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1. Introduction 

The mixed convection flow finds applications in several industrial and technical processes 
such as nuclear reactors cooled during emergency shutdown, solar central receivers exposed 
to winds, electronic devices cooled by fans and heat exchanges placed in a low-velocity 
environment. The mixed convection flow becomes important when the buoyancy forces 
increase due to the temperature difference between the wall and the free stream. The mixed 
convection flow in the stagnation region of a vertical plate has been investigated by 
Ramachandra et al. [16]. 
When there is an impulsive change in the velocity field the inviscid flow is developed 
instantaneously, but the flow in the viscous layer near the wall is developed slowly which 
becomes fully developed steady flow after a while. For small period the flow is dominated 
by the viscous forces and the unsteady acceleration, but for runtime it is dominated by the 
viscous forces, the pressure gradient and the convective acceleration. The unsteady mixed 
convection flow in the stagnation region of a heated vertical plate due to impulsive motion 
has been studied by Schadri et al. [17]. The boundary layer flow development of a viscous 
fluid on a semi-infinite flat plate due to impulsive motion of the free stream have been 
investigated by Hall [5], Dennis [3] and Watkins [22]. The corresponding problem over a 
wedge has been studied by Simth [18], Nanbu [11] and Williams & Rhyne [23]. 
The problem of unsteady free convection flow in the stagnation-point region of a rotating 
sphere embedded in a porous medium has been analyzed by Hassanien et al. [7]. The 
unsteady flow and heat transfer of a viscous fluid in the stagnation region of a three-
dimensional body embedded in a porous medium was investigated by Hassanien et al. [8]. 
The problem of thermal radiation and variable viscosity effects on unsteady mixed 
convection flow in the stagnation region on a vertical surface embedded in a porous 
medium with surface heat flux has been studied by Al-Arabi and Hassanien [6]. 

Motivated by all of the above referenced work and the significant possible applications of 
porous media in industries, it is of interest in this paper to consider the unsteady mixed 
convection flow in the region of a heated vertical plate embedded in a porous medium 
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having porosity distribution in the presence of the thermal dispersion with the effect of the 
buoyancy force. The unsteadiness in the flow field is caused by impulsively creating motion 
in the free stream and at the same time by suddenly increase in the surface temperature. The 
partial differential equations governing the flow and the heat transfer have been solved 
numerically using the finite difference scheme by Pereyra [14]. Particular cases of the 
present results are compared with previously numerical work by Ramachandra et al. [16] 
and Scshadri et al. [17]. The problem is formulated in such way that it represented by 
Rayleigh type of equation at t=0 and for t → ∞  it represented by type of Hemennz equation. 

2. Mathematical analysis 

Let us consider a semi-infinite vertical plate embedded in a variable porosity porous 
medium with thermal dispersion effect and uniform temperature T∞. At t = 0.0 the ambient 
fluid is impulsively moved with a velocity Ue and at the same time the surface temperature 
is suddenly raised. Figure (1) shows a flow field over a heated vertical surface where the 
upper half of the field is assisted by the buoyancy force, but the lower part is opposed by the 
buoyancy force. The surface of the plate is assumed to have an arbitrary temperature. All the 
physical properties of the fluid are assumed to be constant except the density variation in 
the buoyancy force term. Both the fluid and the porous medium are assumed to be in local 
thermal equilibrium. Under above assumptions along with Boussinesq approximation, the 
unsteady laminar boundary layer equations governing the mixed convection flow are given 
by Vafai and Tien [20]. 
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Fig. 1. The flow model and the coordinate system 
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The initial conditions are given by 

 ( , ) ( , ) 0, ( , )u x y v x y T x y T∞= = = , for 0.t <  (4) 

The boundary conditions for t ≥ 0 are given by 

 
( ,0) ( ,0) 0, ( , ) , 0,

( , ) , ( ,0) ( ) , 0, 0.

e

n
w

u x v x u x U ax a

T x T T x T x bx b n∞

= = ∞ = = >

∞ = = = > ≥
 (5) 

The indices n = 0 and n = 1.0 correspond the constant surface temperature and the linear 
surface temperature respectively. The variable x is measured along the surface and y is 
measured normal to it. The fluid velocity u, v is in x and y direction respectively as shown in 
figure (1). The fluid density, the fluid dynamical viscosity, the gravitational fluid acceleration, 
the thermal expansion coefficient and the temperature will be denoted by , , , ,g Tρ μ β  
respectively. K(y) is the porous medium permeability, cα  is the effective thermal diffusivity 
and ε  is the porous medium porosity. Equations (1) through (3) are supplemented by 
constitutive equations for the variations of the porosity permeability and thermal 
conductivity of the porous medium. It has been shown by Vafai [21] that the results 
obtained experimentally by Nithiarasu et al. [12 ] in their study on void fraction distribution 
in packed beds gives the functional dependence of the porosity on the normal distance from 
the boundary and so the porosity can be represented by the exponential form 

 0( exp ( / ))1 b cy dε ε= + −  (6) 

where 0ε  is the free-stream porosity, d is the particle diameter and b, c are empirical 
constants that depend on the ratio of the bed to particle diameter. The values for 0ε , b and c 
chosen to be 0.38, 1, and 2 respectively. These values were found to give good approximation 
to the variable porosity data given by Nithiarasu et al. [12] for a particle diameter d=5 mm. 
The type of decay of porosity as the normal distance increases given by Equation (4) is well 
established and has been used extensively in studies on flow in porous media with variable 
porosity. It is also established that k(y) varies with the porosity as follows 

 
2 3

2
( )

150(1 )

d
K y

ε
ε

=
−

 (7) 

The effective thermal conductivity of the porous medium is given by Al-Arabi and Hassanien 
[6]  

 dc m uα α γ= +  (8) 

where mα  and γ  are the molecular thermal diffusivity and mechanical dispersion coefficients, 
respectively. Equations (1) through (3) can be transformed into a set of ordinary differential 
equations by using the following transformations given by Williams and Rhyne [23]. 

1/2 1/2( / ) , 1 exp( *),a y tη ν ξ ξ−= = − −  

* , 0, ( , , ) ( , ),t at a u x y t ax f η ξ′= > =  

1/2 1/2( , , ) ( ) ( , ),v x y t a fν ξ η ξ= −  
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( , , ) ( ( ) ) ( , ),wT x y t T T x T θ η ξ∞ ∞= + −  

2Pr / , /Re ,x xGrν α λ= =  

 3 2 2( ) / , Re / .x xGr g T T x axβ ν ν∞= − =  (9) 

By using the transformations (9), equations (2-5) may be transformed to 

 

2
1 2 2

2

150(1 )
2 (1 ) (1 ) (1 )

(1 ) (1 ) ,

f f ff f Da f

f
f

ξ ξ εη ξ
ε ε ε

ξ λξεθ εξ ξ
ε ξ

− −′′′ ′′ ′′ ′ ′+ − + + − − −

∂′− − + = −
∂

 (10) 

 1 ' 1Pr ( ' ') 2 (1 ) ( ) (1 ) ,Ds f f nf
θθ θ η ξ θ ξ θ θ ξ ξ
ξ

− − ′∂′′ ′ ′ ′+ + + − + − = −
∂

 (11) 

where 
2

Da
ad

ν
=  is the Darcian parameter , d

Ds
a

γ
=  is the dispersion parameter , 0λ >  for 

the buoyancy assisting flow and 0λ <  for the buoyancy opposing flow. The transformed 

form of the variable porosity function becomes 

0(1 exp( ))b c Daε ε η ξ= + −  

The boundary conditions (5) may be reduce to  

 
(0, ) (0, ) 0, ( , ) 1.0,

( , ) 0, (0, ) 1.0.

f f fξ ξ ξ
θ ξ θ ξ

′ ′= = ∞ =
∞ = =

 (12) 

It may be noted that the buoyancy parameter λ  is a function of streetwise distance x  unless 
the surface temperature ( )wT T∞=  for 1.0n = , λ  is constant. Equations (10) and (11) are 
coupled nonlinear partial differential equations, but for 0, ( 0)tξ ∗= =  and 1.0, ( )tξ ∗= → ∞  
and they can be reduced to ordinary differential equations. For the case 0.0ξ = , these 
equations take the form  

 12 0,f fη−′′′ ′′+ =  (13) 

 12 Pr 0.θ ηθ−′′ ′+ =  (14) 

For the case 1ξ = , equations (7), (8) can be reduced to  

 2 2(1 ) (1 ) (1 ) 0,f ff f f fγ λθ′′′ ′′ ′ ′ ′+ + − − − − Δ − + =  (15) 

 1Pr ( ) 0.f nfθ θ θ− ′′ ′ ′+ − =  (16) 

For the above two special cases the boundary conditions (5) may be reduce to 

 
(0) (0) 0, ( ) 1.0,

( ) 0, (0) 1.0

f f f

θ θ
′ ′= = ∞ =

∞ = =
 (17) 
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Equations (13), (14) are uncoupled linear equations while equations (15), (16) are coupled 
nonlinear equations. Equations (13) and (14) under conditions (17) admit closed form 
solutions which are given by, 

 1/2 2( / 2) ( ) [1 exp( / 4)],f erfcη η π η= − − −  (18) 

 1/2(Pr / 2)erfcθ η=  (19) 

hence we have 

 1/2 1/2(0) ( ) , (0) (Pr/ ) .f π θ π′′ ′= = −  (20) 

Equations (15), (16) do not admit closed form solutions. Equations (10), (11) under conditions 
(12) for 1ξ =  (steady case) and non porous media are identical to those of Ramachandra et 
al. [16] in nonporous medium ( 1ε = . Also equations (10-11) under the condition 0λ =  
(forced convection flow) and 1ε =  are the same as that of Williams and Rhyne [23] if we put 
m=1 in their equation. The physical quantities of interest in this problem are the skin friction 
coefficient and the Nusselt number, which are defined by Pop et al.  [15]. 

 22 / , / ( ),f w w wC U Nu xq T Tτ ρ α∞ ∞= = −  (21) 

where 0( / )w yu yτ μ == ∂ ∂  and 0( / ) .w yq T yα == − ∂ ∂  Using equations (9), the quantities in Eqs. 

(21) can be expressed in the form 

 1/2 1/22 Re ( ,0), 0.f xC fξ ξ ξ− − ′′= >  (22) 

 1/2 1/2Re ( ,0), 0.xNu ξ θ ξ ξ− ′′= − >  (23) 

3. Method of solution 

We are going now discuss the local non-similarity method to solve equations (10), (11). Since 
it was already seen by Pereyra [14], and Sparrow et al. [19] that for the problem of coupled 
local non-similarity equations, the considerations of equation up to the second level of 
truncation gives almost accurate results comparable with the solutions from other methods. 
We will consider here the local non-similar equations (10), (11) only up to the second level of 
truncation. To do this, we introduce the following new functions  

 / , /g f ξ φ θ ξ= ∂ ∂ = ∂ ∂  (24) 

Introducing these functions into equations (10) and (11) we get  

 
2

1 2 2
2

150(1 )
2 (1 ) (1 ) (1 )   (1 ) ,f f ff Da f f g

ξ ε ξη ξ λξεθ εξ ξ
ε εε

− −′′′ ′′ ′′ ′ ′+ − + + − + − + = −  (25) 

 1 ' 1Pr ( ' ') 2 (1 ) ( ) (1 )Ds f f nfθ θ η ξ θ ξ θ θ ξ ξ φ− −′′ ′ ′ ′ ′+ + + − + − = −  (26) 

Differentiating the above equations with respect to ξ  one may easily neglect the terms 
involving the derivative functions of g  and φ  with respect to ξ  as follows 
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1 1

1

( ) 2 (1 )

2 ( ) ( )

(1 2 )

pr ps g g

f nf f g ng nf

φ θ θ γ ξ φ

γθ θ θ ξ φ θ θ φ
ξ φ

− −

−
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where ξε  is the derivative of ε  with respect to ξ . The appropriate boundary conditions 
satisfied by the above equations are given by 

(0, ) (0, ) 0, ( , ) 1.0,

( , ) 0, (0, ) 1.0.

f f fξ ξ ξ
θ ξ θ ξ

′ ′= = ∞ =
∞ = =

 

 
(0, ) (0, ) (0, ) 0,

( , ) ( , ) 0.

g g

g

ξ ξ φ ξ
ξ φ ξ

′= = =
′ ∞ = ∞ =

 (28) 

4. Results and discussion 

In order to validate our numerical solutions, we have compared the surface shear stress 
( ,0)f ξ′′  and the surface heat transfer ( ,0)θ ξ′−  for the prescribed surface temperature with 

those of Ramachandra et al. [16] and Scshadri et al. [17]. The results are found to be almost 
compatible to a reasonable degree.. The comparison is shown in Figures (2) and (3), which 
corresponding Figures (2) and (3) in Scshadri [17]. 
 The variation of the surface shear stress ( ,0)f ξ′′ , the surface heat transfer rate ( ,0)θ ξ′−  
with time (0 1)ξ ξ≤ ≤  for the Darcy parameter Da , the dispersion parameter Ds  in the 
presence of the buoyancy assisting flow ( 1)λ =  and buoyancy opposing flow ( 1)λ = − for 
the non-isothermal surface ( 1)n =  are shown in Figures (2) through (6). 
At the start of motion ( 0)ξ = , the buoyancy force parameter ( )λ , the Darcy parameter 
Da  and the dispersion parameter Ds  have no effects on both the surface shear stress and 
the surface heat transfer and these effects become pronounced with increasing time ξ . 
The steady state is reached at 1 ( * )tξ = → ∞ . The surface shear stress ( ,0)f ξ′′  and surface 
heat transfer ( ,0)θ ξ′−  decrease with the Darcy and dispersion parameters increasing for 
the two cases (the buoyancy assisting flow ( 1)λ =  and the buoyancy opposing flow 
( 1)λ = − ). It is also clear from these figures that the surface shear stress and heat transfer 
for buoyancy assisting flow are greater than those of the buoyancy opposing flow. Also, 
the surface shear stress and the heat transfer rate increase with increasing the Darcy 
parameter Da and  the dispersion parameter Ds. 
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Fig. 2. Variation of shear stress ( ),0f ξ′′  with time ξ  

 

 
 

Fig. 3. Variation of surface heat transfer ( ),0θ ξ′  with time ξ  
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Fig. 4. Variation of surface shear stress with time for 0 0.38,ε =  b=1.0, c= 2.0, Ds=0.0 and 

Pr=0.7 

 

 

Fig. 5. Variation of the surface heat transfer rate θ ` (ξ,0) with time ξ for ε0= 0.38, b=1.0,  
c= 2.0, d=5.0, Ds=0.0 and Pr=0.7  
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Fig. 6. Variation of the surface heat transfer rate θ ` (ξ,0) with time ξ for ε0 = 0.38, b = 1.0,  
c = 2.0, d = 5.0, Ds = 0.0 and Pr = 0.7 

Figures (5), (6) display the variation of the surface shear stress and the surface heat transfer 
with time ξ  for the prescribed surface temperature when the buoyancy parameter 

1.0, 1.0, 0.7, 0.5pr nλ = − = = −  and for the Darcy parameter Da = 0.0, 0.3, and the dispersion 
parameter Ds = 0.0, 0.8. The surface shear stress and the heat transfer increase with λ  
because positive buoyancy force acts like favorable pressure gradient which accelerates the 
motion and reduces both momentum and thermal boundary layers. Hence both the surface 
shear stress and the surface heat transfer are increased.  
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