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1. Introduction 

Gastritis is an inflammation of the mucosa of the stomach, and has many etiologies. Gastritis 
can be classified as being acute or chronic. For the purpose of this chapter, we will focus 
only on chronic gastritis due to its relevance to gastric cancer. Among the causes of chronic 
gastritis are chronic bile reflux, stress, certain autoimmune disorders and bacterial infection, 
primarily Helicobacter pylori. Since 1870, both human and veterinary pathologists have 
described the presence of tiny curved bacteria within gastric mucosa, but the organisms 
were dismissed as irrelevant contaminants (1, 2). In 1947, when gastroscopy was first being 
used, Rudolf Schindler deemed gastritis as “one of the most debated diseases of the human 
body” and predicted that its significance would be discussed “for some time to come” (3). 
Schindler himself claimed that the “bacteriological etiology of chronic gastritis has not been 
convincingly proved in a single case” (3). In 1984, Warren and Marshall proposed that 
chronic “idiopathic” gastritis had a bacterial cause (i.e., H. pylori) (4). Their hypothesis was 
met with great skepticism. However, within a few years, the association between H. pylori 
gastritis, peptic ulcer, and gastric cancer came to be acknowledged and ultimately accepted 
(4). Subsequently, accurate morphological data were gathered by pathologic examination of 
autopsy material (5) and, later, of endoscopic biopsy specimens. As a result, distinct types 
and patterns of gastritis were recognized, which led to the conception, presentation, 
dismissal, and replacement of many different classification systems. 

2. Histological classification and grading of gastritis 

For the purpose of this chapter we decided to divided chronic gastritis in into two main 
categories, namely non-atrophic and atrophic gastritis (6). The main purpose of this 
classification is to individualize high-risk gastritis subgroup that subsequently might 
develop to gastric cancer. In the gastric mucosa, atrophy is defined as the loss of appropriate 
glands. Atrophic gastritis, resulting mainly from long-standing H. pylori infection, and is a 
major risk factor for the onset of gastric cancer. The extent and site of the atrophic changes 
significantly correlate with cancer risk (6, 7). Two main types of atrophic gastritis can be 
recognized, one characterized by the loss of glands, accompanied by fibrosis or 
fibromuscular proliferation in the lamina propria, and the other characterized by the 
replacement of the normal mucosa into an intestinal type of mucosa (i.e. intestinal 
metaplasia) (8). The first can be assessed with the new Operative Link for Gastritis 
Assessment (OLGA) staging system for atrophy risk assessment (9) which ranks the risk of 
gastric cancer according to the extension and severity of gastric atrophy (Fig. 1 and Table 1).  
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Fig. 1. Atrophy is the loss of appropriate glands. (A; H&E 10x) Antral gastric mucosa with 
accentuated atrophy because replacement by extensive intestinal metaplasia. (B; H&E 10x; 
square 20x) Fundic-corporal gastric mucosa with extensive loss of gastric glands, partially 
replaced by pseudo-pyloric metaplasia. 

 
 

 

No atrophy (0%) = score 0; mild atrophy (1–30%) = score 1 ; moderate atrophy (31–60%) = score 2; 9 
severe atrophy (>60%) = score 3. These scores (0–3) are used in the OLGA staging assessment in each 10 
compartment. Taken from Rugge et al., Dig Liver Dis 2011;43:S373-84 with permission of Elsevier. 

Table 1. The OLGA staging frame. Atrophy is scored as the percentage of atrophic glands 
and scored on a four-tiered scale.  

Cross-sectional and long-term follow-up trials conducted in various epidemiologic settings 

have consistently associated OLGA stages III and IV with a higher risk of gastric cancer vs. 

low-risk OLGA stages [ie, stages 0, I, and II]) (6). The latter can be assessed based on 

whether the metaplastic epithelium phenotype resembles large bowel epithelia (colonic-type 

intestinal metaplasia) or the small intestinal mucosa (6, 10, 11). This classification was made 

by determining the histochemical phenotype of intestinal metaplasia (IM) using high-iron 
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diamine stain. Cross-sectional descriptive studies and follow-up trials have consistently 

supported a strong association between OLGA stages and IM histochemical phenotypes, 

where IM of small intestinal type (type I) significantly prevailed in low-risk atrophic stages 

and high-risk OLGA stages were associated with IM of types II and III (6). Accordingly, 

epidemiological studies have shown that degree of severity for non-metaplastic atrophy 

influences the prevalence of IM and that the severity of IM influences the prevalence of 

dysplasia (12). These results support the concept that IM and dysplasia are linked in a 

sequential cause-effect relationship and confirm a proposed model for the pathogenesis of 

gastric cancer (11). However, risk assessment for gastric cancer development has not been 

well defined for other premalignant conditions (13). 

3. Genetics bases of gastritis  

The seminal proposal of a genetic model for tumorigenesis by Fearon & Vogelstein (14) and, 

more recently, the categorization of different cancers types into six physiological groups 

proposed by Hanahan & Weinberg (15) provide a theoretical framework for understanding 

the genetic and epigenetic bases of gastritis as well as premalignant conditions of gastric 

cancer. Thus, gastritis, and gastric cancer premalignant conditions should be understood as 

a disturbance in the balance between tumor suppressor genes and oncogenes. p53 gene (16) 

and the c-erbB2 oncogene (17, 18) were the first tumor suppressor gene and oncogene to be 

identified in gastric cancer, respectively. From these reports, a growing number of genes 

have been identified (19). However, different studies have shown that mutation and/or 

deletion is an infrequent mechanism of inactivating well stablished tumor suppressor genes 

such as E-cadherin (20, 21). Similarly, loss of heterozygosity (LOH) and microsatellite 

instability (MSI) have been frequently found in gastric cancer (19, 22, 23). However, 

mutations of the DNA mismatch repair genes, hMSH2 and hMLH1, responsible for LOH 

and MSI, are not frequently encountered (19, 24). Taken together, these observations suggest 

that genetic alterations do not completely explain the accumulation of genetic damage 

observed in gastric cancer and premalignant conditions. In this scenario, the recent 

inactivation of tumor suppressor genes by a novel epigenetic mechanisms, DNA 

methylation, has been proposed as an alternative mechanism to mutation and/or deletions 

(25). The best-documented inactivation by DNA methylation in gastric cancer is the 

silencing of DNA mismatch repair genes hMSH2 and hMLH1 (26). This inactivation is 

responsible for the development of the majority of MSI-related gastric cancers. As such, this 

inactivation leads to subsequent mutations in simple repetitive sequences within genes that 

are critical to the neoplastic process (23).  

4. Epigenetic bases of gastritis 

Epigenetic processes control the packaging and function of the human genome and 

contribute to normal development and disease (27). Epigenetic mechanisms such as DNA 

methylation, histone modifications and microRNAs (28) virtually affects all of the pathways 

in the cellular network, such as DNA repair, cell cycle, and apoptosis (25). DNA 

methylation, a process in which cytosines acquire a methyl group in 5' position only if they 

are followed by a guanine (CpG site) (28) is an early event in carcinogenesis (29-31). In 

addition, DNA metylation has been recently considered as an excellent candidate to explain 
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how certain environmental factors may increase the risk of cancer (32). Accordingly, an 

emerging catalog of specific tumor suppressor genes inactivated by DNA methylation in 

gastrointestinal tumors has been established (33-36). Most of these studies has been 

performed by Methylation Specific – Polymerase Chain Reaction (MS-PCR), the most 

popular assay for DNA methylation (37). In MSP sodium bisulphite is used to convert 

cytosine residues to uracil residues in single-stranded DNA under conditions whereby 5-

methylcytosine remains non-reactive. The converted DNA is amplified with specific primers 

and since all the cytosine residues remaining in the sequence represent previously 

methylated cytosines, MSP approach allows to detect DNA isolated from fewer than 100 

cells (38, 39).  

5. DNA methylation and gastritis 

There are limited reports on DNA methylation analysis in gastritis and premalignant lesions 

of gastric cancer. Kang et al (40) tested five genes (p16, hMLH1, DAP-kinase, THBS1, and 

TIMP-3) in a series of 64 carcinomas and 179 premalignant conditions (69 chronic gastritis, 

49 IM and 61 gastric adenomas) to identify two different classes of methylation patterns, 

preferential methylation of THBS-1 and TIMP-3 in chronic gastritis and IM and preferential 

methylation of hMLH1 and p16 in intestinal metaplasia, displasia and gastric cancer. These 

findings suggest that DNA methylation occur early in multistep gastric carcinogenesis and 

specific patterns of DNA methylation on specific genes ocurr along these steps (40). A 

subsequent study identified specific patterns of DNA methylation associated with aging 

after testing 11 genes in 268 premalignant gastritis (41). DNA methylation was found in 

increasingly frequency as a function of aging in five genes (DAP-kinase, E-cadherin, p14, 

THBS1 and TIMP-3), whereas the other genes (COX-2, GSTP1, MGMT, hMLH1, p16, and 

RASSF1A) were rarely methylated (41). Since E-cadherin was methylated at high frequency, 

a further study demonstrated, for the first time, that DNA methylation of promoter region 

of E-cadherin was associated with H. pylori infection. This association was independent of 

the age and or type of gastritis (42). Similarly, Maekita et al (43) analyzed the effect of H. 

pylori infection on DNA methylation of several genes (HAND1, HRASLS, LOX, p16, 

P41ARC and THBD) by quantitative methods in H. pylori negative and positive healthy 

donors and gastric cancer patients. Among healthy donors, methylation levels were up to 

300-fold higher in H. pylori positives than in H. pylori negatives (43). However, among 

gastric cancer patients, methylation levels were only up 30-fold higher, suggesting that H. 

pylori infection induces DNA methylation of several genes beyond E-cadherin (43). Chan et 

al (32) evaluate the effect or eradication of H.pylori on DNA methylation in gastric mucosa. 

Before and after the treatment DNA methylation of E-cadherin was detected in 46% and 

17% of 41 patients, respectively (Fig. 2). Histological evaluation after the treatment, showed 

chronic inactive gastritis in most of the cases. A similar results was communicated by Leung 

et al (44), although they evaluated tissues from the antrum and corpus of H. pylori-infected 

subjects at baseline and after one year of successful H. pylori eradication. These authors 

identified a significant reduction in the methylation density of the promoter region and exon 

1 of the E-cadherin gene by bisulfite DNA sequencing. Taken together, these results 

demonstrated that eradication of H. pylori infection reverses E-cadherin promoter 

hypermethylation and suggest an environmental effect on DNA methylation (32).  

www.intechopen.com



 
Molecular Pathology of Gastritis 

 

119 

 
(A) 

 
(B) 

 
(c) 

 
(D) 

Fig. 2. CpG island methylation pattern at the E-cadherin gene in gastric mucosa from 
patients with dyspepsia. (A) Before eradication of H. pylori (week 0), methylation was 
present in patients 3, 5 and 6. (B) The methylated product was confirmed by sequencing 
using the same methylated primer. (C) After eradication of H. pylori (week 6), methylation 
was not present in any patient. (D) The methylated product was again confirmed by 
sequencing using the same methylated primer. No methylated cytosine was seen. MW: 
molecular weight marker, U: unmethylated band, M: methylated band, red color: 
unmethylated cytosines converted to thymidine, blue color: methylated cytosines. Taken 
from Chan et al., Gut 2006;55: 463-8 with permission from BMJ Publishing Group Ltd. 
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Recently, our group identified promotor DNA methylation of a novel gene, Reprimo 
(RPRM), not only in gastric mucosa but also in the plasma of gastric cancer patients (36). 
This methylated circulating cell-free DNA offers the opportunity for non-invasive detection 
of gastric cancer and premalignant gastritis. DNA methylation of promoter region of RPRM 
was initially identified by high-throughput microarray experiments that analyzed global 
changes in gene expression in pancreatic cancer cell lines treated with the demethylating 
agent 5-aza-2-deoxycitidine. Among 11 re-expressed genes, RPRM was highly re-expressed 
(45). Following this finding, the analysis of the methylation status of RPRM in clinical 
samples of pancreatic cancer identified a high frequency of DNA methylation of the 
promoter of RPRM (45). Subsequent research focused on different types of tumors (breast, 
esophagus, lymphoma, etc.) including gastric carcinoma (46). However, our study, not only 
looked into the methylation of RPRM in tumor tissues, but also in non-invasive plasma 
samples from the same patients (36). Interestingly, methylate circulating cell-free DNA of 
RPRM was found in over 90% in plasma from gastric cancer patients but less than 10% 
among asymptomatic controls (36). Thus, our results were the first to indicate that 
methylation of promoter region of RPRM might act as a potential biomarker for early 
detection of gastric cancer. RPRM is a downstream mediator of p53-induced G2 cell cycle 
arrest (47). When adenovirus expressing recombinant RPRM cDNA was infected into 
human colorectal cancer cell line DLD1, cell cycle arrest at the G2 phase was observed (47). 
However, it has been suggested that RPRM-induced cell cycle arrest is mediated by an 
indirect inhibition of Cdc2-CyclinB1 complex translocation to the nucleus (47). Recently, 
RPRM has also been proposed to be a tumor suppressor gene through in vitro colony 
formation assays (48). After RPRM transfection into the non-expressing renal cell carcinoma 
cell line SKRC39 there was a signicantly reduced number of G418 resistant colonies 
compared to the cell lines transfected with an empty vector control. However, it is unknown 
whether RPRM is a tumor suppressor in gastric cancer. A recent quantitative analysis of 
promoter DNA methylation of RPRM from Colombian residents from areas with high and 
low incidence of gastric cancer demonstrated an association with virulence factors cagA 
(including segments of the 30 end, encoding EPIYA polymorphisms) and vacA s1 and m1 
regions of H. pylori strains (Fig. 3). This data suggest that cagA and vacA virulence 
determinants are significantly associated with DNA methylation of  a specific gene, RPRM 
in high-risk gastritis (49). Thus, the posibility to detect DNA methylation of RPRM as a cell-
free DNA in plasma in combination with H.pylori strains might opening the oportunity for a 
non-invasive detection of high-risk premalignant gastritis.  

6. Integration of histological and DNA methylation features of gastritis 

Although histological assessment of gastritis to search for premalignant conditions for the 
development of gastric cancer has been proposed (6) and epigenetic markers based on DNA 
methylation are associated with this progression (50), no integrative approach has been 
explore up to date for this two disparate fields. Recently, we have integrated histological 
together with in-situ molecular features to demonstrate that overexpression of p73 was 
probably the most important marker to identified high-risk premalignant gastritis (51). In 
that work, we analyse matched tumor/non-tumor adjacent mucosa of 91 early gastric cancer 
and 148 chronic gastritis cases for histological features by the Sydney and OLGA systems 
along with eight tissue markers to identified that overexpression of p73, severe atrophy, and 
OLGA stage IV were the most relevant features to identified high-risk gastritis (Fig. 4).  
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(A) 

 
(B) 

Fig. 3. Association between the percentage of methylation of RPRM in residents areas with low 
and high incidence of gastric cancer, and virulence factors CagA, VacA s1 and m1 regions of 
H. pylori. (A) Scatter plots indicate the percent methylation of each gene analysed, measured 
from DNA from residents of low-risk (LR) and high-risk (HR) areas. Arrows indicate the 
points representing the outlier subject, whose gastric histology showed widespread intestinal 
metaplasia and focal areas of indefinite dysplasia. (B) Multivariate regression models 
incorporated effects of geographic area, diagnosis, age and genotypes of the infecting H. pylori 
strain (classified as uninfected, cagA positive, vacAs1m1 and all other genotypes). Taken from 
Schneider et al., Int J Cancer 2010; 127: 2588-7 with permision from Wiley. 
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Fig. 4. Serial Analysis for Microarray from Non-tumor adjacent mucosa (NTAM) and and 
chronic gastritis controls. NTAM group is significantly characterized by the overexpression 
of p73, OLGA stages III to IV, and severe atrophy (ATR-3), intestinal metaplasia (IM-3), and 
chronic inflammation (CI-3) according to the Sydney System. Control group cases were 
significantly characterized by lack of intestinal metaplasia (IM-0), atrophy (ATR-0), and 
chronic inflammation (CI-0). False discovery rate = 0. Taken from Carrasco et al., 2010 
Clin.Cancer Res 16:3253-9. 

Interestingly, further work have shown that p73 overexpression might be associated with 

hypo- or demethylation of the promoter region of p73 (52). Taken together these findings 

suggest that DNA methylation might play a role in gastritis and premalignant condition in 

both ways, inactivating or activating tumor-related genes by hypermethylation or 

demethylation of promoter region of specific genes, respectively.  

7. Conclusions 

In conclusion, specific histological features with increasing risk to progress to gastric cancer 

can be assessed by OLGA system. Specific DNA methylation changes might play a major 

role in premalignant gastritis and might be associated with H. pylori infection. These 

changes are accumulative from bening to fully malignant conditions. Induced DNA 

methylation in specific genes by H.pylori might be reversible and might be associated with 

virulence of H.pylori strains. These DNA methylated genes might be detected in plasma (i.e. 

RPRM) as a circulating cell-free DNA. Integrative analysis of histological features of 

premalignant conditions with overexpression of specific genes such as p73 by 

demethylation might be important to identified the best biomarkers for high-risk 

premalignant gastritis for the development of gastric cancer.  
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