization favour the formation of the polymer 
at the PCM/water interface all around the drop as desired and microparticles without 
complete phase separation into capsules are obtained. 
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Well-known PCM are linear chain hydrocarbons known as paraffin waxes (or n-alkanes), 
hydrated salts, polyethylene glycols (PEGs), fatty acids and mixture or eutectics of organic 
and non-organic compounds. PCM materials absorb energy during the heating process as 
phase change takes place and release energy to the environment in the phase change range 
during a reverse cooling process. 
The required properties for a phase change materials depend on their specific application in 
textile fields. A wide spectrum of phase change materials are available with different heat 
storage capacity and phase change temperature. Different types of commercial PCMs can be 
encapsulated by means of suspension polymerization process. Rubitherm® RT20, 
Rubitherm® RT27, Rubitherm® RT31, Petrepar® n-C14 and Petrepar® n-C-13 have 
demonstrate their capability to be encapsulated and their thermal abilities to absorb and 
release energy. Their physical and chemical properties make them very attractive for 
thermal storage.  
Thermal properties, air permeability, moisture vapour permeability and moisture regain of 
materials also influence the heat balance of the body and, consequently, affect clothing 
comfort (Ren & Ruckman, 2004). The incorporation of PCM microcapsules to textiles can 
affect other comfort-related properties and hand of the materials adversely, especially when 
the topical application of microcapsules results in drastic changes in the surface 
characteristics of materials. The extent of change in these properties depends on the loading 
amount of PCM microcapsules (Shin et al., 2005).  
Several methods of incorporating PCM microcapsules into a fibrous structure have been 
developed. The microcapsules can be applied by stamping works, exhaustion dyeing, 
impregnation, spraying and coating or by direct incorporation in the fibre without highly 
modifying its touch and colour (Monllor et al., 2009; Dixit & Goal, 2007; Rodrigues et al., 
2009). In previous applications of PCM technology in the textile industry, for garments and 
home furnishing products, microencapsulated PCM were incorporated into acrylic fibers 
(Bryant & Colvin, 1988) or polyurethane foams (Colvin & Bryant, 1996) or were embedded 
into a coating compound and topically applied to a fabric (Bryant & Colvin, 1994). Shin et 
al., (2005) incorporated melamine-formaldehyde microcapsules containing eicosane on 
polyester knit fabrics by means of a pad dry cure method with a polyurethane binder. 
Mengjin et al., (2008) developed a new kind of thermo-regulating fiber based on PVA and 
paraffin. Furthermore, Onder et al., (2008) studied the microencapsulation of three types of 
paraffin waxes by complex coacervation to improve thermal performances of woven fabrics. 
Recently, Koo et al. (2009) have attempted to demonstrate the application of PCM 
microcapsules on waterproof nylon fabrics and to enhance thermal insulation effect with 
ceramic materials (SiC) by using a dual coating method. 
Binders play a crucial role in microcapsule coating formulation for various textile materials, 
as they are required to fix microcapsules on textile supports permanently. To a large extend, 
binders determine the quality, durability and washability of textile materials with 
microencapsulated ingredients. Some of the most frequently used binders in textile are 
water-soluble polymers, such as starch and modified starches, carboxymethyl cellulose; 
synthetic latexes, such as styrene-butadiene, polyvinylacetate or acrylate latexes; and 
aminoaldehyde resins (Boh & Knez, 2006).  
In our previous work, the fixation of PCM microcapsules containing paraffin with a melting 
point around 40ºC, into a cotton textile substrate by means of a coating technique were 
carried out. Furthermore, the influence of different coating formulations and mass ratio of 
microcapsules to coating formulation were evaluated in order to obtain an adequate textile 
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with thermo-regulating properties (Sánchez et al., 2010). The coating fabric with 35 wt.% of 
microcapsules added related to commercial coating binder (WST SUPERMOR®) showed a 
energy storage capacity of 7.6 J g−1, a high durability and an adequate stability after 
washing, rub fastness and ironing treatments. A difference of 8.8°C for 6 s was observed for 
textiles with thermo-regulating properties in comparison with a coated one without 
microcapsules. The different application areas of textiles with thermo-regulating properties 
imply the fixation to very different substrates. In this sense, there are few references in the 
literature studying the influence of the kind of textile on the fixation of microcapsules (Koo 
et al., 2009). In addition, the PCM microcapsules incorporation could degrade the original 
functionalities of the textile such as soft touch, vapor or moisture permeability and wearing 
comfort. 
The aim of this work was to investigate the production of textiles with thermo-regulating 
properties by using PCM microcapsules and a coating technique. The influence of the type 
of used PCM on the heat capacity of microcapsules, the particle size distribution (PSD) and 
the microcapsules yield of each experiment was studied. On the other hand, different type of 
textile substrates depending on the field of their textile applications (apparel, blankets, 
insulation, protective clothing) were evaluated. Furthermore, a study of thermoregulatory 
effect of the coating fabrics produced was carried out using an infrared thermography 
camera. Thermal properties of textile samples were examined by Differential Scanning 
Calorimetry (DSC). Furthermore, Environmental Scanning Electron Microscopy (ESEM) and 
Optical Microscopy (OM) techniques were used to check the presence, surface distribution, 
preferred join position and to analyse the structure of microcapsules into the textile. 

2. Experimental 

2.1. Microcapsules synthesis  

Styrene (99 wt.%) of reagent grade (Merck Chemical) previously purified by washing with 
sodium hydroxide and dried with calcium chloride was used as the monomer. Benzoyl 
peroxide (97 wt.%) was used as initiator (Fluka Chemical). PRS® paraffin wax, Rubitherm® 
RT20, Rubitherm® RT27, Rubitherm® RT31, Petrepar® n-C14 and Petrepar® n-C-13 were 
used as core materials. Polyvinylpyrrolidone (K30, Mw 40,000 gmol-1) of reagent grade 
(Fluka Chemical) was used as stabilizer and methanol to pour the samples. All these 
reagents were used as received. Water was purified by distillation followed by deionization 
using ion-exchange resins. Nitrogen was of high-purity grade (99.999%).  
A suspension like polymerization process was used for the microcapsules synthesis. A 
tubular type Shirasu porous glass membrane was used for a better control of microparticle 
size. Details of the synthesis process were previously described elsewhere (Sánchez et al., 
2008b).   

2.2 Preparation of textiles with thermo-regulating properties  

Microcapsules were fixed into seven fabrics by means of a coating technique, using a 
motorized film applicator from Elcometer model 4340 according with ASTM D-823C (ASTM 
D-823-C, 1997). WST SUPERMOR® (supplied by Minerva Color Ltd.) were used as 
commercial coating binder. In a previous study (Sánchez et al., 2010), this binder was 
selected due to allow an efficient fixation of the PCM microcapsules on the fabrics. Every 
sample had 200 mm of wide and 290 mm of length due to requirements of the motorized 
film applicator. 
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The coating formulation consisted of WST SUPERMOR® commercial binder and 

Rubitherm® RT31 microcapsules (35 wt. % of the coating mixture).  

The textile substrate was set on the motorized film applicator surface assuring the fabric 

with clips. In this study, the thickness selection of the coating layer was 0.1 mm to obtain a 

high thermal storage. The position of the motorized film applicator and the selection 

thickness was carried out manually. A dragging speed of 5 mm s-1 was chosen to allow a 

homogeneous coating along the film applicator.  

Finally, the coated fabric was cured at 95 ºC for 11 minutes. 

2.3 Characterization 
2.3.1 Differential Scanning Calorimetry (DSC) 

Measurements of melting point and latent heat storage capacities of different materials were 

performed in a differential scanning calorimetry model DSC Q100 of TA Instruments 

equipped with a refrigerated cooling system and nitrogen as the purge gas. Measurements 

were carried out in the temperature range from -30ºC to 80ºC with heating and cooling rate 

of 10 ºCmin-1.  

Various samples of each experiment were analyzed at least three times and the average 

value was recorded. DSC analyses of coating textiles from random areas were done. 

Furthermore, the encapsulation ratio of the different PCM in the microcapsule was 

calculated with the following equation based on enthalpy values:  
 

 % PCM content by weight = (ΔHm / ΔHpcm) x 100% (1) 
 

where ΔHm is the enthalpy for the analysed microcapsules (Jg-1) and ΔHpcm is the enthalpy 

of pure PCM. 

In order to determine the thermal stability of the reversible phenomena of phase change, the 

coated textiles were subjected to repeated cycles of melting and crystallization. 

2.3.2 Environmental scanning electron microscopy (ESEM) 

ESEM was used to analyze the morphological structure of the microcapsules and the 

fixation and integrity of PCM microcapsules into the coating textile substrates. Textile 

samples were observed by using XL30 (LFD) ESEM with a wolfram filament operating at a 

working potential of 20 kV.  

2.3.3 Calculation of number-average diameter and volume-average diameter 

Particle size and particle size distribution (PSD) of microcapsules were determined on a 

Malvern Mastersizer Hydro 2000 SM light scattering apparatus with dilute dispersions of 

the particles in methanol. 

2.3.4 Infrared thermography 

The temperature distributions of the coated textiles with thermo-regulating properties were 

evaluated by means of an infrared and visible camera Fluke Ti25. This dispositive allows to 

obtain thermal and visual images in the range of temperatures from -20ºC to 250ºC with a 

precision of ±2 ºC.  The screen was observed from a distance of 30 cm at 24ºC. Images were 

downloaded using Fluke SmartViewTM software for analysis. The coated fabrics were pre-

heated at 60ºC, time considered as zero, and then cooled to room temperature.  
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Thermal human comfort in summer conditions was tested, recording images from 25ºC to 
outside temperature (35ºC), comparing a reference textile with a prototype textile with 
thermo-regulating properties in contact with the body (shoulders in this specific case). 

3. Results 

3.1 Microencapsulation of different type of phase change materials (PCM)  

The required properties for a phase change materials depend on their specific application in 

textile fields. A wide spectrum of phase change material is available with different heat 

storage capacity and phase change temperature. In this study different type of commercial 

PCM were assayed in order to know what PCM materials are suitable to be encapsulated by 

means of suspension polymerization. Thus, Rubitherm® RT20, Rubitherm® RT27, 

Rubitherm® RT31, Petrepar® n-C14 and Petrepar® n-C-13 were assayed due to their physical 

and chemical properties are very attractive for thermal storage (Table 1). All of them are 

saturated hydrocarbons 

 

PCM 
Molecular 

weight 
(gmol-1) 

Latent heat
of fusion 

(Jg-1) 

Melting 
temperature 

(ºC) 

Viscosity 
(mm2s-1) 
at 98ºC 

PRS® paraffin wax 168-240 206.8 40-45 2.43 

Rubitherm® RT31 268 199.3 31 2.07 

Rubitherm® RT27 258 214.6 28 1.64 

Rubitherm® RT20 244 177.7 22 1.52 

Petrepar®   n-C14 198.4 225.0 3-7 0.99 

Petrepar®   n-C13 184.4 134.4 (-7)-(-5) 0.88 

Table 1. Properties of different types of PCMs investigated 

Figure 1 shows the particle size distributions (PSDs) in volume (Figure 1a) and in number 

(Figure 1b) of microcapsules obtained after the polymerization process using these PCM 

materials. It can be seen from Figure 1a that Petrepar® n-C14 and n-C13 exhibit bimodal 

PSDs with particles sizes smaller than 115 μm. However, PRS® paraffin wax, Rubitherm® 

RT31, RT27 and RT20 shows unimodal PSDs ranging in the interval between 149 to 251 μm. 

In all experiments a big difference between the average particle size in volume and in 

number was observed due to the heterogeneous sizes of obtained microcapsules. This 

behaviour was reported in previous works (Sánchez et al., 2007; Sánchez et al., 2008a; 

Sánchez et al., 2008b).  

Table 2 reports average diameters (dp0.5) in volume and in number, storage energy 

capacities and amount of PCM encapsulated of microcapsules produced using different 

PCMs. The mean diameter in number of the microcapsules increases as described: 

Rubitherm® RT27>PRS® paraffin wax>Rubitherm® RT31> Petrepar® C-14>Petrepar®  

C-13>Rubitherm® RT20. However, the average diameter in volume increases in the following 

way: Rubitherm® RT27>Rubitherm® RT31>Rubitherm® RT20>PRS® paraffin wax>Petrepar® 

n-C14>Petrepar® n-C13. Therefore, the average diameter of the microcapsules depends on 
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phase change materials encapsulated. For PRS® paraffin wax, Petrepar® C-14 and Petrepar® 

C-13, the average diameter of microcapsules enlarged with increasing the viscosity. This fact 

could be due to the polymerization system is subject to nonnegliglible effects of the viscosity 

ratio (dispersed phase/continuous phase viscosity). According to Hamielec & Tobita, (1992) 

in suspension polymerization an increase of the forming droplets viscosity and the density 

difference between the phases results in a tendency towards settling. However, this trend 

was not observed for Rubitherm materials.  
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Fig. 1. Particle size distribution for microcapsules obtained using different PCM: (a) in 
volume and (b) in number 

www.intechopen.com



 
Effective Method of Microcapsules Production for Smart Fabrics 

 

655 

 

6001,1001,6002,1002,6003,1003,600

Wavenumber (cm-1)

T
ra

n
sm

it
ta

n
ce

 
 
PRS ® paraffin wax 
 
 
Petrepar® n-C14 

 
 
Petrepar® n-C13 
 
 
 

 

(a) 

 

Rubitherm ® RT27 

Rubitherm ® RT31 
 

Rubitherm ® RT20 

6001,1001,6002,1002,6003,1003,600

Wavenumber (cm -1)

T
ra

n
sm

it
ta

n
ce

 

(b) 

Fig. 2. FTIR spectra of: (a) PRS® paraffin wax, Petrepar® C-14 and Petrepar® C-13 and (b) 

Rubitherm® RT27, Rubitherm® RT31 and Rubitherm® RT20 
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This behaviour can be attributed to chemical nature of these commercial PCMs according 

to the FTIR spectra of the different PCMs obtained (Figure 2). In the spectrums of the 

PRS® paraffin wax, Petrepar® C-14 and Petrepar® C-13 materials (Figure 2b), in contrast to 

that of the Rubitherm products (Figure 2a), medium intensity bands in the 980-1,240 cm-1 

were observed. These bands indicate the presence of ethyl and propyl groups branches. 

Therefore, PRS® paraffin wax, Petrepar® C-14 and Petrepar® C-13 are not straight chain 

alkanes. 
 

PCM 
dpv0.5 

(μm)1 
dpn0.5 

(μm)2 
Thermal storage energy 

(Jg-1) 
PCM encapsulated  

(wt. %) 

PRS® paraffin wax 149.0 4.53 104.7 50.1 

Rubitherm® RT31 203.9 4.01 98.7 49.5 

Rubitherm® RT27 250.9 6.02 100.2 46.7 

Rubitherm® RT20 180.1 2.86 68.3 38.5 

Petrepar®  n-C14 110.7 3.97 79.0 35.1 

Petrepar®  n-C13 93.9 3.83 58.6 43.6 

1dpv0.5 represents 50% microcapsule particles whose mean volumetric diameter is less than this value. 
2dpn0.5 represents 50% microcapsule particles whose mean numeric diameter is less than this value. 

Table 2. Average diameters and thermal properties of microcapsules containing different 
PCM 

DSC measurements confirm that all PCMs studied have been successfully encapsulated 

inside the polystyrene microcapsules (Table 2). PRS® paraffin wax, Rubitherm® RT27 and 

Rubitherm® RT31 allow to obtain microcapsules with energy storage capacities higher than 

98 Jg-1 and approximately 50 wt.% of encapsulation efficiency.  

Figure 3 shows the environmental scanning electron microscopy (ESEM) micrographs of 

microcapsules prepared with different phase change materials. It can be seen from Figure 3 

that microcapsules prepared with PRS® paraffin wax, Petrepar® C-14 and Petrepar® C-13 

and Rubitherm® RT27 and Rubitherm® RT31 are regularly spherical shape and smooth 

surface. However, the particles obtained with Rubitherm® RT20 have are irregular with 

rough surface, which can be attribute to the polarity of this product (Sánchez et al., 2007). 

Although microcapsules containing PRS® paraffin wax, Rubitherm® RT27 and Rubitherm® 

RT31 have similar average thermal storage energies and regular spherical microcapsules 

with smooth surface. The most convenient melting temperature for an effective utilization of 

this kind of materials in textiles field was obtained using Rubitherm® RT31. Obviously, its 

phase change temperature (31ºC) is comfortable for the human body, and a higher efficiency 

of encapsulation (49.5%) than the others. 

3.2 Influence of the kind of textile substrate on the production of smart fabric  

Seven fabrics substrates for different textile applications using Rubitherm® RT31 as core 

material were used. Their description and properties are shown in Table 3. Samples were 

named A to G, according to the textile substrates employed. 
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Fig. 3. ESEM micrographs of microcapsules containing: (a) Petrepar® C-13, (b) Petrepar®  

C-14, (c) Rubitherm® RT20, (d) Rubitherm® RT27, (e) Rubitherm® RT31 and (f) PRS® paraffin 

wax 

Thermal performance of different coated textiles with thermo-regulating properties with 35 

wt. % of PCM microcapsules as a function of the kind of textile substrate was evaluated by 

DSC analyses (Figure 4). It can be seen that all treated textile substrates allows to obtain 

thermo-regulating properties with acceptable latent heat storage capacities. The same result 

was observed by other authors (Salaün et al., 2010; Izzo Renzi et al., 2010). On the other 
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hand, no significant differences on the phase change transition temperature of coated 

samples and the Rubitherm® RT31 microcapsules were observed. It was found that the 

melting transition points in the coated fabrics from A to G changed 0.72, 0.01, 0.13, 0.37, 0.13, 

-0.35 and 0.01 ºC, respectively. This indicated that the kind of textile substrate have not 

significant effect on the microcapsules melting effect. In this sense, Koo et al., (2009) 

observed changes up to 0.58 ºC by using a wet coating method. 

 

Sample Composition 
Area 

Weight
(gm-2) 

Thickness
(mm) 

Uses 

A 
82% Polyester 

18% Polyurethane
296 1.50 

Soft-Shell fabric with an 
intermediate polyurethane 

membrane for cold protection 

B 
11% Elastane 

35% Polyamide 
54% Polyester 

270 1.34 
Soft-Shell fabric with an 

intermediate polyurethane 
membrane for cold protection 

C 100% Polyamide 202 0.48 Green fabric for military uses 

D 
100% Polyester 

coating with 
100% PVC 

121 0.27 
Yellow fabric for garments of 

high visibility 

E 
40% Polyester 

60% Cotton 
185 0.35 

Openwork fabric in blue tone for 
medical garments uses 

F 100% Polyamide 328 0.61 
Military printed fabric for 

military uses 

G 100% Cotton 158 0.30 
Fabric used for upholstery, 

sheets, curtains and garments 

Table 3. Textile substrates characterization and their textile uses 

In our previous paper, textile substrate G (100% cotton) was used to obtain the textiles with 

thermo-regulating properties (Sánchez et al., 2010). In the present work the employed 

experimental conditions were the same except for the thickness of the coating layer. A 

thermal storage capacity of 14.4 Jg-1 was achieved using cotton textile substrate and a 

coating thickness of 0.1 mm. Comparing this result with the value of 7.6 Jg-1 obtained in the 

previous work with 0.01 mm of thickness, it is observed that the latent heat storage capacity 

of the treated fabric increased as the thickness of the coating layer increased. 

Table 4 summarizes the latent heat storage capacity, the necessary time to decrease the 

temperature of coated textiles from 33 to 25 ºC, the latent heat accumulated in 1 m2 of fabric 

substrate associated with each sample and the amount of PCM microcapsules added on 

each textile substrate. There are not important differences in the latent heat storage capacity 

and the amount of retained PCM microcapsules depending on the kind of used substrate 

textile. Coated textiles A and B exhibit the highest latent heat and a long thermoregulatory 

effect, due to the soft shell characteristics and the large thickness of these fabrics that allow 

to accommodate a high amount of PCM microcapsules and improve the resistance of heat 

transfer, respectively. Sample D with 16.3 Jg-1 shows a short time of the heat release, this 

may be related to the small thickness of the used textile substrate (0.27 mm). For samples E 
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and G the latent heat storage capacity, the amount of PCM microcapsules added on the 

textiles and the thickness of these textiles are similar, thus the duration of the thermal buffer 

effect was quite similar. Furthermore, the lowest latent heat storage capacity for samples 

having polyamide as textile substrate (samples F and C) suggests that this composition does 

not allow the incorporation of a large amount of PCM microcapsules into the fabric. 

Nevertheless, small differences of latent heat storage capacity were obtained. According to 

these results, the heat transfer through fabric depends on the quantity of PCM 

microcapsules added on the coating binder but also the textile composition and structure. 

Consequently, numerous factors must be considered in the evaluation of the heat transfer 

properties of fabrics (Koo et al., 2009). 
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Fig. 4. DSC thermograms of the different coated textiles with 35 wt.% of microcapsules 
containing Rubitherm® RT31 

Reliability tests to study the thermal performance of a textile with thermo-regulating 

properties (sample A) during thermal cycling were carried out using DSC analysis (Figure 

5). It can be observed that the latent heat storage of the sample does not change when 

heating/cooling cycle is repeated (less than 2 % of latent heat variation). Furthermore, 

melting and freezing transition points of the coated fabrics shift to higher temperature than 

microcapsules containing Rubitherm® RT31. This fact could be attributed to the influence of 

the polymeric binder on the thermal response of textile (Salaün et al., 2010). 

Therefore, these results demonstrated that textile substrates with different characteristics 

and applications are suitable for application of the microcapsules by means of a coating 

method. Similar results of latent heat storage capacity using natural leather and 40 wt.% of 

PCM microcapsules were obtained by Izzo Renzi et al., (2010). 
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Sample ΔH (Jg-1) 

Duration of 
the heat 

release from 
33 to 25ºC (s) 

Latent heat 
accumulated in 1 

m2 of fabric 
substrate 

(kJm-2) 

PCM 
microcapsules 
added on the 

textile        
(wt. %) 

A 19.4 79 5.7 25.6 

B 18.1 62 4.9 23.9 

C 13.5 65 2.7 17.8 

D 16.3 28 4.4 21.5 

E 14.3 42 2.6 18.9 

F 11.1 67 3.6 14.7 

G 14.4 48 2.3 19.0 

Table 4.  Thermal properties of the thermo-regulating textiles 
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Fig. 5. DSC curves of a textile with thermo-regulating properties (sample A), triple scan 

Figure 6 shows ESEM micrographs of the surface and the cross-sectional morphology of a 

representatively sample (coated textile A) in which PCM microcapsules were used as the 

thermal insulation material. It can be seen, the successful fixation between textile substrate 

and the microcapsules containing Rubitherm® RT31. The PCM microcapsules in the treated 
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samples were mainly located at the spaces between fibers and the fiber surface. As shown in 

Figure 6b, the textile substrate A is remarkable thick leads to add a large amount of PCM 

microcapsules on the textile substrate according to DSC analysis obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 
 

(b) 

 

Fig. 6. ESEM micrographs of a thermo-regulating textile (sample A): (a) surface and (b) cross 
section 

During the last years several testing methods have been developed for measuring the 

temperature-regulating ability of PCM in fabrics (Bryant & Colvin, 1994; Mengjin et al., 

2008; Onder et al., 2008; Koo et al., 2009). In this work, the efficiency of the active thermal 

insulation effect of the textiles with incorporated microcapsules has been evaluated using 

thermal vision camera. Figure 7 shows a comparison of the maxima temperature reached on 

the surface temperature distribution for the seven samples with the time. In this study, the 

coated textiles with and without PCM microcapsules were cooled from 60ºC to room 

temperature. 

In all the cases, Rubitherm® RT31 buffer effect is observed. Therefore, during the cooling 
process there is a temperature range when the temperature of coated textile with PCM 
microcapsules is higher than the non-coated one. This indicates that the stored energy of 
PCM is transferred to the environment in the phase change range during the reverse cooling 
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Fig. 7. Temperature distribution as a function of time for different coated textiles by thermal 
vision camera: ----- Textile without PCM microcapsules        Textile with PCM microcapsules 
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process (Salaün et al., 2010). As it was previously mentioned, coated textile D exhibits the 

highest rate of temperature decrease and samples A and B have a significant effect on the 

thermal insulation. 

With the aim to test the thermal comfort in summer conditions, the effect of a reference 

textile and a prototype of a textile with thermo-regulating properties in contact with the 

body (shoulders in this specific case) was visualized by IR thermography images (Figure 8). 

The zero time was taken when the individual went out to the building, from 25 ºC (inside 

temperature) to 35 ºC (outside temperature).  
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Fig. 8. Infrared camera images of coated textile A with and without PCM microcapsules at 
different times 

www.intechopen.com



 
Developments in Heat Transfer 

 

664 

Thermal imagines show that textiles with thermo-regulating properties undergoes a heating 

effect less marked than the textile without PCM microcapsules, as a consequence of the 

melting process of encapsulated Rubitherm® RT31. Thermoregulatory effect observed for 

textile with PCM microcapsules with respect to the normal fabric was 1, 0.9, 0.8 and 0.7 ºC 

after 10, 30, 45 and 75 s. 

Concluding, the thermal performance of textiles with thermo-regulating properties depends 

on the energy storage capacity, PCM microcapsules content, textile substrate structure and 

the correspondence between the phase change temperature and the application temperature 

range. Consequently, thermal effects can be improved according to the final application 

request using an appropriate combination of all these parameters. 

4. Conclusion 

A method based on a suspension free radical polymerization process has been used for the 

encapsulation. Different phase change materials (PRS® paraffin wax, Petrepar® C-14 and 

Petrepar® C-13 and Rubitherm® RT27 and Rubitherm® RT31) can be encapsulated by this 

method and form a core-shell structure. Although microcapsules containing PRS® paraffin 

wax, Rubitherm® RT27 and Rubitherm® RT31 have similar average thermal storage energies 

and regular spherical microcapsules with smooth surface. The most convenient melting 

temperature for an effective utilization of this kind of materials in textiles field was obtained 

using Rubitherm® RT31. Its phase change temperature (31ºC) is comfortable for the human 

body and it has a higher efficiency of encapsulation (49.5%) than the others. 

Fabrics with thermo-regulating properties had heat storage capacities of 11.1-19.4 Jg-1, which 

depended on the textile substrate. The DSC and the thermal temperature distribution 

analyses indicated that all the coated textiles with 35 wt. % of microcapsules showed a high 

latent heat storage capacities and significant thermoregulatory effect. Furthermore, DSC 

curves demonstrated that the thermal energy storage of the textiles with thermo-regulating 

properties does not change when heating/cooling cycle was repeated. A thermoregulatory 

effect in contact with the body of 0.9 ºC after 45 s was observed by means of IR thermography 

images. 
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