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China 

1. Introduction 

As a result of statistical learning theory, support vector machines (SVMs)[23] are effective 
classifiers for the classification problems. SVMs have been successfully applied to various 
pattern classification problems, such as handwritten digit recognition, text categorization 
and face detection, due to their powerful learning ability and good generalization ability. 
However, SVMs require to solve a quadratic optimization problem and need training time 
that are at least quadratic to the number of training samples. Therefore, many large-scale 
problems by using traditional SVMs are too hard to be solved. To overcome this difficulty, 
Lu and colleagues have proposed a min-max modular support vector machine (M3-SVM) 
and part-versus-part task decomposition method [16]. A very important advantage of M3-
SVMs over traditional SVMs is that a two-class problem can be further decomposed into a 
series of two-class subproblems. 
The M3-network model [15] has been applied successfully to many real-world applications 
such as part-of-speech tagging [17], single-trial EEG signal classification [18], prediction of 
protein subcellular multi-locations [26], face recognition [2, 13] and text categorization [14]. 
The basic idea behind M3-network is the “divide and conquer” strategy. The task 
decomposition scheme of M3-network is based on class relations, and the instances in the 
same class can be further decomposed randomly [15], according to parallel hyperplanes [24], 
or prior knowledge [13]. The learning procedure of each subproblems is independent, and 
therefore parallel learning can be implemented easily. The combination strategy follows two 
principles, the minimization principle and the maximization principle [15]. 
We explore the use of M3-SVMs in multi-view face recognition. Multi-view face recognition 
is a more challenging task than frontal view face recognition. Face recognition techniques 
have been developed over the past few decades. But many of those existing face recognition 
techniques, such as Eigenfaces and Fisher-faces [22, 1], are only effective for frontal view 
faces. The difficulties of multi-view face recognition is obvious because of the complicated 
nonlinear manifolds existing in the data space. Using M3-SVMs, we can decompose the 
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whole complicated problem of multi-view face recognition into several relatively simpler 
two-class sub-problems. Every individual two-class sub-problem becomes less complicated 
than the original problem and it can be solved effectively. In addition, we use a SVM based 
discriminative feature selection (SVM-DFS) method [3] for feature selection in multi-view 
face recognition. 

2. Part-Versus-Part Task Decomposition 

For human beings, the only way to solve a complex problem is to divide it into smaller, 
more manageable subproblems. Breaking up a problem helps human beings deal with 
complex issues involved in its solution [18]. This “divide-and- conquer” strategy is also 
helpful to neural networks and machine learning approaches for dealing with complex 
learning problems. Our goal in this Section is to introduce a part-versus-part task 
decomposition method for training multi-class SVMs. 
Let be the given training data set for a K-class classification problem, 

(1)

where is the input vector, is the set of training inputs, is 
the desired output, is the set of desired outputs, and L is the total number of training data. 
We have suggested that a K-class problem defined by (1) can be divided into K(K–1) = 2
two-class subproblems [15], each of which is given by 

(2)

where and  are the training inputs belonging to class i and class j,
respectively, i is the set of training inputs belonging to class i, Li denotes the number of 

data in  and .
In this Chapter, the training data in a two-class subproblem are called positive training data 
if their desired outputs are +1. Otherwise, they are called negative training data. The two-
class subproblems defined by (2)  
are called pair-wise classification in the machine learning literature [5,11]. We would like to 
emphasize that decomposition of a K-class problem into K(K–1) /2 two-class subproblems 
defined by (2) is unique for a given training data set because of the uniqueness of  for 
i=1,...,K.
Although the two-class subproblems defined by (2) are smaller than the original K-class
problem, this partition may not be adequate for parallel computation and fast learning. To 
speed up learning, all the large and imbalanced two-class subproblems should be further 
divided into relatively smaller and more balanced two-class subproblems. 
Assume that i is partitioned into Ni subsets in the form  

(3)

where 1 Ni Li and .
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Various methods can be used for partitioning i into Ni subsets [15]. A simple and 
straightforward approach is to divide i randomly. The subsets ij might be disjoint or 
joint. Without loss of generality and for simplicity of description, we assume throughout 
this Chapter that the random decomposition method is used and the subsets ij are disjoint 
from each other, i.e., ij ik = for i =1,...,K, j and k=1,...,Ni, and j k.
In practical applications of SVMs, an appropriate value of Ni might depend on two main 
factors, such as the number of training data belonging to each class and the available 
computational power. In the simulations presented in this Chapter, we randomly divide i

into Ni subsets ij, which are roughly the same in size. The number of subsets Ni for class i

is determined according to the following rule:  

(4)

where is the desired number of training data fort wo-class subproblems, is a threshold 

parameter (0< <1) for fine-tuning the number of subsets, denotes the largest integer less 

than or equal to z, denotes the smallest integer larger than or equal to z, the function of f
mod(z1/z2) is employed to produce the decimal part of z1/z2, and z1 and z2 are two positive 
integers, respectively. 
After partitioning i into Ni subsets, every two-class subproblem ij defined by (2) can be 
further divided into Ni × Nj relatively smaller and more balanced two-class subproblems as 
follows: 

(5)

where l (iu) iu and l (jv) jv are the training inputs belonging to class  i and class j , 

respectively,  and . It should  be noted that all the two-
class subproblems have the same number of input dimensions as the original K-class 
problem. Comparing the two-class subproblems defined by (5) with the two-class 
subproblems obtained by the pairwise-classification approach, we can see that each of the 
two-class subproblems defined by (5) containsonly apart of data of each class. Hence, the 
decomposition method is called part-versus-part method [16]. 
According to the above discussion, the part-versus-part task decomposition method can be 
described as Table 1. 
After task decomposition, each of the two-class subproblems can be treated as a completely 
independent, non-communicating problem in the learning phase. Therefore, all the two-
class subproblems can be e ciently learned in a massively parallel way. 
From (2) and (5), we see that a K-class problem can be divided into 

(6)
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two-class subproblems. The number of training data for each of the two-class subproblems 
is about 

(7)

Since  is independent of the number of classes K, the size of each of the 
two-class subproblems is much smaller than the original K-class problem for reasonable Ni

and Nj.

Step 1: Set the values of and .

Step 2: Divide a K-class problem  into  two-class subproblems ij using (2). 
Step 3: If the sizes of all Tij are less than , then stop the procedure here. Otherwise, continue 

with the following steps. 
Step 4: Determine the number of training input subsets Ni for i=1,...,K using (4).
Step 5: Divide the training input set i into Ni subsets ij using (3).  
Step 6: Divide the two-class subproblem ij into Ni × Nj relatively smaller and simpler two 

class subproblems  using (5).

Table 1. The part-versus-part task decomposition method 

3. Min-Max Modular Support Vector Machine 

Before using M3-SVMs, for a K-class problem, we should divide the K-class problem into 
K(K  1)/2 two-class sub-problems according to one-against-one strategy or divide a K-class 
problem into K two-class subproblems according to one-against-all strategy. In this work, 
we use one-against-one strategy. The work procedure of M3-SVMs consists of three steps: 
task decomposition, SVMs training and module combination. First, every two-class problem 
is decomposed into relatively smaller two-class problems. Then, every smaller two-class 
SVM is trained. At last, all of the modules are integrated into a M3-SVM to obtain the final
solutions to the original problem.  

3.1 Support Vector Machine 

Support vector machine is a machine learning technique that is well-founded in statistical 
learning theory. The SVM algorithm formulates the training problem as a problem that 
finds, among all possible separating hyperplanes, one hyperplane that maximizes the 
distance between the closest elements of the two classes. In practice, this is determined 
through solving a quadratic programming problem. SVMs have a general form of decision 
function for an input x as: 

(8)

where i are Lagrange parameters obtained in the optimization step, yi are class labels, and 
K(·,·) is the kernel function. The kernel function can be various types. 
The linear kernel function is K(x,y)=x·y; the radial-basis function kernel function is 

and the polynomial kernel function is K(x,y)=(x·y+1)n .
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3.2 Module Combination 

After training, all the individual SVMs are integrated into aM3-SVM with the MIN unit and 
the MAX unit according to the following two combination principles: the minimization 
principle and the maximization principle [15,16]. 
Minimization Principle: Suppose a two-classproblem  were divided into P relatively 
smallert wo-class subproblems, i for i=1,...,P, and also suppose that all the two-class 
subproblems have the same positive training data and di erent negative training data. If the 
P two-class subproblems are learned by the corresponding P individual SVMs, Mi for 
i=1,...,P, then the combination of the P trained SVMs with a MIN unit will produce the 
correct output for all the training inputs in , where the function of the MIN unit is to find a 
minimum value from its multiple inputs. The transfer function of the MIN unit is given by 

(9)

where x denotes the input variable. 
Maximization Principle: Suppose a two-classproblem  were divided into P relatively 
smaller two-class subproblems, i for i=1,...,P, and also suppose that all the two-class 
subproblems have the same negative training data and di erent positive training data. If the 
P two-class subproblems are learned by the corresponding P individua lSVMs, Mi for 
i=1,...,P, then the combination of the P trained SVMs with a MAX unit will produce the 
correct output for all the training input in , where the function of the MAX unit is to find a 
maximum value from its multiple inputs. The transfer function of the MAX unit is given by 

(10)

For example, a two-class problems defined by (2) is further divided into N+ ×N  relatively 
smaller two-class subproblems. After learning all of these two-class subproblems with 
SVMs, the trained N+ × N  individual SVM modules are integrated into a M3-SVM with N+
MIN units and one MAX unit as follows:  

(11)

and

(12)

where denotes the transfer function of the trained SVM corresponding to the two-

class subproblem , and  denotes the transfer function of a combination of N
SVMs integrated by the MIN unit. Figure 1 illustrates the structure of a M3-SVM.  
Suppose that a 1-out-of-K scheme were used for output representation. Let Y denote the 
actual output vector of the M3-SVM for a K-class classification problem, and let  denote 
the transfer function of the entire M3-SVM.  We may then write  

(13)
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According to the minimization and maximization principles, the  SVMs, Mij (x) for 

i=1,...,K and j=i+1,...,K, and the corresponding  inversions Mrs(x) for r=2,...,K and s=1,...,r
 1, are integrated as  

(14)

where i (x) for i=1,...,K denotes the discriminant function, which discriminates the patterns 
of class i from those of th eremaining classes, and the term  denotes the inversion of 
Mri (x). 
It is easy to implement with Mri (x) and an INV unit. The function of the INV unit is 
to invert its single input; the transfer function of the INV unit is given by 

(15)

where , , p ,and q are the upper and lower limits of input value input, and output, 
respectively. For example,  and  are set to +1 and -1, respectively, for support vector 
classifiers in the simulations below.  

Figure 1. Structure of a M3-SVM consisting of N+ × N  individual SVMs, N+ MIN units, 
and one MAX unit 



Multi-View Face Recognition with Min-Max Modular Support Vector Machines 113

The relationship among Mrs(x), , and the INV unit can be expressed as 

(16)

Similarly, the discriminant function i (x) of the Min-Max SVM, which consists of  

 network modules, and the corresponding inversions can be 
expressed as  

(17)

where the term  denotes the inversion of 

. It should be noted that only the inversions of network 
modules Mi j (x) are used for constructing the M3-SVMs, and there are no inversions for 

SVMs .
Summarizing the discussion mentioned above, the module combination procedure can be 
described as Table 2. 

Step 1: If no SVMs  exist, go to Step 3. Otherwise, perform the following steps. 

Step 2: Integrate Ni × Nj SVMs  for u = 1,.. , Ni, v=1,..., Nj, i =1,..., K, and j=i+1,...,K,
into a module Mi j (x) with Ni MIN units and one MAX unit according to (11) and 
(12).

Step 3: Integrate K (K– 1)/2 modules and the corresponding K (K– 1)/2 inversions with K
MIN units according to (14). 

Table 2. The module combination procedure 

From the module combination procedure above, we see that individual trained SVMs can be 
simply integrated into a M3-SVM with MIN, MAX and/or INV units. Since the module 
combination procedure is completely independent of both the structure of individual 
trained SVMs and their performance, we can easily replace any trained SVMs with desired 
ones to achieve better generalization performance. In contrast to the task decomposition 
procedure mentioned earlier, the module combination procedure proceeds in a bottom-up 
manner. The smaller trained SVMs arei ntegrated into larger modules first, and then the 
larger modules arei ntegrated into a M3-SVM.  
After finishing module combination, the solutions to the original K-class problem can be 
obtained from the outputs of the entire M3-SVM as follows:  

(18)

where  is the class that the M3-SVM assigns to the input x.
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Once the size of each of the SVMs is fixed, the space complexity of the entire M3-SVM is 
determined according to (14) and (17). Table 3 shows the number of individual SVM 
modules and integrating units required to construct a M3-SVM for a K-class problem. 

4. Discriminative Feature Selection  

We use a SVM-based discriminative feature selection (SVM-DFS) [3] method for multi-view 
face recognition in this study.  

Table 3. Number of SVM modules and integrating units required to build the M3-SVM for a 
K-class problem (K>2)

4.1 Feature Selection in Binary Classification  

In the linear case of binary classification, the decision function equation (8) can be reformed 
as

(19)

where w obtained from 

(20)

The inner product of weight vector w=(w1,w2,...,wn) and input vector x=(x1,x2,...,xn)
determines the value of f(x). Intuitively,the input features in a subset of (x1,x2,...,xn) that are 
weighted by the largest absolute value subset of (w1,w2,...,wn) influence most the 
classification decision. If the classifier performs well, the input features subset with the 
largest weights should correspond to the most informative features. Therefore, the weights 
|wi| of the linear decision function can be used as feature ranking criterion [7] [8] [25] [3] 
[10] [4] [20] [9] [19]. According to the feature ranking criterion, we can select the most 
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discriminative features for the binary classification task. However, this way for feature 
ranking is a greedy method and we should look for more evidences for feature selection. 
Support vectors can be used as evidence for feature ranking [3] [10] [4], because support 
vectors can be used to count for di erent distributions of the features in the training data. 
Assume the distance between the optimal hyperplane and the support vectors is , the 
optimal hyperplane can be viewed as a kind of -margin separating hyperplane which is 
located in the center of margin ( , ). According to [23], the set of -margin separating 
hyperplanes has the VC dimension h bounded by the inequality 

(21)

where R is the radius of a sphere which can bound the training vectors x X. Inequality (21) 
points out the relationship between margin  and VC dimension: a larger  means a smaller 
VC dimension. Therefore, in order to obtain high generalization ability, we should still 
maintain margin large after feature selection. However, because the dimensionality of 
original input space has been reduced after featur eselection, the margin is usually to shrink 
and what we can do is trying our best to make the shrink small to some extent. Therefore, in 
feature selection process, we should preferentially select the features which make more 
contribution to maintaining the margin large. This is another evidence for feature ranking. 
To realize this idea, a coe cient ck is introduced, 

(22)

where SV+ denotes the support vectors belong to positive samples, SV– denotes the support 
vectors belong to negative samples, l+ denotes the number of SV+, l–denotes the number of 
SV–, and xi,k denotes the kth feature of support vector i in input space Rn. The larger ck

indicates that the kth feature of input space can make more contribution to maintaining the 
margin large. Therefore, ck can assist |wk| for feature ranking. The solution is that, 
combining the two evidences, we can order the features by ranking ck |wk|.
In the nonlinear case of binary classification, a cost function J is computed on training 
samples for feature ranking. DJ(i) denotes the change in the cost function J caused by 
removing a given feature or, equivalently, by bringing its weight to zero. DJ(i) can be used 
as feature ranking criterion. In [7], DJ(i) is computed by expanding J in Taylor series to 
second order. At the optimum of J, the first order term can be neglected, yielding 

(23)

where the change in weight  corresponds to removing feature i.
For the nonlinear SVMs with the nonlinear decision function f(x), the cost function J being 
minimized is 

(24)
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where H is the matrix with elements yh yk K (xh,xk),  is Lagrange parameter vector 
=( 1, 2,..., n), and v is a n dimensional vector of ones [7]. To compute the change in cost 

function caused by removing input component i, one leaves the ’s unchanged and one 
recomputes matrix H. This corresponds to computing K(xh ( i), xk ( i)), yielding matrix 
H( i), where the notation ( i) means that component i has been removed. Thus, the feature 
ranking criterion for nonlinear SVMs is 

(25)

Computation of DJ(i) is a little more expensive than that in the linear case. However, the 
change in matrix H must be computed for support vectors only, which makes it a ordable 
for small numbers of support vectors.  
For the convenience of representation, in both linear and nonlinear cases of binary 
classification, we denote feature ranking criterion as ri for the ith feature in the input space 
Rn. In linear case of binary classification, ri is  

(26)

In nonlinear case of binary classification, ri is  

(27)

Using feature ranking criterion ri, we can select most discriminative features for binary 
classification task. 

4.2 Feature Selection in Multi-class Classification  

In the case of multi-class classification, we use one-versus-all method for multi-class SVMs. 
Multi-class classification problem is much more di cult than the binary one especially 
when the data are of high dimensionality and the sample size is small. The classification 
accuracy appears to degrade very rapidly as the number of classes increases [12]. Therefore, 
feature selection in multi-class classification is more challenging than that in binary case. We 
should be more careful when extending feature selection from binary case to multi-class 
case. Using the statistical relationship between feature ranking and the multiple sub-models 
of multi-class SVMs, we propose the SVM-DFS method for features election. 
One-versus-all multi-class SVMs constructs K decision functions where K is the number of 
classes. The jth decision function fj (x) is constructed with all of the examples in the jth class 
with positive labels, and all other examples with negative labels. The fj (x) is a binary 
classification sub-model for discriminating the jth class from the all other classes. When fj (x)
has the maximum value among all the sub-models, fj (x) has determined the classification 
result that the jth class is true. The ri j, calculated from fj (x), denotes the feature ranking 
criterion of the ith feature according to the binary classification sub-model fj (x). There are 
sure event E and impossible event Ø in probability theory. Let j denote the event that the 
jth class is true. According to probability theory, events 1, 2,..., k constitute a partition of 
the sample space 

(28)
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and

(29)

P ( j) is the prior probability that the jth class is true. Define a random event Si as “the ith
feature is selected as discriminative feature”. Let P(Si| j) denote the conditional probability 
of Si given that j occurred. When event j occur, the jth binary classification sub-model fj (x)
has the maximum value among all the sub-models and it is just uniquely e ective for 
determining the final classification result 

(30)

on the premise that the fj (x) is correct. Under the condition that the jth binary classification 
sub-model fj (x) is e ective, we can calculate P(Si| j) through the feature ranking criterion rij

(31)

According to the theorem on the total probability, P(Si) can be calculated through P(Si| j)
and P( j)

(32)

Then, P(Si) can be used as feature ranking criterion for the whole multi-class classification 
problem. The solution is that we can order the features by ranking P(Si) and select the 
features which have larger value of P(Si). In Table 4, we present an outline of the SVM-DFS 
algorithm. 
In the algorithm, T and Mt are two user defined constants. T is the number of the iteration 
steps. Usually, T should not be too small. Mt is the number of the features to be selected in 
the t iteration step. Mt can be evaluated by retraining the SVM classifiers with the Mt

selected features. Mt should be set to such a value that the margin i of each retrained SVM 
sub-model fi (x) is large enough 

(33)

where w(i) denotes the weight vector of sub-model fi (x).According to [23], 

(34)

where
j
(i) denotes Lagrange parameter of sub-model fi (x). Define a coe cient L:

(35)
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• Input: 
Training examples

X0 = {x1, x2,...xl} T

• Initialize:  
Indices for selected features: s=[1,2,...n]
Train the SVM classifier using samples X0

• For t=1,...,T:
1. Compute the ranking criteria P(Si) according to the trained SVMs 
2. Order the features by decreasing P(Si), select the top Mt features, and eliminate the 

other features 
3. Updates by eliminating the indices which not belong to the selected features 
4. Restrict training examples to selected feature indices  

X=X0(:,s)

5. Train the SVM classifier using samples X  
• Outputs:

The small set of critical features and the final SVM classifier  

Table 4. The outline of the SVM-DFS algorithm 

We can use coe cient L to evaluate Mt. Mt should be set to such a value that the value of L is 
small enough. After the Mt discriminative features have been selected through SVM-DFS, 
the SVM models have to be retrained using the training data. 

5. Experiments

We use the UMIST database [6], am ulti-view face database consisting of 575 gray-scale 
images of 20 subjects. Each of the subjects covers a wide range of poses from profile to 
frontal views. Figure 2 depicts some sample images of a subject in the UMIST database. This 
is a classification problem of 20 classes. The overall database is partitioned into two subsets: 
the training set and test set. The training set is composed of 240 images of 20 persons: 12 
images per person are carefully chosen according to face poses. The remaining 335 images 
are used to form the test set. All input images are of size 112×92. We have used SVM-DFS 
discriminative feature selection method to reduce the dimensionality of feature space. All of 
the experiments were performed on a 3.0 GHz Pentium 4 PC with 1.0 GB RAM. 
After nonlinear dimensionality reduction [21], the distribution of face poses is shown in 
Figgure 3. From Figgure 3, we can see that the distribution of faces varies based on face 
poses. Following the observation from Figgure 3, we partition the set of training inputs for 
each class into four subsets by using the part-versus-part task decomposition strategy. As a 
result, the original 20-class classification problem has been decomposed into 3040 two-class 
subproblems. First, the origial 20-class classification problem has been decomposed into 
(20*(20-1))/2=190 two-class subproblems. Second, each two-class subproblem has been 
decomposed to 4*4=16 two-class subproblems. Therefore, the original problem has been 
decomposed into (20*(20-1))/2*4*4=3040 two-class subproblems. Every individual 
subproblem becomes less complicated than the original problem and it can be solved more 
effectively.
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Figure 2. Some face samples of one subject from the UMIST face database 

Figure 3. Distribution of face poses is shown after nonlinear dimensionality reduction (From 
Tenenbaum et al.[21]) 

 90 degree:  60 degree:  30 degree:  0 degree: 

Figure 4. Training face images for each class are divided into 4 subsets according to face 
poses
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Training time (s) 
Methods

No.
features

Parallel Serial 

Test
time (s) 

Correct rate 
(%)

SVMs (rbf kernel)  

300

200

150

100

30

25

25

20

0.862

0.748

0.703

0.685

13.588

12.654

11.865

11.269

1.522

0.976

0.757

0.478

92.8358

92.2388

90.1493

82.3881

M3-SVMs(rbfkernel)

300

200

150

100

20

15

10

10

0.531

0.447

0.386

0.359

15.273

13.413

12.587

12.165

1.647

1.215

0.873

0.526

93.1343

92.5373

91.3433

83.8806

Table 5. Test results on UMIST face database 

To evaluate the e ectiveness of the proposed method, the multi-view face recognition 
problem was learned by both M3-SVMs and standard SVMs. The one-versus-all method is 
used for training the standard SVMs. A radial-basis function kernel for SVMs is used, the 
parameter C=10000, and  is set to the optimal values. The experimental results are shown 
in Table 5. From Table 5, we can see that M3-SVMs can obtain better generalization 
performance than the standard SVMs when the original problem is decomposed into 3040 
two-class subproblems, and meanwhile the training time can be reduced in a parallel way. 
The parallel training is to train all the sub-modules at the same time in parallel. And the 
serial training is to train all the individual modules one-by-one in serial. In parallel training 
way, M3-SVMs can make the training speed faster comparing to the standard SVMs. The 
results in Table 5 also indicate that even though in low feature space after discriminative 
feature selection, M3-SVMs are still more accurate than the standard SVMs.  

6. Conclusions 

We have applied the min-max modular support vector machine and the part-versus-part 
task decomposition method to dealing with multi-view face recognition problems. We have 
demonstrated that face pose information can be easily incorporated into the procedure of 
dividing a multi-view face recognition problem into a series of relatively easier two-class 
subproblems. We have performed some experiments on the UMIST database and compared 
with the standard support vector machines. The experimental results indicate that the min-
max modular support vector machine can improve the accuracy of multi-view face 
recognition and reduce the training time. As a future work, we will perform experiments on 
large-scale face databases with various face poses. We believe that the min-max modular 
support vector machine with incorporating pose information into task decomposition will 
have more advantages over traditional support vector machines in both training time and 
recognition accuracy when a more number of training samples are available. 
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