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1. Introduction 

In Western societies, Alzheimer's disease (AD) is epidemic (de la Monte, Neusner et al. 
2009). For decades, the prevailing theories about AD pathogenesis focused on the roles of 
hyper-phosphorylated and ubiquitinated cytoskeletal proteins in neuronal perikarya and 
dystrophic fibers, and increased expression and abnormal processing of amyloid-beta 
precursor protein (AβPP), leading to AβPP-Aβ peptide deposition in neurons, plaques, and 
vessels, as mediators of neuronal loss, neuritic pathology, synaptic disconnection, and loss 
of plasticity.  Apart from aging, which is the most dominant risk factor, it has not been 
possible to define convincing roles for AβPP-Aβ or phospho-tau accumulations as principal 
driving forces of neurodegeneration that could account for all of the protean manifestations 
of AD, including neuro-inflammation, mitochondrial dysfunction, white matter fiber loss, 
and neurotransmitter deficiencies.  This point is particularly relevant with respect to 
sporadic AD, which accounts for the vast majority of cases.  However, it is entirely possible 
that the focal points of 30+ years of intense research on the accumulation, abnormal 
processing, and misfolding of essentially two proteins are somewhat misplaced since these 
process could be the end-result rather than the cause of the pathophysiological processes 
that trigger and propagate the neurodegeneration cascade.  
Growing evidence supports the concept that AD is actually a metabolic disease in which, 
neurodegeneration is mediated by impairments in brain glucose utilization and energy 
production that begin early in the course of disease, and worsen with its progression 
(Frolich, Blum-Degen et al. 1998; Hoyer 2002; Hoyer 2004; Rivera, Goldin et al. 2005; Steen, 
Terry et al. 2005). AD-associated reductions in glucose utilization and energy metabolism 
are accompanied by increased oxidative stress and neuro-inflammation, which appear to be 
driven by insulin and insulin-like growth factor (IGF) resistance in the brain. AD can be 
regarded as a brain-specific form of diabetes mellitus, i.e. Type 3 diabetes. This chapter 
reviews the data showing that sporadic AD in humans is associated with progressive 
impairments in brain insulin and IGF signaling, and contrasts the roles of peripheral insulin 
resistance disease states versus primary brain insulin/IGF resistance using data from both 
human and experimental animal studies. Epidemiological and experimental evidence 
supporting exposures, particularly to environmental toxins such as nitrosamines, rather 
than only genetic factors as causal in the pathogenesis of AD are discussed. Dietary and 
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lifestyle changes that could reduce risk for developing insulin resistance diseases, including 
diabetes mellitus, obesity, non-alcoholic steatohepatitis and neurodegeneration, are 
discussed as public health strategies that must be considered in earnest. 

2. Alzheimer's disease and brain glucose metabolism 

Metabolic abnormalities in AD have been linked to deficits in brain insulin and insulin-like 
growth factor (IGF) signaling through pathways that are critical for maintaining neuronal 
survival, energy production, gene expression, and plasticity (Frolich, Blum-Degen et al. 
1998). Thorough consideration of the pleitropic actions of insulin and IGFs helps to clarify 
how impairments in these signal transduction networks could account for many, if not all of 
the critical features of AD-type neurodegeneration, including increased: 1) activity of 
kinases that aberrantly phosphorylate tau; 2) expression of AβPP and accumulation of 
AβPP-Aβ; 3) oxidative and endoplasmic reticulum (ER) stress; 4) the generation of reactive 
oxygen and reactive nitrogen species that damage proteins, RNA, DNA, and lipids; 5) 
mitochondrial dysfunction; and 6) activation of pro-inflammatory and pro-death cascades. 
Moreover, impairment or inhibition of insulin/IGF signaling disrupts cholinergic 
homeostasis, thereby compromising one of the most important neurotransmitter systems 
utilized for neuronal plasticity, memory, and cognition.  

3. Brain insulin and insulin-like growth factor problems in AD 

The concept that AD could represent a metabolic disease stemmed from the findings that 
deficits in cerebral glucose utilization are detectable in the early stages of disease 
(Adolfsson, Bucht et al. 1980; Fujisawa, Sasaki et al. 1991; Caselli, Chen et al. 2008; Mosconi, 
Pupi et al. 2008; Mosconi, Mistur et al. 2009; Langbaum, Chen et al. 2010), and as AD 
progresses, so do the metabolic abnormalities (Hoyer and Nitsch 1989; Hoyer, Nitsch et al. 
1991).  Although several studies provided initial clues that insulin resistance could be an 
important feature of AD (Frolich, Blum-Degen et al. 1998; Hoyer 2002; Hoyer 2004), the 
human postmortem brain studies were critical for definitively establishing that both insulin 
resistance and insulin deficiency in the brain were consistent and fundamental 
abnormalities in AD (Rivera, Goldin et al. 2005; Steen, Terry et al. 2005). Gene expression 
and receptor binding studies showed that in AD, brain insulin gene expression, insulin 
levels, insulin receptor levels, and insulin receptor binding were all impaired. Insulin 
resistance is manifested by reduced levels of insulin receptor binding and decreased 
responsiveness to insulin/IGF stimulation, while the trophic factor deficiency is associated 
with reduced levels of insulin polypeptide and gene expression in brain and cerebrospinal 
fluid (Blum-Degen, Frolich et al. 1995; Blass, Gibson et al. 2002; Hoyer 2004; Hoyer 2004; 
Rivera, Goldin et al. 2005; Steen, Terry et al. 2005). To consolidate these concepts, we 
proposed that AD be referred to as, “Type 3 diabetes” because it represents the 
conglomerate effects of Type 1 (insulin deficiency) and Type 2 (insulin resistance) diabetes, 
whereby the consequential metabolic abnormalities are largely restricted to the brain 
(Rivera, Goldin et al. 2005; Steen, Terry et al. 2005).   
It has been well-established that insulin signaling mechanisms parallel, interact, or cross-talk 
with related insulin-like growth factor (IGF) pathways in various organ-systems, including 
the brain (de la Monte and Wands 2005). Despite apparent redundancy, insulin, IGF-1 and 
IGF-2 stimulations have differential effects on various target cells in the brain, and at 
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different stages of development, maturation, and aging (de la Monte and Wands 2005). 
Ordinarily, insulin and IGF signaling networks overlap and complement one another, 
enabling deficits in one pathway to be compensated for by increased activation of one or 
both of the others, and thereby provide a kind of safety net for supporting critical neuronal 
and glial functions in the brain. Therefore, with regard to neurodegenerative diseases, it was 
of interest to determine if the impairments in insulin signaling networks in AD were 
selective, or whether they broadly affected IGF pathways as well.  
The human postmortem studies demonstrated that, like insulin, AD is associated with 
significant impairments in IGF-1 and IGF-2 signaling mechanisms in the brain, and that as 
dementia progresses, so do the deficits in IGF signaling networks (Rivera, Goldin et al. 2005; 
Steen, Terry et al. 2005). AD-associated deficits in IGF signaling are marked by reduced 
expression of IGF trophic factors and receptors, and decreased binding to IGF receptors, 
reflecting IGF deficiency and resistance. Since the impairments in IGF signaling mechanisms 
develop and progress simultaneously with declines in insulin signaling, the scaffolding 
needed to support a broad range of functions, including cerebral glucose utilization, 
neuronal survival, myelin maintenance, metabolism, neurotransmitter function, and 
plasticity gets destroyed, practically en masse. Consequences include reductions in the 
expression of choline acetyltransferase, tau, and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) genes, which mediate cholinergic/cognitive, neuronal 
cytoskeletal, and metabolic functions (Rivera, Goldin et al. 2005).  Insulin/IGF resistance-
mediated impairments in energy metabolism promote oxidative stress, accumulation of 
reactive oxygen species (ROS), DNA damage, and mitochondrial dysfunction, all of which 
drive pro-apoptosis, pro-inflammatory, and pro-AβPP-Aβ cascades.  

4. Impaired insulin/IGF signaling and tau pathology in AD 

Neuronal cytoskeletal lesions that correlate with severity of dementia in AD include, 
neurofibrillary tangles, dystrophic neurites, and neuropil threads, which contain aggregated 
and ubiquitinated insoluble fibrillar tau (Duyckaerts, Delatour et al. 2009; Takashima 2009). 
In AD, hyperphosphorylation of tau, a microtubule-associated protein, is mediated by 

inappropriate activation of kinases, such as glycogen synthase kinase 3 (GSK-3). Hyper-
phosphorylated tau is rendered highly susceptible to misfolding and self-aggregating into 
insoluble fibrils, generating dementia-associated cytoskeletal lesions (Iqbal, Liu et al. 2009). 
These degenerative processes lead to disruption of the neuronal cytoskeletal network and 
synaptic disconnection (Iqbal, Liu et al. 2009). In addition, pre-fibrillar tau aggregates to 
form soluble oligomers that are neurotoxic and can cause synaptic disconnection and 
neuronal death (Takashima 2010). Ubiquitination of hyper-phosphorylated tau (Arnaud, 
Robakis et al. 2006), along with dysfunction of the ubiquitin-proteasome system (Oddo 
2008), result in further accumulation of insoluble fibrillar tau, oxidative stress, ROS 
generation, and cell loss in AD (Mandelkow, Stamer et al. 2003).   
Brain insulin/IGF resistances contribute to the development and accumulation of dementia-
associated neuronal cytoskeletal lesions (de la Monte, Ganju et al. 2000; de la Monte, Neely 
et al. 2001; de la Monte and Wands 2002; Xu, Eun Yeon et al. 2003) because tau gene 
expression and phosphorylation are regulated by insulin and IGF (Schubert, Brazil et al. 
2003; Schubert, Gautam et al. 2004), and brain insulin and IGF resistances decrease signaling 
through phosphoinositol-3-kinase (PI3K), Akt (Schubert, Brazil et al. 2003; Schubert, Gautam 

et al. 2004), and Wnt/-catenin (Doble and Woodgett 2003), which result in increased 
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activation of GSK-3 (Nishimura, Yu et al. 1999; De Ferrari and Inestrosa 2000; Fraser, Yu et 
al. 2001; Mudher, Chapman et al. 2001; Grilli, Ferrari Toninelli et al. 2003). In addition, tau 
hyper-phosphorylation in AD is mediated by inhibition of protein phosphatases 1 and 2A 
(Hanger, Seereeram et al. 2009; Iqbal, Liu et al. 2009; Morales, Farias et al. 2010), which are 
regulated by insulin/IGF. Besides hyper-phosphorylation, tau pathology in AD is mediated 
by impaired tau gene expression due to reduced insulin and IGF signaling (de la Monte, 
Chen et al. 2003). Consequences include failure to generate sufficient amounts of normal 
soluble tau protein, vis-a-vis accumulation of hyper-phosphorylated insoluble fibillar tau, 
and attendant exacerbation of cytoskeletal collapse, neurite retraction, and synaptic 
disconnection.   

5. Insulin/IGF resistance and amyloid-beta (Aβ) accumulation and 
neurodegeneration 

Dysregulated expression and processing of amyloid precursor protein (AβPP) results in 
accumulation of neurotoxic AβPP-Aβ (Aβ) oligomeric fibrils and insoluble aggregated 
fibrils (plaques) in the brain.  These lesions arise secondary to increased AβPP gene 
expression and abnormal AβPP proteolysis, leading to the generation of 40 or 42 amino acid 
length Aβ peptides that can aggregate. In sporadic AD, which accounts for 90% or more of 
the cases, the causes of Aβ accumulation and toxicity are not known, but over the past few 
years, the role of impaired insulin/IGF signaling has come into consideration. One 
argument is that Aβ toxicity causes insulin resistance. The opposing argument is that brain 
insulin resistance with attendant oxidative stress and neuro-inflammation, promotes Aβ 
accumulation and toxicity. The findings that insulin stimulation promotes trafficking of Aβ 
from the trans-Golgi network to the plasma membrane, stimulates Aβ secretion (Watson, 
Peskind et al. 2003), and inhibits Aβ intracellular accumulation (Gasparini, Gouras et al. 
2001; Gasparini, Netzer et al. 2002) support the latter position.  Moreover, experimental data 
indicate that impaired insulin signaling disrupts the processing of AβPP and clearance of 
Aβ (Messier and Teutenberg 2005), which again supports a causal role for brain insulin 
resistance.  On the other hand, it is important to recognize that AD, and all other 
neurodegenerative diseases represent the effects of cascades that cause diseases to progress 
over time. Therefore, it is essential that we understand both initiating and propagating 
factors in disease because treatments can be preventive or interventional. The findings that: 
1) Aβ disrupts insulin signaling by competing with insulin, or reducing the affinity of 
insulin binding to its own receptor (Ling, Martins et al. 2002; Xie, Helmerhorst et al. 2002); 2) 
AβPP oligomers inhibit neuronal transmission of insulin-stimulated signals by desensitizing 
insulin receptors; and 3) intracellular AβPP-Aβ interferes with PI3 kinase activation of Akt-

mediated survival signaling and increases GSK-3 activation (promoting tau hyper-
phosphorylation), suggest that dysregulation of AβPP expression and processing can 
exacerbate insulin resistance.  

6. Insulin/IGF resistance, oxidative stress, and metabolic dysfunction in AD 

Deficits in cerebral glucose utilization and energy metabolism occur very early in the course 
of AD (Iwangoff, Armbruster et al. 1980; Sims, Bowen et al. 1980; Hoyer 2004).  Glucose 
uptake and utilization in brain are dependent upon glucose transport by glucose transporter 
4 (GLUT4), which is stimulated by insulin. Therefore, impairments in brain insulin 
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responsiveness could account for the deficits in brain glucose utilization and energy 
metabolism in AD. Deficiencies in energy metabolism correlate with the increased levels of 
oxidative stress, mitochondrial dysfunction, and pro-inflammatory cytokine activation in 
AD brains (Hoyer and Lannert 1999; Hoyer, Lee et al. 2000; de la Monte and Wands 2002).  
Oxidative stress leads to increased generation and accumulation of reactive oxygen (ROS) 
and reactive nitrogen species (RNS) that attack subcellular organelles, yielding DNA, RNA, 
lipid, and protein adducts that further compromise the structural and functional integrity of 
neurons. Consequences include disruption of the neuronal cytoskeleton, synaptic 
disconnection, neurotransmitter deficits, impaired neuronal plasticity, and reduced 
neuronal survival.  
Mitochondrial dysfunction reduces ATP production, increases ROS, and triggers neuro-
inflammatory responses through the activation of microglia and astrocytes. This cascade is 
propagated by neuro-inflammation inhibiting insulin/IGF signaling, and increasing stress, 
organelle dysfunction, pro-apoptosis signaling, AβPP expression, and aberrant AβPP 
cleavage with AβPP-Aβ deposition and toxic fibril formation (Lorenzo and Yankner 1996; 
Niikura, Hashimoto et al. 2002; Chen, Xu et al. 2003; Tsukamoto, Hashimoto et al. 2003; 
Blasko, Stampfer-Kountchev et al. 2004; Eikelenboom and van Gool 2004; Tuppo and Arias 
2005). Persistence of oxidative stress leads to constitutive activation of kinases e.g. GSK-3β, 
that promote hyper-phosphorylation of tau. Therefore, oxidative stress and energy 
imbalances stemming from brain insulin/IGF resistance contribute to the cascade of 
neuronal loss, AβPP toxicity, tau cytoskeletal pathology, and neuro-inflammation (de la 
Monte and Wands 2005; Rivera, Goldin et al. 2005; de la Monte, Tong et al. 2006).  

7. Peripheral versus central mediators of brain insulin/IGF deficiency and 
resistance 

The molecular and biochemical abnormalities in AD brains closely mimic those present in 
diabetes mellitus; however, until recently, the vast majority of sporadic AD cases had no 
association with diabetes. In fact, prior to 1980, the epidemiological trends for AD 
(increasing prevalence) were opposite those of diabetes mellitus (declining as a cause of 
death) (de la Monte, Neusner et al. 2009). Even today, most cases of AD arise in the absence 
of type 2 diabetes, obesity, or metabolic syndrome, indicating that insulin/IGF resistance 
and deficiency can selectively involve the brain. Similarly, brain-only insulin and/or IGF 
resistance with cognitive impairment and AD-type neurodegeneration can be produced by 
intracerebroventricular (ICV) administration of small interfering (si)-RNA duplexes 
targeting the insulin or IGF receptors (see below), genetic depletion of insulin/IGF 
receptors, or ICV treatment with streptozotocin (STZ), which destroys insulin and IGF 
receptor bearing cells (Biju and Paulose 1998; Lannert and Hoyer 1998; Hoyer, Lannert et al. 
1999; Hoyer, Lee et al. 2000; Nitta, Murai et al. 2002; Weinstock and Shoham 2004; Lester-
Coll, Rivera et al. 2006; Grunblatt, Salkovic-Petrisic et al. 2007; Labak, Foniok et al. 2010; de 
la Monte, Tong et al. 2011). These studies support a primary role for brain insulin/IGF 
resistance and deficiency as the cause of AD-type neurodegeneration. 
Within the past 2-3 decades, morbidity and mortality rates have trended upward for diabetes 
and other insulin resistance diseases, including metabolic syndrome (dyslipidemic states), 
non-alcoholic steatohepatitis (NASH), and obesity, despite improvements in medical 
treatment (de la Monte, Neusner et al. 2009). At the same time, the increasing overlap between 
cognitive impairment or AD and peripheral insulin resistance diseases has raised concerns 
about the potential contributions or even causal roles of obesity and diabetes mellitus in 
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neurodegeneration and dementia (Qiu, De Ronchi et al. 2007; de la Monte, Neusner et al. 2009).  
Correspondingly, a number of human and experimental animal studies have demonstrated 
significant associations between peripheral insulin resistance states, obesity, or diabetes 
mellitus and brain insulin/IGF resistance, mild cognitive impairment (MCI), dementia, or AD 
(Craft 2005; Rivera, Goldin et al. 2005; Steen, Terry et al. 2005; Craft 2006; de la Monte, Tong et 
al. 2006; Lester-Coll, Rivera et al. 2006; Craft 2007). The debate over whether AD and cognitive 
impairment are caused by peripheral, brain, or both forms of insulin/IGF resistance is on-
going, and essentially focused on three main questions: 1) Do T2DM and other peripheral 
insulin resistance states cause neurodegeneration, including AD? 2) How do T2DM and other 
peripheral insulin resistance disease states serve as co-factors in cognitive impairment and 
neurodegeneration? and 3) Is AD fundamentally a brain-specific form of diabetes mellitus? 
These questions are addressed below. 

7.1 Potential roles of obesity and T2DM in cognitive impairment and 
neurodegeneration 
Epidemiologic studies have shown that individuals with glucose intolerance, deficits in 
insulin secretion, or T2DM have a significantly increased risk for developing mild cognitive 
impairment (MCI) or AD-type dementia. Longitudinal studies also support roles for T2DM 
(Pasquier, Boulogne et al. 2006; Verdelho, Madureira et al. 2007) and obesity/dyslipidemic 
disorders (Martins, Hone et al. 2006) in the development of MCI, dementia, or AD (Haan 
and Wallace 2004; Luchsinger and Mayeux 2004; Ristow 2004; Launer 2005; Pasquier, 
Boulogne et al. 2006; Luchsinger, Reitz et al. 2007; Whitmer 2007).  Despite these provocative 
observations, and an independent study demonstrating higher frequencies of peripheral 
insulin resistance in AD than in normal aging (Janson, Laedtke et al. 2004), postmortem 
human brain studies detected similar rates of AD among diabetics and controls (Nelson, 
Smith et al. 2008).  Moreover, although experimental chronic high fat diet (HFD) feeding 
and diet induced obesity (DIO) with T2DM cause cognitive impairment with deficits in 
spatial learning and memory (Winocur and Greenwood 2005; Winocur, Greenwood et al. 
2005), the resulting brain atrophy with brain insulin resistance, neuro-inflammation, 
oxidative stress, and deficits in cholinergic function are relatively mild and lack most of the 
important structural lesions that characterize AD pathology (Moroz, Tong et al. 2008; Lyn-
Cook, Lawton et al. 2009). Therefore, observations in both humans and experimental models 
suggest that while obesity or T2DM can be associated with cognitive impairment, brain 
atrophy, and some aspects of AD-type neurodegeneration, these peripheral insulin 
resistance disease states are not sufficient to cause AD. Instead, the findings suggest that 
T2DM, obesity, and probably other peripheral/systemic insulin resistance states serve as co-
factors that contribute to the pathogenesis or progression of neurodegeneration. The 
significance of this conclusion is that therapeutic strategies designed to treat T2DM, obesity, 
and systemic insulin resistance could help slow the progress or reduce the severity of AD, 
but will not likely prevent it altogether. Correspondingly, studies have already shown that 
treatment with hypoglycemic or insulin sensitizer agents can be protective for reducing the 
incidence and severity of AD (Luchsinger 2010). 

7.2 Factors mediating cognitive impairment and neurodegeneration with systemic 
insulin resistance syndromes  
Since it is clear that peripheral insulin resistance disease states can significantly and 
adversely alter cognitive function and contribute to the progression of AD-type 
neurodegeneration, efforts should be made to understand which aspects of peripheral 
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insulin/IGF resistance are responsible for these effects. The rationale is that preventive 
measures could include treatments that ameliorate specific consequences of peripheral 
insulin resistance diseases, and the use of biomarkers that identify individuals who are at 
increased risk for developing MCI or AD. Moreover, treatments that restore peripheral 
insulin responsiveness could be used as neuroprotective agents as well. The ensuing 
discussion focuses on the roles of cerebral vascular disease and neurotoxic lipids. 

7.2.1 Cerebral microvascular disease 
How T2DM, obesity, and peripheral insulin resistance contribute to MCI, dementia, and 
neurodegeneration is not well understood. Factors under investigation include, chronic 
hyperglycemia, peripheral insulin resistance, oxidative stress, accumulation of advanced 
glycation end-products, increased expression and activation of insulin degrading enzyme, 
increased production of pro-inflammatory cytokines, and cerebral microvascular disease 
(Whitmer 2007). The potential contributions of cerebral microvascular disease require 
particular attention because chronic ischemic injury is an established mechanism of 
neurodegeneration, and diabetes mellitus causes significant microvascular disease. Chronic 
ischemic encephalopathy in AD ranges from multifocal ischemic lesions, to infarcts 
strategically localized in structures that are typically targeted for AD neurodegeneration, to 
leukoaraiosis with attrition of white matter fibers (Etiene, Kraft et al. 1998).  Magnetic 
resonance imaging (MRI) studies have shown that lacunes and ischemic atrophy of medial 
temporal lobe structures (AD targets) increase with duration and progression of T2DM 
(Korf, White et al. 2006). Hyper-insulinemia and inheritance of the ApoE-ε4 allele also 
contribute to cerebrovascular disease and increase risk of AD progression. Insulin resistance 
and hyperinsulinemia can injure blood vessels and cause intimal thickening, scarring, and 
leakiness (Huang, Zou et al. ; Haudenschild, Van Sickle et al. 1981; Hotta, Taguma et al. 
1996; Kubota, Kubota et al. 2003; Kincaid-Smith 2004; Matsumoto, Nakao et al. 2005). A 
recent study demonstrated that chronic ischemic leukoencephalopathy and leukoaraiosis in 
cerebral autosomal dominant arteriopathy with subacute infarcts and leukoencephalopathy 
(CADASIL) is associated with white matter microvascular insulin and IGF resistance 
(Brennan-Krohn, Salloway et al. 2010). White matter atrophy and fiber degeneration in 
CADASIL are associated with marked narrowing of vessel lumens, fibrotic destruction of 
vessel walls, and perivascular tissue attrition. In effect, the loss of vascular 
elasticity/compliance combined with compromised flow over time lead to chronic ischemic 
leukoencephalopathy. It is noteworthy that one of the earliest gross abnormalities in AD is 
white matter atrophy and fiber loss (de la Monte 1989). These findings suggest that, in 
addition to peripheral insulin resistance, systemic diseases that promote end-arterial 
resistance, e.g. hypertension could contribute to neurodegeneration by promoting cerebral 
microvascular disease. In fact, these mechanisms probably underlie the pathophysiology of 
vascular dementia.  Future studies are needed to determine the degree to which reduced 
cerebral microvascular expression of insulin and IGF receptors correlates with cognitive 
impairment and neurodegeneration in AD and T2DM. 

7.2.2 Neurotoxic lipids and neurodegeneration 
Several studies have shown that cognitive impairment and neuropsychiatric dysfunction 
occur with liver disease caused by various agents, including alcohol abuse, obesity, chronic 
Hepatitis C virus infection, Reyes syndrome, or nitrosamine exposure (Schmidt, Gallo et al. 
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2005; Elwing, Lustman et al. 2006; Weiss and Gorman 2006; Karaivazoglou, Assimakopoulos 
et al. 2007; Loftis, Huckans et al. 2008; Perry, Hilsabeck et al. 2008; Kopelman, Thomson et al. 
2009).  These disease states are linked by the presence of hepatic steatosis or steatohepatitis 
with hepatic insulin resistance, endoplasmic reticulum (ER) stress, and increased generation 
of cytotoxic sphingolipids, including ceramides (de la Monte, Tong et al. 2006; Lester-Coll, 
Rivera et al. 2006; Moroz, Tong et al. 2008; Lyn-Cook, Lawton et al. 2009; Tong, Neusner et 
al. 2009; Tong, Longato et al. 2010). Mechanistically, inflammation, superimposed on disease 
states that promote lipid storage in hepatocytes, results in progressive ER stress, oxidative 
damage, mitochondrial dysfunction, and lipid peroxidation, which together promote 
hepatic insulin resistance (Capeau 2008; Kraegen and Cooney 2008). Hepatic insulin 
resistance stimulates lipolysis (Kao, Youson et al. 1999), and lipolysis leads to increased 
generation of toxic lipids e.g. ceramides, which further impair insulin signaling, 
mitochondrial function, and cell viability (Holland and Summers 2008; Kraegen and Cooney 
2008; Langeveld and Aerts 2009).   
Ceramides are lipid signaling molecules (Summers 2006) that cause insulin resistance (Liu, 

Obeid et al. 1997; Chalfant, Kishikawa et al. 1999; Arboleda, Huang et al. 2007) by activating 

pro-inflammatory cytokines (Summers 2006; Van Brocklyn 2007; Bryan, Kordula et al. 2008) 

and inhibiting signaling through PI3 kinase-Akt (Hajduch, Balendran et al. 2001; Bourbon, 

Sandirasegarane et al. 2002; Powell, Hajduch et al. 2003; Nogueira, Anhe et al. 2008).  With 

steatohepatitis, hepatic and peripheral insulin resistance are accompanied by local and 

peripheral increases in ceramide levels (de la Monte, Tong et al. 2006; Lester-Coll, Rivera et 

al. 2006; Moroz, Tong et al. 2008; Tong, Neusner et al. 2009; Tong, Longato et al. 2010). 

Further studies showed that in vitro treatments with toxic ceramides cause brain insulin 

resistance, oxidative stress, and metabolic dysfunction (Tong and de la Monte 2009), and 

that in vivo administration (i.p.) of toxic ceramides causes cognitive-motor deficits, brain 

insulin resistance, oxidative stress, and neurodegeneration, similar to the findings in AD-

type neurodegeneration.  These findings led to the hypothesis that, in the settings of obesity, 

T2DM, and various peripheral insulin resistance states, cognitive impairment can be 

mediated via a liver-brain axis of neurodegeneration (de la Monte, Longato et al. 2009; de la 

Monte, Longato et al. 2009; de la Monte, Tong et al. 2010). We propose that livers with 

steatohepatitis, insulin resistance, and ER stress produce toxic lipids, in particular 

ceramides, that traffic through the circulation, and due to their lipid-soluble nature, cross 

the blood-brain barrier and exert neurotoxic and neurodegenerative effects by impairing 

brain and cerebral microvascular insulin signaling. This mechanism could account for the 

parallel and overlapping epidemics of peripheral systemic (T2DM, obesity, non-alcoholic 

steatohepatitis, metabolic syndrome) and brain (AD) insulin resistance diseases (de la 

Monte, Neusner et al. 2009).  

7.3 Primary brain insulin/IGF resistance as the key pathogenic factor in AD-type 
neurodegeneration 
The above discussion provides ample evidence that peripheral insulin resistance diseases 
can significantly contribute to the pathogenesis of neurodegeneration mediated through 
cerebral micro-vascular disease and/or liptoxicity effectuated via a liver-brain axis. 
However, on the whole, the neuro-behavioral, structural, biochemical, and molecular 
abnormalities produced by peripheral insulin resistance disease states are relatively modest 
compared with AD, reinforcing the concept that additional factors are needed to cause the 
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full-blown disease. To better understand the underlying problems associated with AD and 
why peripheral insulin resistance diseases are themselves not sufficient to cause AD per se, 
the salient abnormalities in human AD brains requires scrutiny. Moreover, studies designed 
to produce states of brain but not peripheral insulin resistance must be examined and 
compared to both AD and the secondary effects of diabetes mellitus and other peripheral 
insulin resistance diseases.  

7.3.1 Alzheimer's is a brain diabetes mellitus (type 3 diabetes) 
A convincing argument could be made that AD, in its pure configuration, represents a brain 
form of diabetes mellitus (Rivera, Goldin et al. 2005; Steen, Terry et al. 2005) given that it is 
associated with progressive brain insulin/IGF resistance in the absence of T2DM, obesity, or 
peripheral insulin resistance (Rivera, Goldin et al. 2005; Steen, Terry et al. 2005; Craft 2006; 
Craft 2007). Moreover, postmortem studies demonstrated that the molecular, biochemical, 
and signal transduction abnormalities in AD are nearly identical to those that occur in both 
T1DM and T2DM (Nicolls 2004; Rivera, Goldin et al. 2005; Steen, Terry et al. 2005; Pasquier, 
Boulogne et al. 2006; Marchesini and Marzocchi 2007; Papandreou, Rousso et al. 2007; 
Pessayre 2007; Yeh and Brunt 2007). This led us to suggest the term, ‘Type 3 diabetes’ to 
better characterize the nature and pathophysiology of AD (Rivera, Goldin et al. 2005; Steen, 
Terry et al. 2005). These studies beg the question as to whether inhibition of brain 
insulin/IGF signaling is sufficient to cause neurodegeneration, particularly of the AD type? 
Alternatively, are factors other than brain insulin/IGF resistance required to mediate 
neurodegeneration? In this regard, one point that seems to get lost from the discussion is 
that IGF resistance and deficiency are part of the whole story, as was well documented in 
the human brain studies.  With this in mind, data generated by siRNA inhibition of insulin, 
IGF-1, or IGF-2 receptor genes are presented to demonstrate the degree to which their 
adverse effects mimic AD. In addition, results of brain diabetes models produced by 
administration of streptozotocin are discussed in relation to human sporadic AD. 

7.3.2 Experimental targeting of neuronal insulin/IGF receptors — in vitro model of 
neuronal insulin/IGF resistance 

7.3.2.1 Methods  

In vitro model. Primary cerebellar granule neuron cultures were generated from postnatal day 6 
(P6) Long Evans rats (de la Monte and Tong 2009). Cerebellar granule neurons are a suitable 
model because the cells are non-transformed, they can be efficiently transfected with non-viral 
vectors, and they are highly dependent upon insulin and IGF signaling for function. In 
addition, the cerebellar cortex is a target of neurodegeneration in various diseases including, 
AD (Cole, Neal et al. 1993; Ishii, Sasaki et al. 1997; Larner 1997; Wegiel, Wisniewski et al. 1999). 
Freshly isolated cerebellar granule cells were transfected with commercially prepared small 
interfering RNA duplexes (si-RNA) targeting insulin receptor (siInR) [INSR NM_017071], IGF-
1 receptor (siIGF-1R) [IGF1R NM_052807], IGF-2R (siIGF-IIR) [IGF2R NM_012756], or no 
specific gene sequences (Scrambled; si-Scr) [NM D-001210-01-20] using the Amaxa "v" 
nucleofector cell line reagents and the Amaxa nucleofector apparatus (Amaxa, Inc. 
Gaithersburg, MD).  With this approach, we achieved 75-90% transfection efficiencies as 
determined by fluorescence microscopic imaging of cells co-transfected with recombinant 
plasmid expressing green fluorescent protein (GFP). Cells were seeded into 96-well plates to 
measure viability, mitochondrial function, and immunoreactivity, or 6-well plates to measure 
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gene expression after 24 or 48 hours in culture.  Cell density was determined by labeling the 
cultures with 10 µg/ml Hoechst H33342 in Tris-buffered saline (TBS), and measuring 
fluorescence (Ex360 nm/Em460 nm) in a Spectramax M5 microplate reader (Molecular 
Dynamics, Inc., Sunnyvale, CA). Mitochondrial function was measured using the 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay as previously described 
(de la Monte, Neely et al. 2001). Absorbances were measured at 540 nm in Spectramax M5 
microplate reader. Gene expression and immunoreactivity were measured by quantitative 
reverse transcriptase polymerase chain reaction (qRT-PCR) amplification and cellular enzyme-
linked immunosorbant assays. 
Gene expression. Gene expression was measured by quantitative reverse transcriptase 
polymerase chain reaction (qRT-PCR) analysis, as described (Cantarini, de la Monte et al. 
2006; Gundogan, Elwood et al. 2008). In brief, cells were lysed in Qiazol reagent and total 
RNA was isolated using the EZ1 RNA universal tissue kit and the BIO Robot EZ1 (Qiagen, 
Inc., Valencia, CA). RNA was reverse transcribed using random oligodeoxynucleotide 
primers and the AMV First Strand cDNA synthesis kit.  The cDNA templates were used in 
qPCR amplifications with gene specific primer pairs published elsewhere (Gundogan, 
Elwood et al. 2008).  Primers were designed using MacVector 10 software (MacVector, Inc., 
Cary, NC) and their target specificity was verified using NCBI-BLAST (Basic Local 
Alignment Search Tool).  Amplified signals from triplicate reactions were detected and 
analyzed using the Mastercycler ep realplex instrument and software (Eppendorf AG, 
Hamburg, Germany).  Relative mRNA abundance was calculated from the ng ratios of 
specific mRNA to 18S rRNA measured in the same samples.  Inter-group statistical 
comparisons were made using calculated mRNA/18S rRNA ratios.  
Immunoreactivity. Cellular enzyme-linked immunosorbant assays (ELISAs) were used to 
measure immunoreactivity directly in fixed cultured cells (96-well plates) (de la Monte, 
Ganju et al. 1999).  The main modification of the original protocol was that 
immunoreactivity was detected with Amplex Red fluorophor (Ex 579/Em 595) instead of a 
colorimetric reagent.  Cell density was assessed by staining the cells with Hoechst H33342 
and measuring fluorescence (Ex360 nm/Em460 nm) in a Spectramax M5 microplate reader.  
The calculated ratios of fluorescence immunoreactivity (fluorescence light units; FLU) to 
H33342 were used for inter-group comparisons.  Eight replicate cultures were analyzed in 
each experiment.  
Statistics. Inter-group (N=8-12/group) comparisons were made using one-way analysis of 
variance (ANOVA) with the Tukey post-hoc test.  Statistical analyses were performed using 
the GraphPad Prism 5 software (San Diego, CA) and significant P-values (<0.05) are 
indicated over the graphs.   
Reagents.  Rabbit, mouse, or goat generated monoclonal or polyclonal antibodies to tau, 
phospho-tau (AT8-S199, S202, T205), glial fibrillary acidic protein (GFAP), choline 

acetyltransferase (ChAT), Amyloid- precursor protein (APP), APP-amyloid- peptide 

(APP-A), acetylcholinesterase (AChE), and Hu (neuronal marker) were purchased from 
Chemicon (Tecumsula, CA), CalBiochem (Carlsbad, CA), Molecular Probes (Eugene, OR), 
Invitrogen (Carlsbad, CA), or Abcam (Cambridge, MA).  All other immunodetection 
reagents were purchased from Vector Laboratories (Burlingame, CA) or Molecular Probes 
(Eugene, OR). Histochoice fixative was purchased from Amresco, Inc (Solon, OH). QIAzol 
Lysis Reagent for RNA extraction and QuantiTect SYBR Green PCR Mix were obtained from 
Qiagen, Inc (Valencia, CA). The AMV 1st Strand cDNA Synthesis kit was purchased from 
Roche Applied Science (Indianapolis, IN).  Synthetic oligonucleotides used in quantitative 
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polymerase chain reaction (qPCR) assays were purchased from Sigma-Aldrich Co (St. Louis, 
MO). Fine chemicals were purchased from CalBiochem (Carlsbad, CA) or Sigma-Aldrich (St. 
Louis, MO). 

7.3.2.2 Results  

si-RNA targeting of insulin/IGF receptors broadly inhibited expression of insulin and IGF 
polypeptide and receptor genes. The qRT-PCR analyses demonstrated that cells transfected with 
si-InR, si-IGF-1R, or si-IGF-2R had significantly reduced expression of the insulin and 
insulin receptor mRNA transcripts relative to si-Scr transfected control cells (Figures 1A, 
1B). In contrast, cells transfected with si-InR had significantly increased expression of IGF-1 
and IGF-1R relative to si-Scr transfected cells (Figures 1C, 1D). si-InR transfected cells also 
had significantly higher levels of IGF-1R relative to both si-IGF-1R and si-IGF-2R transfected 
cells (Figure 1C).   
 

 

Fig. 1. Effects of si-RNA treatments on expression of insulin receptor, IGF-1, and IGF-2 
receptors and polypeptide genes. mRNA levels of (A) InR, (B) insulin, (C) IGF-1R, (D) IGF-1, 
(E) IGF-2R, or (F) IGF-2 were measured by qRT-PCR with data normalized to 18S rRNA 
(N=8 per group). Inter-group comparisons were made by ANOVA and the Tukey post hoc 
test. P values are shown. 
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Cells transfected with si-IGF-1R had significantly reduced levels of IGF-1R relative to all 

other groups (Figure 1C) and higher levels of IGF-1 relative to si-Scr controls (Figure 1D). 

Cells transfected with si-IGF-2R had significantly lower mean levels of IGF-2R compared 

with the other groups (Figure 1E).  IGF-1 (Figure 1D) and IGF-2 (Figure 1F) polypeptide 

expressions were generally higher in the experimental si-RNA groups relative to control, 

but the differences were only statistically significant with respect to IGF-1 mRNA levels in 

si-InR and si-IGF-1R transfected cells. Therefore, InR and insulin gene expression were 

inhibited in CNS neurons that were transfected with si-RNA targeting insulin, IGF-1, or 

IGF-2 receptors, while IGF-1R expression was selectively suppressed by transfection with 

si-IGF-1R, and IGF-2R expression was selectively inhibited in cells transfected with si-

IGF-2R. With regard to the polypeptide genes, as noted, insulin gene expression was 

suppressed by si-InR, si-IGF-1R, or si-IGF-2R, whereas IGF-1 and IGF-2 mRNAs were 

generally increased relative to control. The latter could reflect a compensatory response to 

down regulation of the receptors. The aggregate results suggest that in cerebellar granule 

neurons, InR expression overlaps with IGF-1R and IGF-2R, and that some sub-

populations express of IGF-1R and IGF-2R, while others may only express IGF-2R. 

Moreover, the findings suggest that the insulin polypeptide gene is expressed in insulin 

receptor bearing cells, whereas IGF-1 and IGF-2 are probably expressed in several 

different neuronal populations. 

si-RNA targeting InR or IGF-2R impairs cell survival and mitochondrial function in 

neuronal cultures.  Mitochondrial function was measured with the MTT assay, and cell 

density was measured by Hoechst H33342 fluorescence. MTT activity, corrected for cell 

density, was significantly lower in si-InR and si-IGF-2R relative to si-Scr transfected cultures 

(Figure 2A). In addition, the mean cell densities in cultures transfected with si-InR or si-IGF-

2R were reduced relative to si-Scr transfected control cells (Figure 2B).  Therefore, inhibition 

of signaling through the insulin or IGF-2 receptors impairs CNS neuronal viability and 

mitochondrial function.   

Effects of si-RNA transfection on neuronal and astrocytic biomarkers. We used qRT-PCR 

analysis to measure gene expression corresponding to Hu and glial fibrillary acidic protein 

(GFAP), reflecting neuronal and astrocyte cell populations. The higher levels of Hu relative 

to GFAP reflect the predominantly neuronal nature of the cells isolated from cerebella 

(Figures 3A and 3B).  Hu expression in si-InR, si-IGF-1R, and si-IGF-2R transfected cultures 

was similar to that measured in si-Scr control cells (Figure 3A).  In contrast, GFAP 

expression was significantly reduced in si-InR transfected relative to all other groups, and in 

si-IGF-2R relative to si-IGF-1R transfected cells (Figure 3B). GFAP expression in cells 

transfected with si-IGF-1R was similar to control.  

Inhibition of insulin and IGF receptor gene expression mediate neurodegeneration. We 

investigated the extent to which neuronal transfection with si-RNA targeting insulin, IGF-1 

or IGF-2 receptor altered Tau, ChAT, APP, or AChE gene expression, as occur in AD. Tau 

gene expression was significantly reduced in cells transfected with si-IGF-2R relative to 

control (Figure 3C), corresponding with the somewhat reduced expression of Hu in the 

same cells (Figure 3A). In addition, APP mRNA was increased in si-InR transfected cells, 

and reduced in si-IGF-1R and si-IGF-2R transfected relative to si-Scr and si-InR transfected 

cells (Figure 3D). ChAT and AChE mRNA levels were significantly reduced in si-InR, si-

IGF-1R, and si-IGF-2R transfected relative to si-Scr controls (Figure 3E and 3F).   
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Fig. 2. Effects of siRNA treatments on mitochondrial function (MTT assay) and cell survival 
(H33342 fluorescence). N=8 cultures/group. Data were analyzed by ANOVA. 

 

 

Fig. 3. Effects of siRNA treatments on expression of neuronal and glial genes shown by qRT-
PCR.  N=8 group. Data were analyzed by ANOVA. 
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Cellular ELISAs demonstrated similar mean levels of Tau and pTau among all groups, 
except in the si-InR relative to siScr transfected controls (Figures 4A and 4B). In addition, 

APP was significantly higher in cells transfected with si-IGF-1R or si-IGF-2R relative to si-

Scr controls (Figure 4C), and APP-A immunoreactivity was significantly increased in si-
IGF-1R and si-IGF-2R relative to si-Scr and si-InR transfected cells (Figure 4D). Finally, 
corresponding with the qRT-PCR results, ChAT immunoreactivity was significantly lower 
in si-InR, si-IGF-1R, and si-IGF-2R transfected relative to controls (Figure 4E). AChE 
immunoreactivity was also significantly reduced in si-InR and si-IGF-1R transfected relative 
to control (Figure 4F). 
 

 

Fig. 4. Effects of siRNA treatments on expression of neuronal proteins pertinent to 
neurodegeneration shown by cellular ELISA.  N=8 group. Data were analyzed by ANOVA. 

7.3.2.3 Discussion 

These studies demonstrate that transfection of CNS neurons with si-RNA targeting InR, IGF-
1R, or IGF-2R leads to impaired neuronal survival, reduced mitochondrial function, and 
several abnormalities in gene or protein expression that occur in AD.  Cells transfected with si-
InR or si-IGF-2R were more adversely affected than those transfected with si-IGF-1R. The 
finding of increased pTau in si-InR transfected cells supports the concept that brain insulin 

resistance promotes Tau hyper-phosphorylation. The higher levels of APP and APP-A in 
si-IGF-1R or si-IGF-2R transfected cells suggests that IGF resistance is an important mediator 

of APP-A deposition and accumulation in brain. Cells transfected with si-InR, si-IGF-1R, or 
si-IGF-2R had reduced expression of AChE and/or ChAT. Altogether, these findings provide 
new evidence that molecular inhibition of insulin or IGF signaling in CNS neurons causes 
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cellular, molecular, and biochemical abnormalities similar to those present in AD brains.  
Moreover, the findings suggest that signaling through the insulin and IGF receptors has 
distinct but overlapping effects; therefore, differential impairment of their functions produces 
different pathological and neurodegenerative effects, e.g. pTau levels increase with brain 

insulin resistance, APP expression increases and its protein is aberrantly processed with IGF-
1 or IGF-2 resistance, and ChAT inhibition occurs with brain insulin and/or IGF resistance. 
The overlapping inhibitory effects of the si-RNA transfections suggest that insulin and IGF-2 
receptors are co-expressed in many of the same cells, and that IGF-1 and IGF-2 receptors are 
co-expressed in cells that have relatively low levels of insulin receptor. In addition, the 
reductions in insulin gene expression observed in cells that were transfected with si-InR, si-
IGF-1R, or si-IGF-2R suggest that insulin polypeptide gene is expressed in insulin receptor 
bearing cells in the brain, and that endogenous insulin stimulation may be effectuated via 
autocrine or paracrine loops. Reduced cell density and mitochondrial function produced by 
si-InR or si-IGF-2R transfection suggest that signaling through the insulin and IGF-2 
receptors is critical for CNS neuronal viability and metabolism. Moreover, the reduced Hu 
expression in si-InR- and si-IGF-2R- but not si-IGF-1R- transfected cells suggests that insulin 
and IGF-2 receptors are abundantly expressed in CNS neurons, as previously suggested (Xu, 
Eun Yeon et al. 2003; Soscia, Tong et al. 2006), and that signaling through either or both 
receptors supports neuronal survival and function.  Sharply reduced levels of GFAP were 
detected in cells transfected with si-InR or si-IGF-2R. Since GFAP is expressed by astrocytes, 
the findings suggest that signaling through InR- or IGF-2R-regulated pathways is critical to 
glial cell survival and function. Therefore, inhibition of insulin or IGF-2 receptor signaling 
impairs neuronal and astrocyte survival and function, whereas inhibition of the IGF-1 
receptor alone is not detrimental to CNS cell survival or energy metabolism.  
We investigated the degree to which molecular abnormalities characteristically associated 
with AD are produced by inhibiting insulin, IGF-1, or IGF-2 receptor expression in CNS 
neurons.  Cells transfected with si-InR, si-IGF-1R, or si-IGF-2R each had reduced levels of 
ChAT, corresponding with an earlier finding that ChAT is regulated by insulin and IGF 
(Soscia, Tong et al. 2006). ChAT generates acetylcholine, which has an important role in 
cognitive and motor functions (Dineley-Miller and Patrick 1992; Deutsch, Urbano et al. 2010; 
Peeyush, Savitha et al. 2010; Pepeu and Giovannini 2010). Since inhibition of neuronal 
insulin, IGF-1, or IGF-2 receptors leads to deficits in ChAT expression, impairments in 
cognition can be attributed to CNS insulin/IGF resistance (Rivera, Goldin et al. 2005; Lester-
Coll, Rivera et al. 2006; Soscia, Tong et al. 2006; de la Monte and Wands 2008; de la Monte 
2009; de la Monte, Longato et al. 2009; Lyn-Cook, Lawton et al. 2009; Tong, Longato et al. 
2010).  AChE expression was suppressed by the same si-RNA treatments. Although the 
down--regulation of AChE could represent a compensatory neuroprotective response (Noh, 
Koh et al. 2009) to decreased ChAT, instead it could represent a damaging effect leading to 
increased apoptosis (Greenberg, Toiber et al. 2010).  
Transfection of CNS neurons with si-InR or si-IGF-2R inhibited Tau gene expression, while si-
InR increased pTau immunoreactivity. These results corroborate previous reports that tau 
expression is stimulated by insulin and IGFs, while increased tau phosphorylation is mediated 
by impaired signaling through the insulin receptor and activation of kinases such as GSK-3 
(Hong and Lee 1997). The increased levels of APP and APP-A immunoreactivity in 
cultures transfected with si-IGF-1R and si-IGF-2R suggest that intact signaling through the 
IGF-1 and IGF-2 receptors may be important for regulating metabolism of APP and clearance 
of APP-A. Since si-IGF-2R reduced expression of GFAP, astrocytes may play important roles 
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in APP and APP-A processing and clearance in the brain. On the other hand, cultures 
transfected with si-InR had increased APP gene expression, similar to the findings in AD 
(Rivera, Goldin et al. 2005; Steen, Terry et al. 2005). This effect could be mediated by increased 
oxidative stress caused by reduced energy metabolism and increased phospho-tau.  Previous 
studies showed that oxidative stress was sufficient to increase CNS neuronal phospho-Tau and 
APP-A (Chen, Xu et al. 2003). Together, the findings herein suggest that inhibition of 
insulin, IGF-1, and IGF-2 receptor expression and function have complimentary but 
overlapping roles in mediating the molecular pathogenesis of neurodegeneration, including 
AD. In addition, the results suggest that therapeutic measures should target all 3 receptors, 
since impairments of their signaling pathways would likely mediate distinct but overlapping 
components of the neurodegeneration cascade. 

7.3.3 Experimental targeting of neuronal insulin/IGF receptors — in vivo model of 
brain insulin/IGF resistance 

7.3.3.1 Methods 

In vivo siRNA delivery. To evaluate the roles of insulin and IGF receptor resistance in relation 
to neurodegeneration in vivo, we generated a model in which P2 Long Evans rats were 
given a single intracerebroventricular (ICV) injection of si-InR [INSR NM_017071], si-IGF-1R 
[IGF1R NM_052807], si-IGF-2R [IGF2R NM_012756], or si-Scr (negative control) [NM D-
001210-01-20]. For each rat, 0.4 nmol si-RNA plus 100 ng recombinant green fluorescent 

protein (GFP) expressing plasmid were combined with 10 l of Dharmafect reagent, and 
injected into the right frontal region over the lateral ventricle using a Hamilton syringe with 
a 26-gauge needle as previously described (de la Monte, Jhaveri et al. 2007).  GFP 
expression, which was under the control of a CMV promoter, was used to monitor success 
of the transfections. All rats survived the procedure, and none of them exhibited aberrant 
behaviors or adverse effects such as failure to thrive, poor grooming, reduced physical 
activity, or weight loss.  
To monitor effectiveness of the transfections, rats (N=4 per group) were sacrificed at regular 

intervals after ICV gene delivery, and GFP expression was measured in whole brain by qRT-

PCR analysis. Those studies demonstrated peak levels of GFP expression 2-3 days after ICV 

gene delivery, followed by a gradual decline in GFP mRNA levels. However, GFP 

expression persisted over the time course of the experiment as previously reported (de la 

Monte, Jhaveri et al. 2007). Gene expression and histological studies were performed with 

temporal lobe tissue. Upon sacrifice, temporal lobes were either immersion fixed in Histofix, 

embedded in paraffin, and used to make hematoxylin and eosin (H&E) stained histological 

sections (5 µm-thick), or they were snap-frozen in a dry ice/methanol bath and stored at -

80°C for mRNA and protein studies.  Our protocol was approved by the Institutional 

Animal Care and Use Committee at Lifespan-Rhode Island Hospital, and it conforms to 

guidelines set by the National Institutes of Health.   

Morris water maze testing. We used Morris water maze tests to assess long-term effects of ICV 
si-InR, si-IGF-1R and si-IGF-2R on spatial learning and memory, corresponding to 
hippocampal function (Hamm, Dixon et al. 1992; McLay, Freeman et al. 1999; Gomez-Pinilla, 
So et al. 2001). Beginning on P24, rats were subjected to 3 daily trials in which latency 
(seconds) required to locate and land on the platform was recorded. On Day 1, the platform 
was visible, but on Days 2-4, the platform was submerged. On Days 3 and 4, the water entry 
quadrants were randomized for each trial.  The data were analyzed using area-under-the-
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curve (AUC) calculations corresponding to performance over the 3 trials each day (de la 
Monte, Tong et al. 2006; Lester-Coll, Rivera et al. 2006). 
Gene and protein expression. Gene and protein expression were measured by qRT-PCR 
analysis (see above) and direct binding ELISA. For ELISAs, temporal lobe homogenates 
were prepared in radioimmunoprecipitation assay (RIPA) buffer containing protease and 
phosphatase inhibitors (Lester-Coll, Rivera et al. 2006). Protein concentrations were 
determined using the BCA assay. 50 ng protein samples in Tris buffered saline, pH 7.4 (TBS) 
were adsorbed to flat-bottom surfaces of 96-well polystyrene plates, overnight at 4°C. Non-
specific binding sites were masked by a 3-hour room temperature incubation with 300 

l/well of TBS + 0.05% Tween 20 + 3% BSA.  Samples were then incubated with 0.1-0.5 

g/ml primary antibody for 1 h at 37°C.  Immunoreactivity was detected with horseradish 
peroxidase (HRP)-conjugated secondary antibody and Amplex Red soluble fluorophore (de 
la Monte and Tong 2009).  Fluorescence was measured (Ex 530/Em 590) in a SpectraMax M5 
microplate reader.  Parallel negative control assays had primary, secondary, or both 
antibodies omitted.  Between steps, reactions were rinsed 3 times with TBS + 0.05% Tween 
20 using a Nunc ELISA plate washer.  Levels of immunoreactivity were normalized to 
protein content in the wells, which was measured using NanoOrange reagent. 
Statistical analysis. Inter-group comparisons were made using repeated measures one-way 
ANOVA and the Dunnett post-hoc significance test for comparisons with the si-Scr control 
group.  Statistical analyses were performed using the GraphPad Prism 5 software (San 
Diego, CA) and P<0.05 was considered significant. 

7.3.3.2 Results 

ICV si-RNA targeting the insulin or IGF receptors impaired spatial learning and memory. On Day 1 

of testing, the mean latencies were longer for all experimental groups relative to control. 

However, the differences were significant only for si-InR- and si-IGF-1R-treated rats (Fig 

5A). On Day 2, when the platform was submerged but entry was from a fixed position, the 

95% confidence limits were broad for the 3 experimental groups, and inter-group differences 

were statistically significant only for the si-InR and si-IGF-1R-treated relative to controls 

(Figure 5B). On Day 3, the first day of randomized entry into the maze, the si-InR treated 

rats had significantly longer mean latencies for locating the hidden platform relative to 

control, whereas mean performance among si-IGF-1R and si-IGF-2R treated rats did not 

significantly differ from control (Figure 5C). However, performance among the si-IGF-1R 

treated rats was highly variable, as evidenced by the broad overlap with the si-InR and si-

Scr treated groups. On Day 4, mean performances among the 4 groups were similar (Figure 

5D). Therefore, the si-InR and si-IGF-1R treatments mainly impaired performance on spatial 

learning and memory tasks during the acquisition phases. 

ICV treatment with si-InR, si-IGF-1R, or si-IGF-2R caused hippocampal hyopotrophy. Histological 

sections of temporal lobe, including the hippocampus, revealed normal architecture in siScr-

treated controls, and pronounced hypotrophy of both the hippocampal formation and 

temporal cortex in rats treated with si-InR, si-IGF-1R or si-IGF-2R (Figure 6). The most 

striking abnormalities occurred in si-IGF-2R, followed by si-InR-treated rats, in which there 

were marked reductions in overall size of the temporal lobes, accompanied by 

conspicuously decreased neuropil volume rather than cell density (Figure 6). Since neuropil 

contains mainly interconnecting cell processes, the major adverse effects ICV si-InR, si-IGF-

1R, and si-IGF-2R were to impair neuritic growth and synapse formation.   
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Fig. 5. Effects of ICV si-InR, si-IGF-1R, and si-IGF-2R on spatial learning and memory. P2 

Long Evans rats were given ICV si-RNA targeting InR, IGF-1R, IGF-2R, or no specific gene 
(si-Scr).  Morris Water Maze tests were performed on 4 consecutive days, beginning on P24. 
Data from the 3 trials/day were used to calculate area under the curve for latency.  
Comparisons were made by ANOVA and the Dunnett post-hoc test. Significant P values are 
indicated. 
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Fig. 6. ICV si-InR, si-IGF-1R, or si-IGF-2R causes hippocampal hypotrophy. Brains were 
harvested on P30, immersion fixed, and embedded in paraffin.  Histological sections of 
temporal lobe, including the hippocampi, were stained with H&E.  Panels A,C,E, G depict 
40x original magnification images of temporal lobe and hippocampus, and Panels B,D,F,H 
show 100x original magnification images of the hippocampus from (A,B) si-Scr, (C,D) si-InR, 
(E,F) si-IGF-1R, or (G,H) si-IGF-2R transfected brains. Note extreme hypotrophy of the 
temporal lobe and hippocampus in si-IGF-2R and si-INR treated relative si-Scr treated 
controls. 

Short-term effects of ICV si-InR, si-IGF-1R, and si-IGF-2R on insulin, IGF, and neurotrophin 

signaling (Table 1). Gene expression analysis performed on P9, i.e. 7 days after the ICV 

treatments, demonstrated significantly reduced temporal lobe levels of InR in the si-InR, si-

IGF-1R, and si-IGF-2R treated groups (P=0.003). In addition, IGF-1R and IGF-2R expression 

were reduced in brains transfected with si-InR, si-IGF-1R or si-IGF-2R, although the inter-

group differences were only significant for IGF-1R (P=0.008).  
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mRNA si-Scr si-InR si-IGF-1R si-IGF-2R P-Value 

Insulin R 15.3 ± 1.8 10.4 ± 0.6* 9.4 ± 0.8** 9.9 ± 1.1** 0.003 

IGF-1R 8.3 ± 0.6 7.5 ± 0.8 7.0 ± 0.5 5.4 ± 0.4** 0.008 

IGF-2R 7.9 ± 0.7 6.9 ± 0.5 6.5 ± 0.6 5.8 ± 0.6  

Insulin 0.19 ± 0.03 0.17 ± 0.04* 0.15 ± 0.02 0.16 ± 0.02  

IGF-1 2.4 ± 0.09 3.1 ± 0.17 2.6 ± 0.13 3.0 ± .29 0.008 

IGF-2 49.5 ± 7.5 59.9 ± 9.4 49.1 ± 7.0 65.5 ± 5.0  

BDNF 1.6 ± 0.2 2.1 ± 0.3 1.3 ± 0.1 2.2 ± 0.3  

NGF 0.04 ± 0.004 0.06 ± 0.005 0.06 ± 0.009 0.08 ± 0.02* 0.0003 

P75 14.5 ± 1.1 7.5 ± 0.8 8.2 ± 1.4 12.5 ± 2.5 0.008 

NRTK 0.17 ± 0.06 0.24 ± 0.06 0.11 ± 0.04 0.16 ± 0.03 0.043 

18S 2.9  ± 0.2 2.4  ± 0.7 2.8  ± 0.1 3.0  ± 0.2  
Gene expression was measured by qRT-PCR analysis. mRNA levels correspond to the mean ratio 
relative to 18S rRNA x10-6 ± S.E.M. Inter-group comparisons were made using repeated measures one-
way ANOVA and the Dunnett post-hoc test for comparison with control (si-Scr). *P<0.05; **P<0.01 

Table 1. Effects of siRNA targeting insulin and IGF receptors on receptor and trophic factor 
gene expression- P9 temporal lobe 

Although insulin polypeptide gene expression was reduced in all experimental groups 
relative to control, the differences were not statistically significant due to the large variances 
and very low levels of insulin gene expression in the brain. In contrast, IGF-1 polypeptide 
gene expression was higher in the experimental groups relative to control (P=0.008). There 
were no significant inter-group differences in the mean levels of IGF-2 expression in the 
brain.  
Neurotrophins and their receptors mediate structural and functional aspects of neuronal 
plasticity in the brain, their genes are regulated in part by insulin/IGF stimulation 
expression. Therefore, it was of interest to characterize the effects of ICV si-InR, si-IGF-1R 
and si-IGF-2R treatment on the expression of brain derived neurotrophic factor (BDNF), 
nerve growth factor (NGF), P75, and neuronal receptor tyrosine kinase (nRTK) by qRT-PCR.  
On P9, the mean levels of BDNF were similar among the groups, whereas for NGF 
(P=0.0003), P75 (P=0.008), and nRTK (P=0.043), the inter-group differences were statistically 
significant (Table 1). The mean levels of NGF mRNA were higher in all experimental groups 
relative to control, and the post hoc Dunnett test demonstrated significantly higher NGF 
expression in si-IGF-2R relative to si-Scr transfected brains (P<0.05). In contrast, the mean 
levels of P75 were lower in all experimental groups relative to control, and the post hoc 
Dunnett test showed that the differences were significant for the ICV si-InR and si-IGF-1R 
treated rats (both P<0.05). For nRTK, the mean mRNA levels were somewhat higher in the 
si-InR, and lower in the si-IGF-1R group relative to control, but the post hoc tests did not 
reach statistical significance (Table 1). 
Sustained effects of ICV treatments on insulin, IGF, and neurotrophin signaling molecules in brain 
(Table 2). In P30 rats, 4 weeks after the ICV treatments, the mean levels of InR, IGF-1R, and 
IGF-2R expression were either similar, or somewhat elevated relative to si-Scr controls, but 
none of the inter-group differences were statistically significant. In contrast, insulin 
polypeptide gene expression was reduced (P=0.027), while IGF-1 expression was increased 
(P=0.011) in the 3 experimental groups. The mean levels of IGF-2 mRNA were also higher in 
experimental relative to control brains, but the differences did not reach statistical 
significance. 
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mRNA si-Scr si-InR si-IGF-1R si-IGF-2R P-Value 

Insulin R 9.9 ± 0.8 12.8  ± 1.3 11.5  ± 1.3 10.5  ± 1.1  

IGF-1R 7.1 ± 0.6 8.2  ± 0.9 8.4  ± 0.8 6.9  ± 0.7  

IGF-2R 7.0 ± 0.5 8.1  ± 0.9 7.5  ± 0.8 7.0  ± 0.7  

Insulin 0.23 ± 0.02 0.13  ± 0.02** 0.17  ± 0.03 0.16  ± 0.02 0.027 

IGF-1 2.4 ± 0.09 3.4  ± 0.3** 2.8  ± 0.15 3.1  ± 0.28 0.011 

IGF-2 49.5 ± 7.5 67.7  ± 12.5 52.8  ± 7.2 66.9  ± 5.0  

BDNF 1.6 ± 0.2 2.6  ± 0.3** 1.4  ± 0.14 2.5  ± 0.26* 0.0003 

NGF 0.04 ± 0.003 0.07  ± 0.004 0.07  ± 0.01** 0.08  ± 0.01 <0.0001 

P75 11.9 ± 1.8 9.1  ± 1.3 12.9  ±  3.5 15.5  ± 4.7  

NRTK 0.06 ± 0.01 0.28  ± 0.07** 0.12  ± 0.04 0.19  ± 0.02 0.0032 
Gene expression was measured by qRT-PCR analysis. mRNA levels correspond to the mean ratio 
relative to 18S rRNA x10-6 ± S.E.M. Inter-group comparisons were made using repeated measures one-
way ANOVA and the Dunnett post-hoc test for comparison with control (si-Scr). *P<0.05; **P<0.01 

Table 2. Effects of siRNA targeting insulin and IGF receptors on receptor and trophic factor 

gene expression- P30 temporal lobe 

Significant inter-group differences were observed with respect to BDNF (P=0.0003), NGF 

(P<0.0001), and nRTK (P=0.0032), but not P75 (Table 2). BDNF expression was significantly 

elevated in the si-InR (P<0.01) and si-IGF-2R (P<0.05) treated relative to control brains. The 

mean NGF mRNA levels were higher in all 3 experimental groups relative to control, and 

the post hoc Dunnett test demonstrated the differences to be significant for si-IGF-2R 

relative to si-Scr controls (P<0.01). Similarly, nRTK expression was higher in all three 

experimental groups relative to control, and the Dunnett post hoc test demonstrated the 

difference from control to be significant for the si-InR-treated group (P<0.01).   
Sustained effects of ICV delivery of si-InR, si-IGF-1R, and si-IGF-1R on neuronal, cytoskeletal, 
cholinergic, and neurotrophin protein expression (Table 3): In P30 rats, Tau immunoreactivity 
was higher in brains transfected with si-InR or si-IGF-1R relative to control (P=0.0077).  
 

mRNA si-Scr si-InR si-IGF-1R si-IGF-2R P-Value 

Tau 19195 ± 2951 26872 ± 1200* 23532 ± 2328 16110 ± 1946 0.008 

pTau 3297 ± 467 2814 ± 164 2857 ± 128 2525 ± 119  

Actin 56026 ± 3356 63245 ± 1033* 63514 ± 997* 59794 ± 1373 0.0003 

GAPDH 5244 ± 228 4856 ± 164 5214 ± 451 5172 ± 319  

ChAT 20244 ± 1863 15514 ± 606* 16660 ± 658 17375 ± 847 0.033 

AChE 29347 ± 982 32767 ± 297* 34190 ±590*** 31688 ± 1095 0.0013 

BDNF 15932 ± 650 15563 ± 607 15353 ± 390 15936 ± 793  

NGF 38604 ± 3334 49538±1521***  45705 ± 816* 43071 ± 936 <0.0001 

NT3 16714 ± 1178 11879±290*** 13468 ± 499* 15528 ± 959 0.0004 

NT4 7378 ± 378 9074 ± 1189 8197 ± 440 8357 ± 904  
Immunoreactivity was measured by ELISA and results were normalized to protein content in the wells. 
Inter-group comparisons were made by repeated measures one-way ANOVA and the Dunnett post-hoc 
test for comparison with control (si-Scr). *P<0.05; **P<0.01; ***P<0.001. 

Table 3. Effects of siRNA targeting insulin and IGF receptors on neuronal structural and 

neurotrophin protein expression- P30 temporal lobe. 
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-actin expression was higher in si-InR and si-IGF-1R relative to si-Scr transfected brains 
(P=0.0003). ICV delivery of si-InR, si-IGF-1R, or si-IGF-2R reduced temporal lobe levels of 
ChAT (P=0.036). In contrast, AChE immunoreactivity was elevated in si-InR, si-IGF-1R, and 
si-IGF-2R transfected brains (P=0.0013). 
Corresponding with the qRT-PCR analyses, NGF expression was increased in the si-InR, si-
IGF-1R, and si-IGF-2R treated relative to control brains (P<0.0001). The mean levels of NT3 
immunoreactivity were lower in the 3 experimental groups relative to control (P=0.0004). 
There were no significant inter-group differences in the mean levels of pTau, GAPDH, 
BDNF, or NT4 in P30 rat brains. 

7.3.3.3 Discussion 

We used ICV injections to transfect brains with si-RNA duplex molecules targeting InR, 
IGF-1R, IGF-2R, or no specific genes (si-Scr). Previously, we used the same approach to 
generate a model of neurodegeneration, and demonstrated sustained transgene expression 
throughout the brain and in all cell types (de la Monte, Jhaveri et al. 2007).  
Morris water maze tests demonstrated significant impairments in spatial learning in the si-
InR, si-IGF-1R, and si-IGF-2R treated rats. Histopathological studies showed that the deficits 
in spatial learning were associated with reduced sizes of the hippocampi and temporal 
lobes, and hypotrophy of the neuropil, which contains interconnecting cell processes and 
synapses. Major abnormalities in AD include dendritic spine atrophy and synapse 
disruption. Since insulin and IGFs modulate neuronal plasticity and neurite outgrowth (de 
la Monte 2009), these findings suggest that AD-associated impairments in spatial learning 
and memory could be mediated by brain insulin and IGF resistance.  
Gene expression studies showed that, in addition to reducing expression of the target genes, 
ICV si-InR, si-IGF-1R and si-IGF-2R each inhibited expression of the other two non-targeted 
receptors. The most likely explanation for this phenomenon is that cells in the temporal lobe 
express all 3 receptors at once. The inhibitory effects of the si-RNA treatments were most 
pronounced for si-InR. This finding, together with fact that all 3 experimental treatments 
resulted in hypotrophy of the temporal lobe and hippocampus, suggest that the adverse 
effects of the si-RNA treatments were mainly due to inhibition of insulin signaling. 
Although GFP expression persisted in the brains due to continued presence of the plasmid, 

it is unlikely that the si-RNA molecules remained intact 1 or 2 days after transfection. The 

absence of any significant reduction in InR, IGF-1R, or IGF-2R expression at P30 indicates 

that the effects of the si-RNA treatments were transient with respect to gene expression. 

Therefore, the sustained effects of the si-RNA treatments on temporal lobe structure and 

function were mediated by short-term inhibition of gene expression during the critical 

postnatal period of synaptic plasticity and development. The relatively modest inhibitory 

effects on insulin and IGF polypeptides indicate that the structural and functional 

impairments caused by ICV si-InR, si-IGF-1R, or si-IGF-2R were mediated by insulin/IGF 

resistance rather than withdrawal of endogenously produced trophic factors.  
We investigated the effects of the si-RNA treatments on neurotrophin and neurotrophin 
receptor expression because these molecules mediate neurite outgrowth, plasticity, neuronal 
survival, and other function, and insulin/IGF modulate expression and function of 
neurotrophins in brain (Maisonpierre, Belluscio et al. 1990; Cowansage, LeDoux et al. 2010). 
The studies demonstrated that the main adverse effect of the si-RNA treatments was to 
reduce expression of p75 neurotrophin receptor on P9. Otherwise, BDNF, NGF, p75 
neurotrophin receptor, and nRTK were either increased or similarly expressed compared 
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with si-Scr controls. ELISA studies demonstrated similar or increased expression of BDNF, 
NGF, and neurotrophin 4 (NT4) in P30 temporal lobes of experimental si-RNA treated rats, 
but significantly reduced expression of NT3 in both si-InR and si-IGF-1R treated rats. Since 
all neurotrophins, including NGF, BDNF, NT3 and NT4/5 function by binding to the p75 
neurotrophin receptor (Frebel and Wiese 2006), early inhibition of p75 expression would 
have impaired neurotrophin signaling and could account for both the spatial learning 
deficits and hypotrophy of the temporal lobe/hippocampus in the si-RNA treated rats. NT3 
regulates neuronal survival, synaptic plasticity, and neurotransmission, particularly in the 
hippocampus (Pae, Marks et al. 2008). Therefore, persistent reductions in NT3 expression 
represent local trophic factor withdrawal, which could have contributed to the cognitive 
impairment detected by Morris water maze testing. Although insulin/IGF regulation of 
neurotrophin and neurotrophin expression has not yet been characterized, the findings 
herein suggest that neurotrophin expression and function may be downstream of 
insulin/IGF signaling pathways in the brain. 
In previous studies, inhibition of brain insulin and IGF signaling reduced expression of tau, 
ChAT, and GAPDH, increased pTau, and had variable effects on AChE expression (Soscia, 
Tong et al. 2006; de la Monte and Wands 2008; Tong, Longato et al. 2010). Corresponding 
with the normalized levels of InR and IGF-1R expression at P30, tau and GAPDH were not 
reduced, and pTau was not increased, but the impairments in cholinergic homeostasis were 
sustained in temporal lobes of si-InR and/or si-IGF-1R treated rats. ChAT is a major 
neurotransmitter that mediates cognitive function and plasticity throughout life (Perry, 
Piggott et al. 1993), and evidence suggests that besides insulin/IGF stimulation (Shi, Rabin 
et al. 1998), cholinergic function can be regulated by neurotrophins, including NT3 
(Robertson, Baratta et al. 2006). It is noteworthy that in both si-InR and si-IGF-1R, ChAT and 
NT3 expression were reduced to greater extents than in si-IGF-2R treated brains. 
These in vivo experiments demonstrate that sustained structural and functional 
developmental abnormalities can be produced by transient ICV transfection with siRNA 
molecules targeting insulin, IGF-1, or IGF-2 receptors. The long-term effects include deficits 
in spatial learning and memory, striking abnormalities in temporal lobe structure, and 
inhibition of mechanisms needed for cholinergic homeostasis.  While these results are 
exciting and very much validate a role for primary brain insulin and IGF resistance as 
mediators of neurodegeneration and dementia, the structural changes in neurons and 
disorganization of the cortical laminar architecture that characterize AD-type 
neurodegeneration were not detected. This suggests that additional factors such as ongoing 
oxidative injury, are likely required to propagate the neurodegeneration cascade. 

8. Experimental type 3 diabetes  

The human studies provide convincing evidence that AD is associated with progressive 
insulin and IGF resistance and deficiency, accompanied by oxidative stress, deficits in 
energy metabolism, cholinergic function, neuronal survival, and synaptic plasticity in the 
brain. Given the fact that most cases of sporadic AD are not associated with obesity or 
diabetes mellitus, the said abnormalities must originate primarily in the brain. The siRNA 
experiments targeting the insulin or IGF receptors showed that inhibition of signaling 
through these receptors is sufficient to cause neurodegeneration and significantly impair a 
range of functions as observed in AD. On the other hand, the deficits, although sustained, 
were relatively static rather than progressive, suggesting that another “hit” was needed to 
propagate the cascade of neurodegeneration.   
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8.1 Toxin-induced brain diabetes mimics sporadic Alzheimer’s disease  
Analysis of postmortem human brains demonstrated progressive insulin and IGF resistance 
and deficiency with increasing severity of AD and dementia, which correlated with 
increased indices of oxidative stress and DNA damage, and reduced cholinergic 

homeostasis. Neuroinflammation and APP gene expression were increased early in the 
course of AD, but they either stabilized or declined as disease progressed. None of the 
subjects in those studies had diabetes mellitus, non-alcoholic steatohepatitis, or obesity. 
Perhaps the best model of sporadic AD is the one generated by ICV streptozotocin (STZ) 
treatment. STZ is a pro-diabetes drug that when injected systemically causes Type 1 diabetes 
mellitus (insulin deficiency) with higher doses, and Type 2 diabetes (insulin resistance) at 
lower doses. The i.p. or i.v. administration of STZ also causes mild hepatic steatosis and 
neurodegeneration (Biju and Paulose 1998; Szkudelski 2001; Bolzan and Bianchi 2002; 
Koulmanda, Qipo et al. 2003), but low dose ICV STZ treatment causes cognitive impairment 
with brain insulin resistance, brain insulin deficiency, and AD-type neurodegeneration, and 
not diabetes mellitus or hepatic steatosis (Biju and Paulose 1998; Hoyer, Lannert et al. 1999; 
Nitta, Murai et al. 2002; Weinstock and Shoham 2004; Lester-Coll, Rivera et al. 2006). STZ-
induced neurodegeneration is characterized by impairments in brain insulin and IGF 
signaling, brain atrophy, impaired energy metabolism, mitochondrial dysfunction, oxidative 

stress, DNA damage, and increased APP, expression, APP-A accumulation, 
neuroinflammation, and tau phosphorylation. Therefore, limited exposure to a single pro-
diabetes drug causes neurodegeneration with all of the characteristic features of AD. 
Moreover, depending upon dose and route of administration, STZ treatment produces 
insulin resistance diseases that target the CNS, liver, pancreas, or skeletal muscle with 
variable degrees of overlap, or else the brain could represent the primary focus of disease. 

8.2 Environmental/dietary causes of insulin/IGF resistance syndromes: Nitrosamine 
exposures mediate Alzheimer’s, diabetes mellitus, and hepatic steatosis 
Sporadic AD or Type 3 diabetes is overwhelmingly a brain-specific disease that leads to total 

body wasting and eventual arrival at a vegetative state. The closest experimental model of 

sporadic AD is that produced by ICV STZ, which does not cause systemic diabetes mellitus, 

i.e. Type 1 or Type 2.  This very point begs the question of, what relevance could STZ 

possibly have in relation to the pathogenesis AD, diabetes, or hepatic steatosis in humans? 

After all, human are not generally exposed to STZ. The probable answer was uncovered by 

the realization that STZ is a nitrosamine-related compound, and that over the past several 

decades, Western societies have been assaulted by continuous and growing exposures to 

environmental and food-related nitrosamines. The epidemiological trends for AD, diabetes 

mellitus, obesity, and non-alcoholic steatohepatitis all show substantial increases in 

incidence, prevalence, morbidity, and mortality rates that correspond more with exposures 

than genetics as underlying causes (de la Monte, Neusner et al. 2009). For unclear reasons, 

although the connection between nitrosamine exposure and diabetes was entertained years 

ago (Berne, Gunnarsson et al. 1974; Portha, Giroix et al. 1980; Helgason, Ewen et al. 1984; 

Boucher, Ewen et al. 1994; Dahlquist 1994; Essien and Akpan 2006), that concept seems to 

have been missed, and therefore has not yet been incorporated into the conceptualization 

about the origins of our insulin resistance diseases epidemic. 

We conducted experiments to determine if low, sub-mutagenic doses of nitrosamines that 

are found in processed foods, e.g. N-nitrosodiethylamine (NDEA), could cause insulin 
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resistance diseases.  The results were alarming because low-dose and very limited exposures 

to NDEA cause T2DM, non-alcoholic steatohepatitis, visceral obesity, cognitive impairment, 

and AD-type neurodegeneration with peripheral, hepatic, and brain insulin resistance 

(Tong, Neusner et al. 2009; Tong, Longato et al. 2010), similar to the effects of STZ. 

Therefore, depending on the structure of the compound, dose, and route of administration, 

exposures to nitrosamine-related chemicals can cause insulin resistance diseases in multiple 

different target organs, including brain. In addition to providing evidence that the relatively 

recent epidemics of sporadic AD, T2DM, and non-alcoholic steatohepatitis/metabolic 

syndrome could be mediated by environmental or dietary exposures (de la Monte, Neusner 

et al. 2009), these studies demonstrate that insulin resistance diseases with essentially the 

same underlying cellular abnormalities, can develop in various organs and tissues. This 

phenomenon could account for the overlapping increases in prevalence rates of various 

insulin resistance diseases within the past several decades, as well as the very frequent but 

incomplete overlap between AD and obesity, T2DM, and NASH (Janson, Laedtke et al. 

2004), which did not exist prior to 1980, and is not accounted for by aging of the population 

(de la Monte, Neusner et al. 2009). 

8.3 The liver-brain-axis of neurodegeneration hypothesis 
Experiments with STZ and NDEA provided clear evidence that low dose exposures to 
nitrosamines can reproduce the molecular, biochemical, neuropathological, and 
neurobehavioral abnormalities observed in human sporadic cases of AD, and also cause a 
broad spectrum of peripheral insulin resistance diseases, including visceral obesity, 
diabetes, and non-alcoholic steatohepatitis (de la Monte, Tong et al. 2006; Lester-Coll, Rivera 
et al. 2006; de la Monte and Tong 2009; Tong, Neusner et al. 2009). Subsequent studies 
showed that, the adverse effects of NDEA were exacerbated by chronic high fat diet feeding 
(de la Monte, Tong et al. 2009; Tong, Longato et al. 2010), and that i.p. treatment with NDEA 
was more effective in causing neurodegeneration than ICV NDEA.  Further consideration of 
the data revealed that the degrees of steatohepatitis, and the levels of toxic lipids, i.e. 
ceramides produced in liver following NDEA ± high fat diet exposures were critical 
variables in the equation. These findings led us to the liver-brain- axis of neurodegeneration 
hypothesis (de la Monte, Longato et al. 2009; de la Monte, Longato et al. 2009), which states 
that, chronic injury to the liver that results in steatohepatitis, hepatic insulin resistance, and 
ER stress, leads to dysregulated lipid metabolism and attendant elaboration of toxic lipids, 
including ceramides and other sphingolipids. The toxic lipids get released into the 
circulation due to impaired membrane integrity or cell death. Their lipid-soluble nature 
enables the toxic lipids to cross the blood brain barrier and exert their adverse effects on 
brain insulin signaling pathways that mediate neuronal and glial survival, energy 
metabolism, neurotransmitter function, and synaptic plasticity. This hypothesis is supported 
by preliminary data showing that the same profiles of sphingolipids in steatotic livers are 
represented in peripheral blood, and that lipids isolated from peripheral blood in insulin-
resistance disease states, when applied to brain slice cultures, cause neurodegeneration with 
insulin resistance. Experimental in vitro and in vivo exposures to chemically defined toxic 
ceramides also cause neurodegeneration with brain insulin resistance (Tong and de la 
Monte 2009; de la Monte, Tong et al. 2010). In addition to providing a mechanism whereby 
environmental toxins in processed and preserved foods, and agricultural products grown 
with heavy doses of nitrate-containing fertilizers may be responsible for our current and 
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growing insulin resistance diseases epidemic that is becoming pandemic with exportation of 
our diets and lifestyles, the liver-brain-axis hypothesis suggests how the lipotoxicity 
associated with visceral obesity, type 2 diabetes, and NASH could serve as co-factors in the 
pathogenesis of AD-type neurodegeneration. 

9. Western diet and insulin/IGF resistance mediated neurodegeneration 

Since aging is essential and unequivocally the most dominant risk factor for AD, critical 

changes associated with the loss of youthful compensatory and protective mechanisms must 

be responsible for the acquired permissiveness to neurodegeneration. Mechanisms of aging 

are still under investigation. However, strong data from organisms that span the phylogenetic 

tree, indicate a role for caloric restriction as preventive, and excess caloric intake as a promoter 

of aging. One image I find impossible to dismiss, is the one displaying two primates of 

approximately the same age, side by side: one monkey was chronically fed with a low calorie 

diet, and the other was maintained on a high calorie diet. The differences in appearance and 

behavior were striking. The lean monkey appeared youthful and spunky, whereas the obese 

monkey looked aged and sluggish (Colman, Anderson et al. 2009). In addition to obesity, high 

caloric intake increased the rates of diabetes, cardiovascular disease, cancer, and brain atrophy 

in the colony (Colman, Anderson et al. 2009; Cruzen and Colman 2009). Moreover, diets high 

in trans fatty acids, which are abundantly present in processed foods, caused abdominal 

obesity and insulin resistance (Kavanagh, Jones et al. 2007). Similar effects of nutrient poor, 

calorically dense diets have been demonstrated in humans (Hodge, Dowse et al. 1995; Tran, 

Komatsu et al. 2001; Hursting, Lavigne et al. 2003; Newby, Muller et al. 2003). In humans, 

caloric restriction also retards aging and reduces rates of chronic disease; therefore, this simple 

measure may also help to reduce risk for neurodegeneration (Qin, Chachich et al. 2006; Kim, 

Nguyen et al. 2007; Wang, Fivecoat et al. 2010).  

Beyond avoidance of excessive caloric intake, growing evidence suggests that the source of 

calories is also of concern. A number of reports suggest that aging and pathophysiological 

states that contribute to chronic diseases are promoted by diets low in nutrient value, and high 

in simple sugars (fructose), starches, and trans fatty acids.  Added to this is the problem 

associated with consumption of heavily processed foods and exposure to nitrosamines. 

Unfortunately, the vast majority of foods consumed in the USA are processed and contain 

preservatives, and over time, our exposures to nitrosamines through food processing and 

preservation and the heavy use of fertilizers in agriculture have increased sharply and in 

parallel with the insulin resistance disease epidemics (de la Monte, Neusner et al. 2009). The 

implications with regard to strategies for disease prevention are obvious. The implementation 

of measures to protect citizens of this country while not destroying lifestyle conveniences 

brought by modernization of culture is possible for those who are informed and proactive, but 

will be challenging for individuals who are unwilling to make proper choices. The larger 

concern is the rapid rate in which our insulin resistance disease epidemic is becoming 

pandemic secondary to the exportation of inexpensive Western convenience foods. 

10. Sedentary lifestyles contribute to brain insulin/IGF resistance 

Attempts to curb the obesity epidemic and associated health risks have focused on 

implementing lifestyle changes that promote healthful eating and regular exercise. Cross-
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cultural studies have shown that adoption of Western, go-easy lifestyles with reduced 

physical activity results in higher rates of obesity (Hodge, Dowse et al. 1995), and increased 

obesity correlates with progressive hyperlipidemia (Berns, de Vries et al. 1989). In addition, 

sedentary lifestyles among children lead to increased energy intake in the forms of fat, 

sweets, salty snacks, and carbonated beverages, and reduced intake of fruits and vegetables 

(Coon and Tucker 2002). In contrast, increased physical activity in the form or aerobic 

exercise prevents the long-term weight gain that is associated with aging (Littman, Kristal et 

al. 2005), and reduces risk for both cardiovascular events and cognitive impairment (Nash 

and Fillit 2006). More recently, clinical research demonstrated that regular physical exercise 

can reduce the risks for cognitive impairment and neurodegeneration (Radak, Hart et al.), or 

help maintain (Plassman, Williams et al. ; Deslandes, Moraes et al. 2009) or improve 

(Rolland, Abellan van Kan et al. ; Weih, Abu-Omar et al. 2009; Baker, Frank et al. 2010) 

cognitive function in the elderly. Experimentally, physical exercise was demonstrated to 

reduce the AβPP-Aβ burden in transgenic mouse brains (Adlard, Perreau et al. 2005), 

although other studies suggest that improved cognitive performance and neurotrophin 

function were mediated by physical activity with environmental enrichment (Wolf, 

Kronenberg et al. 2006). These results provide convincing evidence that regular aerobic 

physical exercise can help prevent neurodegeneration and preserve cognitive function. The 

therapeutic effects of aerobic physical exercise are likely mediated by weight loss with 

reduced peripheral insulin resistance, increased cerebrovascular insulin/IGF responsiveness 

with attendant improvements in blood flow, nutrient delivery, and metabolism, and 

decreased production of toxic lipids that promote neurodegeneration and brain insulin 

resistance. 

11. Conclusions 

After 30+ years of intense research, new data have emerged supporting the concept that AD 

is heterogeneous in nature, and mediated by brain insulin and IGF resistance with 

reductions in glucose utilization and energy metabolism, increased oxidative stress, and 

neuro-inflammation. Impairments in brain insulin and IGF signaling contribute to neuronal 

loss, synaptic disconnection, tau hyperphosphorylation, AβPP-Aβ accumulation, and 

metabolic disturbances. Peripheral insulin resistance disease states, including diabetes 

mellitus, obesity, and non-alcoholic steatohepatitis, contribute to brain insulin/IGF 

resistance and neurodegeneration, but alone, they are not sufficient to cause AD. This 

conclusion is supported by experiments in which brain insulin or IGF resistance were 

produced by ICV delivery of siRNA duplexes targeting the insulin or IGF receptors. AD 

fundamentally represents a brain-specific form of diabetes i.e. Type 3 diabetes that can, and 

often does overlap with peripheral insulin resistance diseases. Analysis of experimental 

streptozotocin (STZ) treatment models showed that insulin resistance and insulin deficiency 

states could be produced in peripheral organs, including liver, and/or the brain. The 

realization that STZ is a nitrosamine, led to further studies revealing that NDEA, which is 

one of the nitrosamines present in processed and preserved foods, or can be produced in our 

bodies by exposure to nitrites, also causes the full spectrum of insulin resistance diseases 

that are epidemic in the USA. Moreover, experimental results showed that when combined 

with chronic high fat dietary intake, the severity and extent of insulin resistance diseases are 
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worsened substantially. Due to the common link of steatohepatitis with increased 

dysregulation of lipid metabolism and generation of toxic lipids, we proposed that AD-type 

neurodegeneration in the context of peripheral insulin resistance diseases is mediated via a 

liver-brain axis. In essence, toxic lipids generated in liver, enter the circulation, cross the 

blood-brain barrier, and cause brain insulin resistance by inhibiting signal transduction 

through the insulin receptor.  This concept provides a mechanism whereby peripheral 

insulin resistance diseases could serve as co-factors in the pathogenesis of AD and cognitive 

impairment. Dietary and lifestyle measures to prevent insulin resistance diseases, including 

sporadic AD, were discussed, with particular emphasis on avoiding processed and 

preserved foods that permeate Western diets. 
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