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1. Introduction  

The gastric mucosa is continuously exposed to many noxious factors and substances. How the 
gastric mucosa maintains structural integrity and resists auto-digestion by substances such as 
acid and pepsin puzzled clinicians and investigators for more than 200 years. The gastric 
epithelium must also resist damage from extrinsic agents, including Helicobacter pylori (H. 
pylori) and noxious ingestions such as ethanol and nonsteroidal anti-inflammatory drugs 
(NSAIDs). The luminal surface of the stomach is covered by a viscoelastic mucus gel layer that 
acts as a protective barrier against the harsh luminal environment. The structural 
characteristics of this barrier are primary indicators of its physiological function and changes 
of its composition have been identified in gastrointestinal pathologies. This chapter presents 
recent insights into the implication of the gastric mucus barrier as “no mucus, no protection”.  
While acid, pepsin, and H. pylori are thought to be major factors in the pathophysiology of 
gastritis, the importance of the mucosal defense system has also been emphasized. Gastric 
‘cytoprotection’ refers to a reduction or prevention of chemically induced acute hemorrhagic 
erosions by compounds such as prostaglandin (PG) and SH derivatives without inhibiting 
acid secretion in rodents (Robert, 1979; Szabo et al., 1981). Since the concept of 
‘cytoprotection’ was introduced, increasing attention has been paid to the effect of 
medications on the gastric mucosal defensive mechanisms. Although the exact mechanisms 
of the mucosal defense system are unknown, it involves one or more of the naturally 
occurring gastric mucosal defensive factors such as mucus metabolism. For estimation of the 
gastroprotective function, many drugs have been investigated for their activity to protect the 
gastric mucosa from a variety of necrotizing agents such as ethanol and HCl. Considerable 
information has accumulated about the gastroprotective function of the mucus that covers 
the mucosal surface of the stomach.  

2. Fundamental aspects of gastric mucus 

2.1 Constituent of gastric mucus 
Mucus is produced in mucus-producing cells, secreted and extensively covers the surface 
layer of the mucosa by forming a mucus gel layers. As shown in Figure 1, mucus is a 
complex mixture containing mucin, water electrolytes, sloughed off cells, enzymes and 
various other materials, including bacteria and bacterial products depending on the source 
and location of the mucus (Hotta, 2000). 
Gastric mucus is present in the mucus granules of the mucus-producing cells, the insoluble 
mucus gel layer adhering to the mucosal surface and the gastric lumen in a solubilized  
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Fig. 1. Composition of gastric mucus. 

condition. Mucus rapidly responds to pathological and physiological changes in the 
stomach. Moreover, mucus present in the stomach exhibits various actions such as 
maintaining lubrication of the mucosal surface, covering ingested foods to mix them, 
helping digestion, and protecting the surface epithelium from irritation by forming a thick 
mucus gel layer. 
Mucin, the major constituent of the mucus, is biosynthesized by the mucus-producing cells 

and secreted from them. Mucus-producing cells of the mammalian gastric mucosa are 

classified mainly as surface mucus or gland mucus cells (Fig. 2) and respective mucins differ 

in their peptide sequences and chemical composition of the carbohydrate moieties. The core 

peptides of the mucins from the surface and gland mucus cells of the human stomach are 

characterized as MUC5AC and MUC6, respectively. Mucins from these two types of cells 

have distinct roles in the physiology of the gastric mucosa. In the studies using experimental 

animals, the appearance of specific mucin was observed in the regenerating epithelia during 

the healing process from gastric mucosal damage (Hayashida et al., 2001; Ikezawa et al. 

2004). 

2.2 Outline of gastric mucin 
Electron microscopy has indicated 200 to 4000 nm fibers to be present in a gastric mucin 

molecule. Mucins are composed of glycoprotein subunits (monomer molecular weight : 3 to 

5 x 105) joined by disulfide bridges, to form high-molecular-weight polymers (having a 

molecular weight of millions). Each glycoprotein subunit consists of a central peptide core, 

with many closely packed carbohydrate side chains attached (Fig. 3). Each carbohydrate 

chain is composed of several sugar residues (up to 19 in length) in gastric mucus, and many 

will carry a negative charge because of the presence of ester sulfate and sialic acid residues. 

It is these negatively charged carbohydrate chains that give the mucin its acidic-staining 
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Fig. 2. Distribution of cells constituting the oxyntic gland. 

 

Fig. 3. Polymeric structure of mucin molecules. 
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properties. Each glycoprotein subunit can be divided into two functional regions on the 
basis of the peptide core: (1) glycosylated regions in which carbohydrate chains form a 
closely packed sheath around the central peptide core, protecting it from proteolytic attack; 
and (2) other nonglycosylated regions of the peptide core that have little or no carbohydrate 
attached, which are therefore accessible to proteolytic attack by pepsin and other proteolytic 
enzymes. These nonglycosylated regions of the peptide core are also the site of the 
disulfide bridges that join the glycoprotein subunits together to form the polymeric mucin 
structure.  
Gel formation between intact polymeric mucin molecules occurs at high concentration (15 to 
50 mg/ml) by noncovalent interactions. For gel formation to take place, the mucin must be 
in its polymeric form. This is the reason why proteolytic enzymes such as pepsin, which 
degrades the mucin polymeric structure, will dissolve mucus gels. Proteolysis digests the 
nonglycosylated regions of the peptide core, hence that part containing the disulfide bridges 
that join the glycoprotein subunits together. The resulting proteolytically degraded subunit 
consists of the glycosylated region, which is resistant to further proteolytic digestion. There 
is no detectable loss of carbohydrate during proteolysis and, since it is more than 80% by 
weight of the glycoprotein subunit, the proteolytically degraded glycoprotein is still quite 
large. 

3. Method and tools for mucus research 

3.1 Biosynthesis of mucin 
Mucin is produced within mucus-producing cells. To serine or threonine in the polypeptide 

core synthesized in ribosomes, sugars are transferred one after another in the Golgi 

complex. Dekker & Strous (1990) have indicated the biosynthesis of gastric mucin to occur 

as follows. A polypeptide (molecular weight: about 270,000) is synthesized in ribosome and 

the mucin precursor is synthesized in the rough endoplasmic reticulum (RER). A small 

portion of an N-glycoside sugar chain is connected to each end of the peptide in the RER 

and is required for efficient oligomerization of the precursor. Three to 4 molecules of this 

precursor are polymerized in an ATP-unrelated manner in the RER to form an oligomer. N-

acetylgalactosamine is subsequently transferred to serine and threonine in the late RER 

compartment (transitional elements) or in cisternae of the Golgi complex. The three-

dimensional structure of the polypeptide core changes to an elongated random coil as a 

result of this transfer. The other sugars are transferred to mucin intermediates before they 

can reach the trans-cisternae of the Golgi complex and the mucin intermediates form mature 

mucin. Following biosynthesis in mucus-producing cells, mucin accumulates as mucus 

granules in the cells and is subsequently secreted through exocytosis. Consequently, a 

mucus gel layer is formed, which is degraded or directly secreted (Fig. 4). 

3.2 Methods for isolation of gastric mucus 
The distribution in the stomach, localization and composition of mucus were mainly 

determined by histochemical methods. By virtue of the development of new staining 

methods, it has become possible to determine the histochemical characteristics of the 

produced mucus. However, this method is not suitable for a quantitative assay to grasp the 

disposition of mucus as a whole. To continue our mucus research, the development of some 

biochemical assay methods was needed. Gastric mucus is a mixture with a complicated 
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Fig. 4. Biosynthesis and secretion of mucin on mucus-producing cell. 

composition. It is not easy to quantify this substance. To overcome this difficulty, we 

decided to determine the major constituent of mucus, mucin, alone for quantitative 

evaluation of the gastric mucus. As mucin is a highly glycosylated macromolecule, we 

developed a method to efficiently extract and isolate mucin from the gastric mucus and 

established the method to quantify its constituent sugars.  

Mucus is isolated from corpus and antral mucosa of rat stomach (Fig. 5). To determine 

mucus content, lyophilized tissues are subjected to extraction with Tris-HCl buffer 

containing 2% Triton X-100 and separated by gel filtration. The first peak eluted with the 

void volume is characterized as mucin and the change in mucin content is determined by 

measurement of hexose (Azuumi et al., 1980). The amount of hexose per dry tissue weight is 

calculated and the results expressed relative to the control. To investigate the biosynthetic 

activity of mucin, 2 x 2 mm tissue samples are incubated in a medium containing a labelled 

precursor and the mucin fraction is isolated. The radioactivity is determined and given as 

levels per tissue protein (Ichikawa et al., 1993).  

These biochemical methods are suitable for quantification of the total mucin content in the 

entire mucosal layer. With the use of these methods, it became possible to quantify the 

amount of mucus and the extent of biosynthesis in each portion of the stomach (corpus and 

antrum). Moreover, it became possible to determine the physiological changes and also 

changes in the amount of mucus and qualitative changes due to pathological changes such 

as an experimental ulcer. However, when using this described method, it was impossible to 

determine the disposition of mucin in the mucus gel layer which is important for the gastric 

defense mechanism. We normally mechanically scraped the gel layer from the mucosa, and 

therefore, it was impossible to make a precise determination due to the loss of surface 

epithelial cells. To solve this problem, various methods for removal of the gel layer were 
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Fig. 5. Preparation of labeled and unlabeled mucus. 

tried. As a result, it was confirmed that the mucus gel layer alone can be separated without 

damaging the surface epithelium when N-acetylcysteine is used as a mucolytic agent 

(Komuro et al., 1991). At present, it has become possible to remove the gel layer, to scrape 

the surface mucosa and deep mucosa, and then to determine the mucin content in the 

mucus for each region and each layer (Komuro et al., 1992a, 1992b). Our scraping method 

enables us to biochemically assess the mucin content of the gel layer by separating it from 

the deep mucosa of the stomach, and we have demonstrated that quantitative changes in the 

gastric mucin are closely related to mucosal protective activity (Kojima et al., 1992, 1993; 

Ichikawa et al., 1994a; Komuro et al., 1998). 

3.3 Development of monoclonal antibody against gastric mucin 
Previous studies have shown that different types of mucin, differing in their carbohydrates 

and core protein structure, are expressed in different regions of the gastrointestinal tract. In 

the stomach, the corpus mucin differs from the antral mucin, and in each region the surface-

type mucins (surface mucus cell-type mucins) differ from the gland-type mucins, 

synthesized in deeper layers of the gastric mucosa (Corfield et al. 2000). Histochemical 

studies revealed that surface-type mucins have different carbohydrate chains from gland-

type mucins in the stomach. For instance, surface-type mucins were stained by galactose 

oxidase-cold thionine Schiff (GOTS) staining, while glandular mucins were stained by 

paradoxical concanavalin A staining (PCS) (Ota et al., 1991; Ota & Katsuyama, 1992). On the 

other hand, studies using gene technology revealed that, in the stomach, the mucin bearing 

MUC5AC core protein was expressed in the surface mucosa, while MUC6 was expressed in 

the glandular mucosa (De Bolos et al., 1995; Ho et al., 1995a, 1995b; Buisine et al, 2000). The 

biochemical characterization of individual mucin molecules is important to understand their 

functions, and specific tools to recognize particular mucin species are essential. For these 
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purposes, many monoclonal antibodies (mAbs) against mucins have been developed and 

used in our laboratory (Ishihara et al., 1993). Representative anti-mucin monoclonal 

antibodies are shown in Figure 6. The mAbs RGM21 and HIK1083, which recognize a 

specific carbohydrate portion of rat gastric surface- and gland-type mucins, respectively 

(Ishihara et al., 1996a, 1996b), are frequently used to characterize the different mucin 

molecular structures. From histological studies and epitope analyses, the characteristics of 

each antibody have been elucidated (Goso et al., 1999, 2003, 2009; Tsubokawa et al., 2007, 

2009). 

 

 

Fig. 6. Representative anti-mucin monoclonal antibodies. 

4. Changes of gastric mucus and mucosal protection 

4.1 Gastric mucosal protection 
The gastric mucosa acts to maintain homeostasis through the physiological mechanism 
naturally given to it in the presence of endogenous irritants such as gastric acid, pepsin, and 
exogenous irritants such as NSAIDs, stress, and alcohol (Fig. 7). During the protection of the 
mucosa, various factors such as bicarbonate ion, mucosal blood flow and cell turnover are 
involved other than the mucus. In recent years, the roles played by indirect factors such as 
prostaglandin and superoxide dismutase have also been clarified. These factors interact with 
each other, and damage to the mucosa occurs through an imbalance between the aggressive 
factors and protective factors (Fig. 7).  
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Fig. 7. Gastric protection: which is stronger, aggressive factor or protective factor? 

4.2 Changes of gastric mucus 
The response of the gastric mucosa to acute injury is uniform regardless of the damaging 

agent; it usually results in exfoliation of the surface epithelium and injury of deeper mucosal 

layers. Deep mucosal injury is most likely caused, at least in part, by injury to the gastric 

mucosal microvasculature. Acute injury is most often produced by alcohol, aspirin, 

indomethacin, and other NSAIDs.  

Figure 8 shows the changes of rat gastric mucosa after orally administration of aspirin (100 

mg/kg in 0.15N HCl). In the control rat, after fasting for 24 hr, surface mucus cells of the 

corpus were strongly stained by RGM21 (Fig. 8a). After the administration of aspirin, the 

immunohistochemical reactivity of RGM21 in the corpus of the rat stomach had decreased 

when compared with the control situation (Fig. 8b). Figure 8c shows the gastric mucosa 

treated with teprenone (geranylgeranylacetone) 3 hr after aspirin administration. Teprenone 

is a gastric mucosal protective drug without affecting gastric acid secretion and clinically 

used in Japan for treatment of gastritis. This drug has been reported to reveal various 

pharmacological actions including the promotion of gastrointestinal mucus (Iwai et al., 2011; 

Rokutan et al., 2000). 
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Fig. 8. Immunohistochemical staining with RGM21 in the gastric mucosa. (a) Normal control 
rat.  (b) Aspirin (100 mg/kg) was administered orally and lesion formation was assessed 3 
hr later. (c) Rat treated with teprenone (200 mg/kg) after aspirin administration. 

4.3 Regulatory mechanism of gastric mucus metabolism 
It has been elucidated that various factors are involved in the regulation of the mucus 

metabolism and each of these factors acts on some specific kind of mucus cells (Fig. 9). 

Among the endogenous regulatory factors of the stomach, gastrin, histamine and carbachol, 

which have an acid secretory action, EGF and HGF, which are growth factors and PG, which 

is an autacoid, are all able to increase the biosynthesis of the gastric mucin. However, a 

difference is seen in the mucin synthetic reactions based on these factors. Thus, the increase 

in mucin biosynthesis induced by gastrin among these acid secretagogues can be observed 

in the surface mucus cells of the gastric oxyntic mucosa, indicating that it occurs by way of 

specific gastrin receptors independent of the acid secretion mechanism (Ichikawa et al., 

1993). Moreover, gastrin stimulates the process of glycosylation without any change in the 

backbone peptide elongation, and the stimulation is mediated by nitric oxide (NO). 

Histamine activates the peptide biosynthesis process of mucin, but this process is not 

mediated by NO. On the other hand, carbachol stimulates the biosynthesis of the mucin 

peptide as well as the glycosylation step, both in the corpus and the antrum (Ichikawa et al., 

1998). As shown in Figure 9, EGF and HGF have distinct effects on the mucin biosynthesis in 

a specific region of gastric mucosa without their trophic effects (Ichikawa et al., 2000a, 

2000b). In other words, endogenous regulatory factors act on the mucus-producing cells 

through different modes of action, thus regulating their biosynthesis. It has also been 

indicated that different regulatory mechanisms are present at various sites in the stomach, 

and that NO and neuropeptides are involved in part of the regulatory process (Ichikawa et 

al., 2000c).  
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Fig. 9. Regulation of gastric mucin biosynthesis. 

5. Second-generation H2-blockers 

5.1 Structure of second-generation H2-blockers 
The H2-blockers are widely used these days in the treatment of gastritis. The chemical 

structures of some frequently used H2-blockers are shown in Figure 10. All the known H2-

blockers comprise an aromatic ring with a flexible chain joined to a polar group. Despite 

considerable diversity, these compounds can be grouped into two main series according to 

the nature of the aromatic rings, namely five-membered and six-membered aromatic ring 

series. Cimetidine and ranitidine belong to the conventional group characterized by a five-

membered aromatic ring. Recently, some of the newer H2-blockers (so-called second-

generation H2-blockers) have been reported to promote the gastric mucosal defense 

mechanisms (Fukushima et al., 2006; Harada et al., 2007; Marazova et al. 1998; Murashima et 

al., 2009; Saegusa et al., 2008; Ichikawa et al., 2009a). Second-generation H2-blockers contain 

a six-membered aromatic ring, instead of a five-membered heterocyclic ring. 

Of the four H2-blockers shown in Figure 10, lafutidine and roxatidine have a stimulant  

effect on mucin biosynthesis in the rat gastric mucosa. In contrast, first-generation  

H2-receptor antagonists such as cimetidine, ranitidine and famotidine, failed to stimulate 

mucin biosynthesis (Ichikawa et al., 1994b, 2009b). Second-generation H2-blockers,  

lafutidine and roxatidine, have been reported to prevent the formation of gastric mucosal 

lesions induced by necrotizing agents in rats (Fukushima et al., 2006; Shiratsuchi et al., 

1988), and this effect may be due not only to the inhibition of aggressive factors such as acid, 

but also to the maintenance of defensive factors such as mucus. On the other hand, many 

reports have indicated that cimetidine and ranitidine lack a protective effect against 

necrotizing agent-induced gastric mucosal damage in the rat (Shiratsuchi et al., 1988; 

Tarnawski et al., 1985). 
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Fig. 10. Effects of representative H2-blockers on mucin biosynthesis. 

5.2 Structure-activity relationship for gastroprotective actions 
The above findings have clarified that the second-generation H2-blockers have a unique 
structure, and not only inhibit acid secretion but also enhance the protective mechanisms of 
the gastric mucosa. This should stimulate new interest in the chemical analysis of these 
drugs to determine the structural requirements for their gastroprotective actions. 
Compared with the structural requirements of the acid-inhibitory mechanisms of the H2-
blockers, only a few detailed analyses have been reported of the structural aspects of their 
gastroprotective actions (Ichikawa et al., 1996, 1997; Sekine et al., 1998; Hirakawa et al., 1998) 
because of the complicated mechanisms of mucosal protection. However, the cardinal 
chemical features of lafutidine that determine its mucin biosynthetic activity, as a 
quantitative index of its gastroprotective action, were identified by considering the 
structural analogs (Fig. 11) of this drug using an rat stomach organ culture system (Ichikawa 
et al., 1996). As shown in Figure 11, compounds A, B and C bear the pyridine ring and 
compounds D and E bear the furan ring, which are commonly present in the structure of 
lafutidine. Mucin biosynthetic activity was increased by the addition of two pyridine 
derivatives, lafutidine and compound A. In contrast, compounds D and E, lacking a 
pyridine ring, failed to stimulate mucin biosynthesis. Similar results were obtained for 
compounds B and C, which have a pyridine ring but lack an amide structure. These results 
indicate that pyridine-based compounds containing an amide structure may be essential for 
activating the gastroprotective function. Furthermore, comparison with the H2-receptor 
antagonistic activities of these compounds suggests that H2-receptor antagonism is not 
directly correlated with lafutidine-induced stimulation of mucin biosynthesis. 
A more detailed analysis has been performed using roxatidine and its structural analogs to 
reveal the structural requirements of second-generation H2-blockers for the stimulant effect 
on rat gastric mucin biosynthesis, particularly with regard to whether the cardinal features 
of roxatidine are only the six-membered aromatic ring and amide structure, and its relation 
to H2-receptor antagonism (Ichikawa et al., 1997). Of six compounds containing both a 
benzene ring and an amide structure, analogs A and B, but not C, stimulated mucin 
biosynthesis in a manner similar to that of roxatidine. These three compounds contain a 
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Fig. 11. Structures and pharmacological activities of lafutidine and its analogs. Mucin 
biosynthetic activity was evaluated in an organ culture system of the rat stomach. Score was 
divided into the following 4 groups: -, no effect at 1 x 10-6 M; +, under 20% increase from the 
baseline at dose of 1 x 10-6 M; ++, significant 20-30% increase of biosynthetic activity (p < 
0.05) at 1 x 10-6 M; +++, significant over 30% increase of mucin biosynthesis (p < 0.01) at 1 x 
10-6 M. Histamine H2-receptor antagonistic activity was investigated on the histamine-
induced positive chronotropic responses in the isolated guinea-pig right atria. Score was 
divided into the following 4 groups: -, no effect at 1 x 10-5 M; +, under 70% inhibition at 1 x 
10-6 M; ++, 70-90% inhibition at 1 x 10-6 M; +++, over 90% inhibition at 1 x 10-6 M. Data are 
taken from the reference (Ichikawa et al., 1996). 

piperidine ring (indicated by R1 in Figure 12) attached to the benzene ring via a methylene 

bridge, but the length of the flexible chain (indicated by R2 in Figure 12) of analog C differs 

from that of roxatidine. This means that the length of the flexible chain between the benzene 

ring and the amide structure is essential for this stimulation of mucin biosynthesis. Analogs 

D, E and F, having different ring structures or no ring structure at R1 of the roxatidine 

molecule, failed to activate mucin biosynthesis. Analogs D, E and F contain the same flexible 

chain as roxatidine. Thus, the piperidine ring is also important for their activity. These 

results indicate that the structural requirements for the stimulant effect of roxatidine on 

mucin biosynthesis are not only the six-membered aromatic ring and amide structure, but 

the attachment of the piperidinomethyl group and the appropriate length of the flexible 

chain are also important for this function. With regard to their H2-receptor antagonistic 

properties, the six analogs were investigated using competition with the binding of the 

radiolabeled H2-receptor antagonist [125I]iodoaminopotentidine to membranes of the guinea 

pig striatum (Leurs et al., 1994; Ruat et al., 1990). All compounds, except analog F in Figure 

12, displaced the specific [125I]iodoaminopotentidine binding to H2-receptor sites. The 
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relative potencies of these antagonists were: analog B > A > roxatidine > D > C > E. 

Compared with the IC50 value (concentration required to inhibit 50% of specific binding) for 

cimetidine obtained under similar experimental conditions, roxatidine and analogs A, B, C 

and D were 4.6, 9.5, 13.7, 1.6 and 2.7 times more potent than cimetidine, respectively 

(Ichikawa et al., 1997). These results suggest that H2-receptor antagonism does not directly 

correlate with roxatidine-induced stimulation of mucin biosynthesis. 

 

 

Fig. 12. Structures and pharmacological activities of roxatidine and its analogs. Mucin 
biosynthetic activity was evaluated in an organ culture system of the rat stomach. Score was 
divided into the following 4 groups: -, no effect at 1 x 10-6 M; +, under 20% increase from the 
baseline at dose of 1 x 10-6 M; ++, significant 20-30% increase of biosynthetic activity (p < 
0.05) at 1 x 10-6 M; +++, significant over 30% increase of mucin biosynthesis (p < 0.01) at 1 x 
10-6 M. Histamine H2-receptor antagonistic activity was investigated on the competition 
studies with [125I]iodoaminopotentidine binding to membranes of the guinea-pig striatum. 
IC50 values (concentration required to inhibit 50% of specific binding) were determined and 
divided into the following 5 groups: -, IC50 > 4000 nM; +, 800 > IC50 > 500 nM (similar to 
cimetidine in the antagonism ); ++, 500 > IC50 > 200 nM; +++, 200 > IC50 > 50 nM; ++++, 50 
nM > IC50. Data are taken from the reference (Ichikawa et al., 1997). 

Taken together, these data indicate that the structural requirements for mucosal protective 

activity in the second-generation H2-blockers are their amide structure and six-membered 

aromatic ring, such as benzene and pyridine derivatives. The cardinal chemical features of 

roxatidine for the activation of mucin biosynthesis are the appropriate length of the flexible 

chain between the amide structure and the aromatic ring system bearing the 

methylpiperidinyl group at the meta position. The thioether function can confer increased 

gastroprotective activity on lafutidine.  
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5.3 Effects of lafutidine on the mucus barrier 
The adherent mucus gel layer is the functionally important component of the mucus barrier 

in the human stomach. However, it cannot be demonstrated by routine histological 

techniques because of its susceptibility to dehydration and shrinkage, which has hampered 

research. The developed method of stabilizing this layer with Carnoy’s solution revealed 

that its laminated structure was composed of two types of mucin in alternating layers; one 

mucin is derived from the surface mucus cells and the other from the gland mucus cells. The 

surface mucus gel layer in Carnoy-fixed tissue sections is shown in the hematoxylin and 

eosin (HE) preparation (Figs. 13A, C) of the human gastric mucosa. This layer is well 

preserved and appeared as a thick eosinophilic band. The galactose oxidase/thionine Schiff 

reaction/paradoxical concanavalin A (GOTS-PCS) procedure stained surface mucus cells 

blue and gland mucus cells brown (Figs. 13B, D). The surface mucus gel layer consistently 

shows the laminated structure in the samples of gastric corpus mucosa from both the 

lafutidine positive and negative groups (Figs. 13B, D). The mucin produced by human 

gastric gland mucus cells appears to function as a natural antibiotic, protecting the host from 

H. pylori (Kawakubo et al., 2004). Figure 13 demonstrates that after administration of 

lafutidine there is thickening of the surface mucus gel layer. In other studies using 

experimental animals, lafutidine has been shown to possess gastroprotective properties, 

such as strengthening the mucus gel layer, apart from its antisecretory activity (Ichikawa et 

al., 1994a; Onodera et al., 1999a; Sato et al., 2003).  
 

 

Fig. 13. Surface mucus gel layer of the human gastric mucosa from (A, B) lafutidine positive 
and (C, D) lafutidine negative groups stained with (A, C) HE and (B, D) GOTS-PCS.  

5.4 Mechanisms of gastroprotective actions 
Although the exact mechanisms that underlie the gastroprotective activity of the second-
generation H2-receptor antagonists are not well understood, recent findings suggest that the 
activation of capsaicin-sensitive sensory neurons is associated with their maintenance of 
gastric mucosal integrity (Fukushima et al., 2006; Harada et al., 2007; Murashima et al., 2009; 
Sugiyama et al., 2008). The gastrointestinal tract is known to possess a rich neural network, 
among which afferent neurons of extrinsic origin are reported to operate as the emergency 
protective system. The discovery of these sensory neuron functions was made possible by 
capsaicin, a pharmacological tool with which the activity of certain primary afferent neurons 
can be manipulated selectively. Capsaicin is an excitotoxin that acutely stimulates a group of 
afferent neurons with unmyelinated (C) or thinly myelinated (Aδ) nerve fibers. This 
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excitotoxic action is restricted to neurons with C- and Aδ-fibers because only these cells 
express receptor-binding sites (vanilloid receptor type 1: VR1) for capsaicin and structurally 
related ligands. The mammalian stomach, particularly the submucosa, is densely innervated 
with capsaicin-sensitive afferent neurons. These neurons not only serve a sensory and 
afferent role, but also display a local effector function initiated by the release of 
neuropeptide transmitters, such as calcitonin gene-related peptide (CGRP) and substance P, 
from their peripheral nerve endings. CGRP is reported to exhibit significant mucosal 
protective roles in the gastrointestinal tract (Ichikawa et al., 2000c; Mizuguchi et al., 2005; 
Ohno et al., 2008). The action of CGRP is in part mediated by endogenous NO. 
The gastroprotective action of lafutidine has been reduced or abolished by treatment with 
tetrodotoxin, CGRP8-37, or chemical defunctionalisation of afferent nerves (Mimaki et al., 
2002; Onodera et al., 1999a), indicating that capsaicin-sensitive nerves contribute 
significantly to the mechanisms underlying the actions of lafutidine (Nishihara et al., 2002). 
Moreover, lafutidine has been shown to significantly increase CGRP release in both 
experimental animal models and humans (Harada & Okajima, 2007; Nishihara et al., 2002; 
Ikawa et al., 2006; Shimatani et al., 2006). Several reports indicate that the VR1 of capsaicin-
sensitive afferent nerves may not contribute the CGRP release by lafutidine, suggesting the 
existence of yet unidentified sites for lafutidine other than VR1 on these nerves (Fukushima 
et al., 2006; Nishihara et al., 2002). The gastroprotective effects of lafutidine are decreased by 
treatment with NO synthase inhibitors or NO antidotes (Nishihara et al., 2002; Ichikawa et 
al., 1998), indicating the involvement of NO generation in lafutidine function. Similar results 
have been obtained with another second-generation H2-receptor antagonist, roxatidine 
(Ichikawa et al., 1997, 1999). 
Lafutidine has been shown to enhance the healing of gastrointestinal mucosal lesions in a 
manner independent of its antacid secretory action (Kato et al., 2000; Onodera et al., 2004). 
However, lafutidine by itself does not have any direct effects on cell migration or 
proliferation. An earlier study demonstrated that lafutidine does not influence the impaired 
healing of epithelial wounds in RGM1 cells under in vitro conditions without neuronal 
innervations (Murashima et al., 2009), again confirming the importance of sensory neurons 
in the healing-promoting action of this agent. Several studies show that luminal lafutidine 
stimulates capsaicin-sensitive afferent nerves via presumably direct diffusion rather than 
after its absorption from intestine followed by via circulation, suggesting the rapid local 
diffusion reaching to the afferents before H2-receptor blockade from the circulation 
(Onodera et al., 1999b; Nagahama et al., 2003). Second-generation H2-receptor antagonists 
such as lafutidine are thought to facilitate capsaicin-sensitive sensory afferent nerves and 
exert gastroprotective effects through CGRP and in part via NO release in the stomach. 

6. Summary and perspectives 

The gastric mucus barrier constituted by the layer of viscous mucus is crucial to the defense 
of gastric mucosa. In this review, we have shown a new perspective on the ability of certain 
therapeutic agent for gastritis to strengthen gastric mucosal defense system. The 
development of mAbs against the carbohydrate moiety of gastric mucin with a different 
specificity is really a significant event. With the use of these mAbs, it would be possible to 
separately identify and determine the various mucins. Through the establishment of the 
mucus determining method, which utilizes mAbs, the roles of the mucus with different 
origins as protecting factors would be made clearer. 
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Second-generation H2-blockers offer the possibility of more effective prevention of gastritis 
through the activation of mucosal defense mechanisms (Fig. 14). The structural 
requirements for mucosal protective activity in these antagonists were shown to be the 
amide structure and six-membered aromatic ring, such as benzene and pyridine derivatives. 
The cardinal chemical features of roxatidine for the activation of mucin biosynthesis are the 
appropriate length of the flexible chain between the amide structure and the aromatic ring 
system bearing the methylpiperidinyl group at the meta position. Although the exact 
mechanism underlying the gastroprotective action associated with these agents is unknown, 
capsaicin-sensitive nerves and CGRP/NO pathway are considered responsible for their anti-
ulcer effects in experimental animal models of various gastric mucosal injuries. These 
mechanisms are also involved in the cytoprotective properties of gastrin, which is a 
physiologically important bioactive peptide (Ichikawa et al., 1998, 2000c). Taken together, 
these findings suggest the gastroprotective effects of second-generation H2-blockers may be 
of physiological relevance. 
Enhanced understanding of the mechanisms of gastric mucosal defense and injury provides 
new insight into potential therapeutic targets, which contributes towards the development 
of more well tolerated and more effective therapies. 
 

 

Fig. 14. Dual action of second-generation H2-blockers. 
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kinetics, and H. pylori lipopolysaccharide, as well as the roles of several bacterial genes (cagA, cagT, vacA and

dupA) as virulence factors in gastric cancer, and the gastrokine-1 protein in cancer progression.
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