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1. Introduction 

Alzheimer’s disease (AD) is a neurological disorder characterized by profound memory loss 

and progressive dementia. The pathological and histological hallmarks of AD include 

amyloid plaques, neurofibrillary tangles and amyloidal angiopathy, accompanied by diffuse 

loss of neurons and synapses [1]. Environmental and genetic factors  interact  in the 

development of disease. Type 2 diabetes mellitus (DM) appears to be a significant risk factor 

for vascular dementia and AD in several epidemiological studies [2, 3]. Recent longitudinal 

studies have shown that AD and disorder of glucose metabolism are related [4, 5]. One 

explanation could be that vascular complications of diabetes result in neurodegenerative 

disease [6]. On the other hand, in addition to its peripheral metabolic effects, insulin also 

appears have important outcome on brain functions. A recent commentary offers two 

models of the link between type-2 DM and AD, 1. “central insulin resistance” and 2. 

inflammation. Both mechanisms influence insulin sensitivity in the brain, finally leading to 

┚-amyloid accumulation and, consequently, to AD [7]. Complex molecular mechanisms, 

referring to insulin and/or insulin like growth factor-1 (IGF-1) signaling could link DM and 

AD [8]. In fact, there is evidence that altered insulin and/or IGF-1 signaling to brain cells is 

probably responsible of amyloid accumulation in AD [9] and several independent effects of 

insulin on brain functions and cognitive performance have been described [10]. Insulin 

resistance with associated hyperinsulinemia are the mechanisms suggested to explain the 

increased AD risk in diabetes [11]. Subsequent investigations demonstrated reduced blood 

glucose levels and increased insulin levels in patients with late onset AD compared to aged 

controls or patients with vascular dementia. Although the authors concluded that these 

findings did not support an association between diabetes and AD [12], the same data were 

reinterpreted as an increased prevalence of insulin resistance in AD. The latter conclusion 

contradicts the finding that glucose administration could both increase plasma insulin levels 

and improve cognition in AD. Working under the assumption that increased insulin rather 

than glucose was responsible for the improvement in memory, further studies were used to 

demonstrate that the administration of insulin significantly improved memory performance 

in AD [8, 13]. Hyperinsulinemic euglycemic clamp studies in humans showed improvement 
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of attention in AD patients  and neuroelectric changes in evoked potential induced by 

insulin [14]. In contrast, increases in plasma glucose that were not accompanied by increases 

in insulin levels did not influence cognitive performances [15]. The Rotterdam Study was 

one of the first epidemiology surveys to provide convincing evidence on a relationship 

between DM and dementia based on a significantly higher prevalence of dementia in 

patients with insulin-dependent (Type 1) DM compared to non diabetic aged controls [3]. In 

addition, the possible association between DM-insulin resistance and degree of 

hippocampal and amygdala atrophy was investigated in vivo by magnetic resonance 

imaging [16]. The study showed that: 1. Individuals with DM had greater degree of 

hippocampal and amygdala atrophy compared with subjects who did not have DM; 2. 

Severity of insulin resistance associated with degree of amygdala atrophy. The inability to 

convincingly demonstrate a correlation between DM and AD, or find evidence that DM 

causes neuropathology, led to the alternative hypothesis that diabetes may serve as a co-

factor in the pathogenesis of dementia and possibly AD. In this regard, epidemiological 

studies showed that hyperinsulinemia in patients with APO E4-negative genotype was 

correlated with AD-type dementia, whereas in the absence of diabetes, APO E 4+ genotype 

was also correlated with AD [17], suggesting that APO E4 genotype and DM contribute 

independently to the pathogenesis of AD. Correspondingly, post-mortem studies have 

shown that individuals with DM and APO E4 genotype had significantly more abundant A┚ 

deposits and neurofibrillary tangles compared with diabetics who did not have an APO E4 

allele [18]. In this review, we will summarize current evidences supporting the association 

between insulin action, insulin receptors, IGF-1 and AD, and we will describe the  

underlying mechanisms. 

2. Insulin, IGF-1: Secretion, transport and distribution in human brain 

Insulin is almost exclusively synthesized and secreted into the plasma by pancreatic ┚-cells 
and has important role in metabolic homeostasis. Although accumulated evidence indicate 
that insulin is derived from peripheral insulin and transferred by a transporter regulated 
way through the blood-brain-barrier (BBB), [19, 20] there is also evidence consistent with 
local synthesis of insulin in the brain. In fact, Schechter et al. demonstrated that insulin can 
be produced locally in rabbit neuronal cells from culture [21]. besides, Devaskar et al. 
revealed localization of insulin expressing neurons involved in associative areas of limbic 
system and areas regulating olfaction [22]. On the other hand, it is now generally thought 
that insulin synthesis in the brain is restricted is not synthesized to any significant amount 
in adult developed brain [20]. Over the past few years, it has become clear that insulin and 
IGF-1 also have intense effects in the central nervous system (CNS), regulating key processes 
such as energy homeostasis, neuronal survival, longevity, as well as learning and memory. 
Insulin and IGF-1 bind to tyrosine kinase receptors, the insulin receptor (IR) and IGF-1 
receptor (IGF-1R), which share a high degree of identity in their structure and function. 
Insulin and IR are abundant but selectively distributed in the brain. Rodent studies have 
shown that insulin binding is highest in the olfactory bulb, cerebral cortex, hippocampus, 
hypothalamus, amygdala and septum [23, 24]. In the adult mammalian brain, two types of 
IR were found: a peripheral type and a neuron-specific type [25]. Insulin signaling within 
the cell is mediated, in general, by two functional cascades, one acting through the 
phosphatidylinositol-3 (PI3) kinase pathway, and other acting through the mitogen-
activated protein kinase pathway [26]. Binding of insulin or IGF-1 induces a conformational 
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change of the receptor and activates tyrosine-kinase which leads to auto-phosphorylation of 
the intracellular ┚-subunit [27]. Tyrosine-phosphorylate IR and IGF-1R ┚-subunits recruit 
and subsequently phosphorylate tyrosine residues of the intracellular insulin receptor 
substrates (IRS). The IRS protein family has at least four members, IRS-1 to -4 [28]. IRS 
proteins are homologue in structure and function but show distinct tissue distribution: IRS-1 
and IRS-2 are widely distributed throughout different tissues and the brain, whereas IRS-3 is 
only expressed in rodent adipose tissue, and IRS-4 is predominantly localized in 
hypothalamus, thymus, skeletal muscle, heart, kidney, and liver [29]. IR and IGF-1R are also 
expressed on brain capillaries and mediate the high efficiency translocation of insulin and 
IGF-1 into the brain across the BBB [30, 31]. Several studies have shown the highest IR 
density in olfactory bulb, hippocampal formation, hypothalamus, and cerebral cortex [32, 
33]. In fact, in postmortem studies in adult humans, Adem et al. showed the highest IGF-1R 
density in hippocampus, amygdala and parahippocampal gyrus [33]. Whereas the density 
of brain IR decreases during age, IGF-1R increases, suggesting that specific insulin mediated 
signals are involved in aging and possibly cause age associated cognitive decline [34, 35]. 
Insulin has been shown to cross the BBB by different mechanisms: extracellular pathways, 
non-saturable transmembrane diffusion or saturable active transport [36]. Currently, the 
majority of studies suggests that the largest proportion of insulin crosses the BBB by 
receptor-mediated transport [37]. In contrast, insulin IGF-1 is formed within the CNS during 
the development and, to a lesser extent, in the mature brain [38]. However, Rotwein 
suggests that IGF-1 might cross the BBB via an analogous mechanism like insulin [39]. 

3. Insulin and IGF-1 signaling in Alzheimer’s disease 

In normal physiology, insulin facilitates memory as demonstrated when administration at 
optimal doses and in contrast of sufficient glucose availability [15]. Type-2-diabetic patients 
are insulin resistant and have chronic hyperinsulinemia. The peripheral utilization of insulin 
reduces insulin transport into the brain, ultimately producing brain insulin deficiency [40], 
and abrogating the beneficial influences of insulin on the brain functions [15]. Different 
insulin levels have been observed in different brain regions [30, 41], probably linked to 
multiple insulin actions in CNS. Studies on type-2-DM animal models have shown a 
reduced uptake of insulin into the brain. It was observed that obese diabetic Zucker rats 
have a decreased insulin transport into the brain, reduced brain levels of insulin and 
peripheral hyperglycemia [30, 36, 41]. Recent studies linked diabetes with AD [8, 9, 18] and 
suggested that the brain may be influenced by changes in insulin levels and sensitivity. The 
observations that insulin, insulin receptors and C-peptide levels in cerebrospinal fluid (CSF) 
appears to be reduced in aging [42], along with the finding that AD patients have lower 
levels of insulin in the CSF, suggest impaired transport of insulin into the brain [43]. 
However the salutary effect of insulin on brain functions are reserved under conditions that 
impair its functioning, such as insulin resistance [44]. Frolich et al. found that neuronal 
tyrosine-kinase activity is decreased in AD patients compared to age-matched controls [35]. 
The overall expression of IGF-1R is reduced in AD brains dependent on the severity of the 
disease. Brain IGF-1 mRNA levels diminish in severe AD, whereas IGF-1 serum levels are 
increased in early stages of the disease, suggesting that IGF-1 resistance plays a role in the 
pathogenesis of AD [35]. IRS-1/2 protein expression is reduced in AD brains, and 
inactivating Serine-phosphorylation of IRS-312 and Ser616 is improved, leading to impaired 
insulin resistance and IGF-1R signaling [45]. Given that IRS are widely expressed in the 
hippocampus, the most studied brain region for learning and memory, it seems to be 
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plausible that decline of insulin resistance signaling leads to cognitive impairment [46]. 
Experiments with adult mice lacking liver IGF-1 production with an up of 85% reduction in 
circulating IGF-1 showed impaired spatial memory in the Morris water maze task compared 
to wild type litter mates [46]. These findings might explain the reduction of cognitive 
functions during aging, since IGF-1 serum levels diminish under physiological conditions 
[47]. Unpredictably, studies in neuronal-IR-knockout mice (NIRKO) did not provide 
evidence for impairment in learning and memory, proposing that insulin resistance alone is 
not a key feature in dementia and neurodegeneration [17]. 

3.1 Glucose metabolism and Alzheimer’s disease 
Some of the earliest work on senile dementia, which probably corresponded to AD, vascular 
dementia, or a combination of both, documented the development of altered brain 
metabolism soon after the onset of clinical symptoms [48, 49]. The metabolic abnormalities 
consisted of impaired glucose utilization and energy metabolism, with features that 
resemble type-2 DM [48]. In addition, several studies confirmed that cerebral metabolism 
declined prior to the deterioration of cognitive functions, suggesting that energy failure is 
one of the earliest reversible hallmarks of AD. These observations led to the hypothesis that 
AD-associated abnormalities in energy metabolism are caused by IR action in the brain, i.e. 
brain diabetes [49].  

3.2 Insulin therapy and Alzheimer’s disease 
There are conflicting findings regarding the effects of antidiabetic therapy on clinical and 
neuropathology of AD. The  Honolulu-Asia Aging Study demonstrated improvement of 
cognitive function and memory following induced hyperinsulinemia in patients with AD 
[2]. Conversely, the Rotterdam Study [3] observed increased risk of dementia in subjects 
with diabetes treated with insulin. In fact, in this prospective study, DM almost doubled the 
risk of dementia [Relative Risk (RR) 1.9] and patients treated with insulin were at higher risk 
of dementia [RR 4.3]. In opposition, recent studies suggest that the combination of insulinic 
therapy with other diabetes medications is associated to a lower neuritic plaques [50] and to 
slower cognitive decline in patients with AD [13]. Besides, studies in animals  have revealed  
the beneficial effects of peripheral and cerebroventricular injections of insulin on memory 
and learning [51]. Several studies have recognized that increasing plasma glucose levels 
improves memory in patients with AD [14, 15, 30]. Increasing plasma glucose levels also 
increases endogenous insulin levels, raising the query whether memory improvement is due 
to changes in insulin, independently of hyperglycemia [14], although the exact mechanism 
remains unclear. Dense IR distributions have been documented in the dentate gyros, CA1, 
and CA3 fields of the hippocampus [52]. These regions are known to play a role in 
declarative memory and they are affected earlier and most severely by the neuropathologic 
changes of AD [53]. Increased plasma insulin levels result in amplified insulin binding in 
hippocampus. In turn, increased brain insulin levels results in enlarged glucose utilization 
in the entorhinal cortex [54]. In contrast to the traditional notion that the brain is not an 
insulin-sensitive organ, insulin-promoted glucose utilization also results in glycolytic 
production of acetyl-CoA and subsequent increase in acetylcholine [55], a neurotransmitter 
closely linked to memory function and severely reduced in AD. Craft et al. confirm that 
elevated insulin without hyperglycaemia enhances memory in adults with AD, when 
endogenous insulin was suppressed by concomitant infusion of somatostatin analogues 
[14]. Moreover, the beneficial effect of insulin appears to be reduced when insulin resistance 
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is present [17]. Craft et al. showed acute effect of hyperinsulinemia in older adults and in 
patients with AD using a hyperinsulinemic-euglycemic clamps [15]. Low doses of insulin 
improve memory in normal subjects; AD patients with insulin resistance required higher 
insulin doses to obtain memory improvement. To date, no genetic risk factors have been 
identified for these patients, raising the possibility that factors relating to insulin resistance 
may be important for AD pathogenesis [15]. 

3.3 Insulin and oxidative stress mechanisms in Alzheimer’s disease 
Insulin promotes cell membrane expression of N-methyl-D-aspartate (NMDA) receptors, 

with increased neuronal Ca2+ influx [56]. Ca2+ influx presumably activates Ca2+dependent 

enzymes, including ┙-dependent enzymes and strengthens neuronal synaptic association 

[10]. A recent study identified a molecular mechanism that protects CNS neurons against ┚-

amyloid-derived-diffusible ligands (ADDL), responsible for synaptic deterioration 

underlying AD memory failure. The authors found ADDL binding to particular synaptic 

sites, and the resulting oxidative stress on synapses loss are markedly decreased by the 

presence of insulin. The protection mechanism does not involve simple competition 

between ADDLs and insulin, but rather is signaling-dependent down regulation of ADDL 

binding sites [57]. Another metabolic disturbance of emerging importance in AD involves 

insulin signaling in the brain. Levels of insulin receptors, glucose-transport proteins, and 

other insulin pathway components are reduced in some studies of AD brain (central 

resistance) [30]. Han et al. proposed a central insulin resistance together with decreased 

brain insulin levels might lead to accumulation of ┚-amyloid and consequently AD [7]. 

Insulin and brain derived IGF-1 instigate signals in the brain by activating the 

phosphatidylinositol-3-kinase-Akt pathway and the mitogen-activated protein kinase-

extracellular signal-regulated kinase pathway [58], but it is unclear whether signaling is up-

regulated (compensatory) or down-regulated (pathologic) in AD. Aging and life span are 

also influenced by insulin. Both in AD and in normal aging process mtDNA sustains high 

levels of oxidative damage (Figure 1) [59]. In fact, it was observed the accumulation of A┚ 

within structural damaged mitochondria isolated from the brains of AD patients [59, 60] and 

transgenic brains [61], which impair critical mitochondrial enzymes. Dysfunctional 

mitochondria release oxidizing free radicals, with peroxidation of membrane lipids and 

output of toxic aldehydes that cause considerable oxidative stress in AD and in normal 

aging brains [62]. Other essential proteins resulted oxidized, yielding carbonyl and nitrated 

derivatives, in neuronal cytoplasm in cerebral regions of neurodegeneration, in human brain 

affected by AD [63]. Subsequently, increased membrane permeability to calcium, and 

impaired glucose transport aggravate the energy imbalance [64]. Experimental model show 

that markers of oxidative damage precede pathological changes [65]. Destruction of 

mitochondria by the oxidation of a dynamic like transporter protein may cause synapse loss 

in AD [66]. The “receptor for advanced glycation end products” (RAGE) mediates A┚'s pro-

oxidant effects on neural, microglial, and cerebrovascular cells [67]. The RAGE receptor is a 

multi-ligand receptor, and one of its ligands is A┚ [67]. RAGE regulates several intracellular 

pathways [68], such stimulates expression of b-site Amyloid Precursor Protein (APP)-

cleaving enzyme 1 (BACE1) [69], an enzyme that is necessary for A┚ production. Moreover 

RAGE seems to negatively affect the  long term potentiation (LTP) synaptic process of 

learning and memory [70]. RAGE also exists in a soluble form, structured by alternative 

splicing [71] or proteolytic cleavage by the metalloprotease 10 (ADAM 10) [72]. Soluble 
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RAGE (sRAGE) contains the ligand-binding site, but does not have the signaling properties 

of full-length RAGE (flRAGE). It was observed that flRAGE is engaged in positive feedback 

mechanisms, enhancing its own production, and limiting sRAGE proposed protective 

actions. This notion is supported by the finding that flRAGE expression is increased in AD 

brains [73]. Indeed, studies have shown that sRAGE can inhibit the accumulation and 

aggregation of A┚ in mice brains [74]. In addition, it has been shown that sRAGE is present 

at lower levels in the blood and brain of AD patients [75]. Abnormal expression of RAGE in 

AD brain suggests that it is relevant to the pathogenesis of neuronal dysfunction and death. 

 

Fig. 1. Oxidative distress 

Dysfunctional mitochondria release oxidizing free radicals, and in Alzheimer’s disease 
(AD), they cause significant oxidative stress. Oxidative damage precede pathological 
changes. A┚, a strong generator of reactive oxygen species (ROS) and reactive nitrogen 
species (RNS), is a prime author of this damage. The receptor for advanced glycation end 
products (RAGE) mediates A┚’s pro-oxidant effects on neural, microglial and 
cerebrovascular cells. Mitochondrial hydrogen peroxide readily diffuses into the cytosol to 
contribute in metal-ion-catalyzed hydroxyl radical development. Moved microglia are a 
major source of the highly diffusible nitric oxide radical. These reactive oxygen species and 
reactive nitrogen species damage several molecular targets. Peroxidation of membrane 
lipids yields toxic aldehydes, which impair critical mitochondrial enzymes. Other essential 
proteins are directly oxidized, yielding carbonyl and nitrated derivates. Consequently, 
increases in membrane permeability to calcium, other ionic imbalances, and impaired 
glucose transportation worsen the energy imbalance.   
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4. The insulin and IGF-1R signaling and Tau phosphorylation 

Soluble tau proteins assemble with tubulin to constitute cross bridge between adjacent 

microtubule and promote stability of microtubules and vesicle transport [76]. 

Hyperphosphorylation of tau induces abnormal insoluble tau protein [77]. Neurofibrillary 

tangles are hyperphosphorilated, intracellular polymers of tau proteins. Neurofibrillary 

tangles are intracellular polymers of tau proteins, observed in cytoplasm of neurons [76] in 

AD and  in other neurodegenerative disorders, such as frontotemporal dementia, Pick’s 

disease, corticobasal degeneration, supranuclear palsy. Several studies [78, 79] supposed 

that the interaction between A┚ and tau proteins is necessary to cause neuronal loss.  When 

hyperphosphorylated, tau aggregates and interferes with intraneuronal metabolism and 

transport, leading to neurodegeneration. IR/IGF1 R mediated might be involved in 

regulation of tau phosphorilation, amyloid precursor protein cleavage, ┚ amyloid transport 

and degradation, in memory and aging [8]. The phosphorilation of tau is mainly promoted 

by glycogen syntase kinase (GSK)3┚ and cyclin dependent kinase(Cdk5).GSK3┚ is a serine-

treonine kinase,regulated by insulin/IGF-1 signaling pathway. GSK-3┚ is functionally main 

for regulating glycogen metabolism, proliferation survival, and cell migration [77]. When 

the IR/IGF-1cascade is activated, GSK┚ is phoshorilated by protein kinase AKT at serin 

leading  to its inactivation [80-82] (Figure 2). PP2A dephosphorylates tau maintaining an 

equilibrium of phosphorylation and dephosphorilation of tau [82, 83]. Protein phosphatases 

2A (PP2A) is the major phosphatases with 70% activity in human brains [84]. This implies a 

protective role of PP2A in neurodegeneration which is consistent with the finding that PP2A 

activity is reduced in AD brains [85]. In vitro studies it was found   that insulin influences a 

regulatory interaction between PP2A and GSK 3┚, inducing in activity of both enzymes 

change in the same direction. This balanced response seemed to preserve equilibrated tau 

phosphorilation [86, 87]. Several studies  on different animal models  of insulin resistance 

showed  that impaired IR /IGF-1 signaling  and hyperinsulinemia increased tau 

phosphorylation.[88-89]. In streptozotocina treated mice, model of type 1 diabetes, 

hyperphosphorilation of tau has be shown, which was reversible after peripheral insulin 

treatment [90]. Another important physiological role of insulin and IGF-1  in the brain is the 

regulation of gene transcription by MAP kinase cascade. This pathway  leads to activation of  

extracellular signal-regulated kinase (ERK)-1/-2, involved in long lasting neuronal 

plasticity, memory consolidation and apoptotic neuronal death [91-93]. Thus, altered 

IR/IGF-1 signaling  as well as lack of insulin might lead to hyperphosphorylation of tau 

protein and an increased formation of neurofibrillary tangles. These findings suggest that 

hyperphosphorylation of tau follows an imbalance of insulin regulated tau kinases and 

phosphatases [94].  

Protein  phosporylation/dephosphorylation imbalance is generate, at least in part, by a 

decrease in the activities of tau phosphatases (PP2A), and increase the activities of tau 

kinase (i.e. cdk5, GSK-3, etc.) affected by insulin. Impaired insulin signaling stimulates GSK-

3┚ activity that increases oxidative stress and tau hyper-phosphorylation, by Cdk-5. Severe 

or sustained oxidative injury leads to mithocondrial DNA damage, mithocondrial 

dysfunction, apoptosis and the attendant cell loss and impaired neuronal function lead to 

dementia. Age reduces membrane fluidity inducing mutations in transmembrane proteins, 

(i.e. PS1, PS2,..), and vulnerability of the cell membrane to variation in pathological signal 

transduction.  
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Fig. 2. Dementia and anomalous hyperphosphorylation of tau  

4.1 Protein phosphatases A (PPA) processing in Alzheimer's disease 
The amyloid plaques is formed by amyloid ┚ (A┚) peptides organized in fibrils intermixed 
with non fibrillar forms of this peptide and are surrounded by dystrophic dendrites, axons, 
reactive astrocytes and activated microglia. A┚ consists of small hydrophobic peptides with 
N- and C-terminal heterogeneity, i.e. A┚1-40 and A┚1-42 which are proteolytically released 
from a large type 1 integral membrane glycoprotein, the APP, via sequential cleavage by 
two aspartyl proteases, the ┚- and ┛-secretases [enzymatic complex, containing nicastrina, 
presenilina, preselin enhancer-2 (PEN-2), CD147] [95]. Initial ┚-secretase cleavage generates a 
soluble fragment from the NH2-terminus of APP, while the c-terminal fragment (┚-CTF) 
stays membrane bound. Full-length APP can undergo alternative processing by ┙-secretase, 
generating a soluble APPs┙ ectodomain and a membrane-bound carboxy-terminal 
fragment, APP-CTF┙. Processing of APP by ┙-secretase is postulated to be protective in the 
context of AD, because the enzyme cleaves within the A┚-sequence, thereby preventing the 
production of A┚. APP, ┙CTF and ┚CTF are further cleaved by ┛-secretase to generate p83 
fragment and A┚ respectively [96]. Multiple lines of biochemical evidence have shown ┛-
secretases activity to reside in a high molecular weight complex, consisting of at least four 
components: presenilin (PS, PS1, PS2), nicastrin, anterior pharynx-defective (APH-1) and 
PEN-2 [97]. The p83 fragment is rapidly degraded and widely believed to possess no 
important function, if any. ┛-secretase-mediated cleavage is unique in that the cleavage 
takes place within the membrane domain, though the exact site can vary. ┛-cleavage can 
yield both A┚1-40 and to a lesser extent A┚1-42 [96]. A┚ are toxic, and their accumulation is 

Β-secretase

γ-secretase
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currently seen as a key step in the pathogenesis of AD (Figure 3). Closer examination of the 
amyloidogenic ┚- and ┛-secretates discovered the membrane-anchored aspartyl protease ┚-
site BACE-1, which acts as ┚-secretase and presenelin 1-2, transmembrane proteins involved 
in formation of the ┛-secretase complex, as the responsible cleavage enzymes. Thus, 
alteration of their activity might be a possible target for AD treatment [98]. It has been 
shown that BACE-1 levels are increased in post-mortem brain sections from AD patients 
[99]. During aging changes in the cerebral expression levels of the neurotrophin receptors, 
TrkA (tyrosine kinase receptor A) and p75NTR (p75 neurotrophin receptor) have been 
described. In the human neuroblastoma cell line SHSY5Y as well as primary cultured 
neurons, chronic treatment with IGF-1 leads to a switch from TrkA to p75NTR expression as 
seen in aging brains [100]. This switch causes increased ┚-secretase activity indirectly by 
activation of neuronal sphingomyelinase which is responsible for hydrolysis of 
sphingomyelin and active liberation of the second messenger ceramide [101]. Ceramide is 
responsible for the molecular stabilization of BACE-1, the ┚-secretase which is rate-limiting 
for generation of A┚ [102]. This process leads to accumulation of A┚, connecting IGF-1R 
signaling to neurotrophin action. These data might provide a molecular link between aging, 
pathogenesis of AD and neuronal insulin-IGF-1 signaling. Lots of research has been done on 
the formation and accumulation of A┚, however, in the last years the mechanisms of 
amyloid clearance came into focus.  
 

 

Fig. 3. Amyloid placque formation. 
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The histological and pathological features of AD are amyloid plaques, neurofibrillary 
tangles and amyloid angiopathy. The dominant component of the placque core is the the 
amyloid beta-peptide (A┚) organized in fibrils of approximately 7-10 nm intermidex with 
non  fibrillar forms of this peptide. A┚ is a a 39-43 aminoacid peptide proteolytically 
released from a much larger precursor, tha amyloid precursor protein (APP). The generation 
of A┚ from APP requires the sequential recruitment of two enzymatic activities: ┚-secretase, 
also called BACE1 (for beta side APP cleaving enzyme), and ┛-secretase , a multicentric 
protein complex containing presenelin, nicastrina,..A┚ spontaneously self-aggregates into 
multiple coexisting physical forms, such as oligomers (2 to 6 peptides), transitional 
assemblies, fibrils  that coalesce into ┚ pleated sheets to form insoluble fibers and amyloid 
plaques. While monomeric A┚ is not neurotoxic, the A┚ oligomers exhibits a marked 
toxicity (Adapte from Martin JB; 1999).   

4.2 Insulin, IGF-1 signaling and β-amyloid in Alzheimer’s disease 
┚-amyloid spontaneously self-aggregates into multiple coexisting physical forms, such as 

oligomers (2 to 6 peptides), intermediate assemblies, fibrils  that coalesce into ┚ pleated 

sheets to form insoluble fibers and amyloid plaques [103]. While monomeric A┚ is not 

neurotoxic, the A┚ oligomers exhibits a marked toxicity [104]. Neuronal activation rapidly 

increase A┚ secretion at the synapse, during the  process of neurotransmitters release. 

Normal levels of A┚ at this site may modulate neuronal transmission and prevent 

hyperactivity [105]. It was assumed that imbalance between production, aggregation and 

clearance of peptides, is considered initiating factor in AD [106]. For A┚ clearance several 

mechanisms have been described: 1. enzymatic degradation by activated microglia or by 

insulin degrading enzyme (IDE), neprilysin, endothelin converting enzyme (ECE), and 

angiotensin converting enzyme (ACE); 2. receptor-mediated transport across the BBB by 

binding to the low-density lipoprotein receptor-related protein (LRP), either directly or after 

binding to APO E and/or ┙2-macroglobulin (┙2M), to be delivered to peripheral sites of 

degradation, e.g., liver and kidney [41]. Concerning insulin resistance it has been shown that 

IDE expression is stimulated by the insulin resistance-IGF-1R cascade [107]. It has been 

recently reported that membrane associated G protein-coupled receptor kinase-5 (GRK5) 

deficiency occurs during early AD [108]. In deficient GRK5 mice (tg2576-APPsw) Aß 

accumulation resulted significantly increased [108]. IGF-1 administration resulted in 

reduction of cerebral A┚ load in these mice, whereas A┚ was elevated in CSF suggesting an 

increased A┚ elimination across the BBB or the choroid plexus [109]. Furthermore, it has 

been shown that the blockade of the IGF-1R in the choroid plexus triggers AD-like 

pathology. Furthermore, tau phosphorylation did not change significantly following chronic 

IGF-1 treatment in Tg2576 mice [109]. A possible explanation could be that the chronic 

increase of IGF-1 by peripheral treatment might down regulate IGF-1R signaling. This 

hypothesis is supported by the finding that in a cohort of individuals with exceptional 

longevity serum IGF-1 levels were high but IGF-1R activity was low leading to reduced IGF-

1R signaling [110]. However, induction of insulin resistance by high fat diet [111] or intake 

of sucrose-sweetened water [112] leads to an aggravation of amyloid pathology in mouse 

models of AD. Furthermore, peripheral injection of supra physiologically high insulin doses 

but not of physiological doses leads to transient cerebral tau phosphorylation [113], leading 

to the proposal that there is a dose dependent effect of insulin resistance-IGF-1R signaling in 

the pathogenesis of AD.  
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5. Insulin, inflammation and Alzheimer's disease 

In recent years inflammatory pathway  have been linked to type 2 diabetes mellitus, 
metabolic syndrome (MS) and neurodegenerative diseases, including AD. Inflammation as 
able to accelerates the development type2 DM, through its influence on peripheral insulin 
sensitivity and pancreatic islet function; on the other hand, in addition to impaired insulin 
signaling, diabetes accelerated the appearance of cerebrovascular inflammation and A┚ 
deposition, as evidenced by increased levels of proinflammatory cytokines IL6 and TNF┙, as 
well as dense amyloid deposits in blood vessels.  [7, 114]. Cerebrovascular and central 
inflammation, along with increased accumulation of ┚ amyloid, disrupts normal synaptic 
function, a starting point of AD progression. It was hypothesized the mutual interaction 
between AD and DM. Takaeda observed increased severity of diabetic phenotype in  AD 
animal  models. The reciprocal actions between AD and type-2 DM thus form a vicious 
cycle, further illustrating the possibility that AD and type-2 DM may share common cellular 
and molecular  mechanisms [114] (Figure 4). Peripheral and central inflammation might  
affect pathogenesis of DM and AD. Elevated concentrations of interleukin (IL) 6 E2–
isoprostane have been observed in CFS of patients with AD [115]. Furthermore, in vitro and 
animal studies suggest that inflammation interacts with processing and deposit of A┚ [116]. 
Insulin exerts multiple effects involved in inflammation. In peripheral tissues insulin 
modulates many aspects of inflammatory network. Low doses of insulin exert anti-
inflammatory effects [117]; however, during chronic hyperinsulinemia, insulin may 
exacerbate inflammatory responses and increase markers of oxidative stress [118]. In 
human, co-administration of insulin and lipopolysaccharide produces a synergist increase in 
plasma concentrations of C-reactive protein and proinflammatory cytokines IL-1┚, IL-6, 
TNF┙ [119]. TNF┙ has both neurotoxic and neuroprotective effects mediated respectively by 
two receptor subtypes, TNF-R1 and TNF-R2. TNF-R1 contains a death receptor domain, and 
has been implicated in pro-apoptotic events, whereas TNF-R2 promotes cell survival. 
Increased levels of TNF-R1 and decreased levels of TNF-R2 have been observed in AD brain  
[120]. Abnormal levels of soluble TNF-R1 and R2 have been documented in adults with 
diabetes and impaired glucose tolerance [121], which reportedly normalize after a 3-weeks 
low calorie diet [122]. Insulin may also modulate levels of eicosanoids such as F2-
isoprostane via regulation of prostaglandin production in adypocites [123]. For example, 
elevated eicosanoid concentrations have been observed in hyperisulinemic Zucker rats [41]. 
Furthermore, excessive or chronic hyperinsulinemia inhibits degradation of protein 
damaged by oxidation and leads to formation of superoxide anions [124]. Insulin may also 
contribute to inflammation in the CNS, partially through effects on A┚. In fact, A┚42 interacts 
with inflammatory agents in a cyclically reinforcing manner, such that  A┚ elevations 
increase pro-inflammatory cytokines [125]. In vitro, soluble  A┚ oligomers rapidly increase 
IL-1┚ and TNF┙ levels [126]. Conversely, IL-6 and IL-1┚ can regulate processing of the APP 
from which A┚ is derived and increase production of A┚42 [127]. The mutually reinforcing 
effects of A┚, TNF┙, IL-1┚ and IL-6 may thus create a “cytokine cycle” [125]. In the 
periphery, insulin reduces hepatic production of Apo E and regulates its uptake by low-
density lipoprotein receptor-related protein [128]. Fishel et al. showed that insulin reduced 
plasma Apo E levels, an effect that increased with age. In contrast, insulin increased CSF 
Apo E concentrations for older subjects [129]. Increased brain APO E levels have been 
reported in AD in association with polymorphisms in the promoter region of the APO E 
gene that influence protein expression [130]. Recent studies showed that insulin-induced 
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elevations of CSF APO E levels were associated with attenuated increase IL6 and TNF┙ 
levels and with higher anti-inflammatory cytokine, IL-1┙ concentration. This pattern 
suggests multiple insulin effects that modulate the  role of APO E in response to 
inflammation in CNS [129] .Insulin can regulate CNS norepinephrine [131], an endogenous 
anti-inflammatory neuromodulator that blocks IL-1┚ expression [132].  Increased A┚ plaque 
load in AD has been linked to neuronal loss in the locus coeruleus, the primary source of 
brain norepinephrine [133].  In human,  raising plasma insulin levels while maintain 
euglycemia increases CSF norepinephine levels [134].Thus, these findings support the 
notion that insulin action is involved in neutrasmitter modulation and insulin abnormalities 
might  contribute to CNS inflammation. 
 

 
Fig. 4. The underlying link between Alzheimer’s disease (AD) and type-2 Diabetes Mellitus 
(DM). 
Inflammation influences islet function and peripheral insulin sensitivity. Besides, 
inflammation accelerates the development of type-2 DM. Cerebrovascular and central 
inflammation, along with increased accumulation of ┚-amyloid, disrupts normal synaptic 
function, a starting point of AD pathological progression. 

6. Conclusion 

Mild to moderate impairments of cognitive functioning has been reported both in patients 
with DM-type1 and in patients with DM-type2. The potential impact of DM on cognitive 
functions in the elderly is further emphasized by several large epidemiological surveys that 
report an increased incidence of dementia among DM patients. Several mechanisms may be 
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involved in accelerated cognitive decline in patients with DM. Insulin may affect the 
metabolism of Aβ and tau, two proteins that represent the building blocks of amyloid 
plaques and neurofibrillary tangles, the neuropathological hallmarks of AD. Moreover, 
insulin and its receptor are widely distributed throughout the brain, with particular 
abundance in defined areas, such as the hypothalamus and the hippocampus. In addition, 
insulin appears to act as "neuromodulator", that influences the release and reuptake of 
neurotransmitters, and improves learning and memory. These findings could provide 
insights to develop a strategy for prevention and treatment of AD. Insulin therapy plays an 
important role in cognitive processes and could slow dementia in patients with AD and DM. 
This could be explained by: 1.molecular mechanisms, insulin promotes cell membrane 
expression of NMDA receptors, which increases neuronal Ca2+ influx [56], that activates 
Ca2+-dependent enzymes, including ┙-dependent enzymes and strengthens neuronal 
synaptic association [10]; 2. glucose metabolism, low concentrations of exogenous insulin may 
increase cerebral glucose metabolism and then modulate brain functions such as memory 
[135]. In fact, insulin has shown a significant effect on global brain glucose metabolism and 
this effect is mainly expressed in the cerebral cortex; 3. neurotransmitter modulation, low 
doses of insulin can reverse the amnestic effects of cholinergic blockade  [136]. Although the 
concepts of "Cerebral Insulin Resistance" and "insulin-induced amyloid pathology" are an 
attractive explanation for some of the effects of DM2 on the brain, there are still many loose 
ends. It is important to point out that definitive conclusions about the value of insulinic 
treatment in course of AD cannot be established at this time.  
 

 

Fig. 5. Schematic representation of molecular mechanism, glucose metabolism and 
neurotransmitter modulation 
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Insulin promotes cell membrane expression of NMDA receptors, which increases neuronal 
Ca2- influx, that activates Ca2- dependent enzymes and strengthens neuronal synaptic 
association. Besides, diffusible ligands (ADDL) binding to particular synaptic sites and the 
resulting oxidative stress and synapse loss are markedly decreased by the presence of 
insulin. This mechanism is associated with a signal dependent down regulation of ADDL 
binding sites. Low peripheric insulin level may increase cerebral glucose and modulate 
cognitive functions. Besides, low levels of insulin contributes reverse the anamnestic effects 
of cholinergic blockade. 
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