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1. Introduction 

The use of pesticides allows human to stabilize and increase agricultural production (Wang 

2009). Among various types of pesticides, the organophosphorus pesticides (OPP) are 

targeted to the insect elimination (Fukuto 1990). They were developed as esters of 

phosphonic or phosphoric acid or their thio-analogues e.g. paraoxon, chlorpyriphos, 

diazinon, dimethoate (Figure 1). 

 

 

Fig. 1. Organophosphorus insecticides. 

Their mechanism of action consists in the irreversible inhibition of cholinesterases in the 

insect body, namely acetylcholinesterase (AChE; EC 3.1.1.7) or butyrylcholinesterase (BChE; 

EC 3.1.1.8) (Marrs 1993). The cholinesterases irreversible inhibition is based on formation of 

covalent bond between OPP and serine moiety in the AChE active site. The AChE is 

responsible for termination of neuronal transmission via degradation of acetylcholine in the 

synaptic cleft. This irreversible AChE inhibition causes the accumulation of acetylcholine in 

the synaptic cleft and thus permanent activation of cholinergic (muscarinic or nicotinic) 

receptors (Bajgar 2004). The disrupted neuronal transmission causes the insect death (Brooks 

1986). 

However, the OPP are not selective for insect species, but they have same mechanism of 
action for the warm-blooded organism (Figure 2) including human (Bajgar 2004). Thus, the 
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human may be also easily intoxicated by OPP. Consequently, human AChE (hAChE) is 
irreversibly inhibited in Ser203 and cannot fulfil its natural function (Marrs 1993). The 
acetylcholine accumulation and consequent overstimulation of receptors leading to 
cholinergic crisis is common feature for such intoxication. The muscarinic (e.g. lacrimation, 
salivation, miosis), nicotinic (e.g. neuromuscular blockade) or central (e.g. breath 
depression) symptoms can be observed (Bajgar 2004). If the OPP intoxication remains 
untreated, the organism dies. 
 

 

Fig. 2. Mice AChE inhibited by fenamiphos (in magenta; whole enzyme –left; active site – 
right; 2wu3.pdb) (Hornberg 2010). 
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The OPP intoxications of human are relatively widespread. They are usually arising from 

careless manipulation with OPP or the suicidal use of some OPP (Eddleston 2002). The 

terrorist misuse of the OPP should also not be underestimated from the point of view of 

food or water supplies contamination (Satoh 2000). The OPP intoxications were estimated to 

be annually responsible for 200 000 deaths that represent only about 15-30 % of all OPP 

intoxication (Eddleston 2008). 

The general treatment of OPP intoxication has several necessary steps. The non-

pharmacologic treatment is focused on resuscitation, oxygen supply or decontamination 

depending on the OPP entrance to the human body (e.g. skin, eye, gastric 

decontamination) (Eddleston 2008). The pharmacologic treatment consists in the 

administration of the symptomatic and causal drugs. The parasympatolytics (usually 

atropine; Figure 2) are used as the symptomatic treatment that is able to decrease the 

effects of the accumulated acetylcholine on the cholinergic receptors (Robenshtok 2002). 

Similarly, the anticonvulsives (usually diazepam; Figure 2) are used as the symptomatic 

treatment to decrease the neuromuscular seizures (Marrs 2003). Differently from 

symptomatic drugs, the AChE reactivators were developed as the causal treatment to 

cleave to OPP moiety from AChE serine active site and to reactivate its native function 

(Bajgar 2007). 

 

 

Fig. 3. Drugs used for symptomatic treatment of the OPP intoxication. 

The mechanism of AChE reactivation consists in the nucleophilic attack of the reactivator 

towards the OPP moiety (Marrs 1993). This attack is provided by hydroxyiminomethyl 

(oxime) moiety. The covalent bond between OPP and AChE serine is cleaved, the complex 

of reactivator-OPP (phosphorylated reactivator) is formed and the AChE is reactivated 

(Figure 4) (Eyer 2003). If the reactivation is successful, the AChE function is fully restored. 

However, the “aging” process may also take place (Mason 1993). In this case, the OPP-AChE 

complex is degraded and further coordinated within the cholinesterase active site. Such 

“aged” OPP-AChE complex cannot be reactivated by known oxime reactivators (Worek 

2007). The aging process is well known for highly toxic nerve agents (e.g. sarin, soman, 

tabun, VX), but it is also known for some OP insecticides (e.g. dimethoate, fenamiphos) 

(Hornberg 2010). For the aging reasons, the acute OPP intoxication should be rapidly treated 

by causal drugs (oxime reactivators) (Bajgar 2007). 
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Fig. 4. Cholinesterase reactivation by oxime reactivator. 

The oxime reactivators were developed since 1950´s. The original idea of cholinesterase 
reactivation came from reactivation activity of hydroxylamine analogues (Wilson 1953, 
Wilson 1955a-b). However, the better results were obtained from quaternary heteroaromatic 
compounds with oxime moiety. The pralidoxime (2-hydroxyiminomethyl-1-
methylpyridinium chloride) was the first clinically used AChE reactivator (Figure 5) (Wilson 
1955c, Namba 1958). Further, the bisquaternary compounds with one or two oxime moieties 
were developed – e.g. trimedoxime (1,1'-trimethylene-bis-(4-
hydroxyiminomethylpyridinium) dichloride; Poziomek 1958), methoxime (1,1'-methylene-
bis-(4-hydroxyiminomethylpyridinium) dichloride; Hobbiger 1960), obidoxime (1,1'-
oxydimethylene-bis-(4-hydroxyiminomethylpyridinium) dichloride; Luettringhaus 1964), 
asoxime (HI-6; 1,1'-oxydimethylene-(2-hydroxyiminomethylpyridinium)-(4'-
carbamoylpyridinium) dichloride; Hagedorn 1969; Figure 5). 
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Fig. 5. Commercially available cholinesterase reactivators. 

2. Commercially available acetylcholinesterase reactivators 

The commercially available reactivators (pralidoxime, methoxime, trimedoxime, obidoxime, 
asoxime) were developed in the second half of the 20th century and more or less successfully 
used against intoxication by organophosphorus compounds. However, these reactivators 
were primarily aimed to diminish the intoxications by highly toxic nerve agents (Musilek 
2011a). Thus, their use against OPP intoxications was usually made as a side process in the 
development of nerve agent antidotes. Though the commercially available reactivators were 
not directly pointed to OPP intoxication, some of them manifested satisfactory results in 
reactivation OPP inhibited cholinesterases. 
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2.1 Pralidoxime 

The pralidoxime (Figure 6) was firstly described in 1955 and it was the first AChE 
reactivator available for clinical practice (Wilson 1955c, Namba 1958). Since 1950's, this drug 
was introduced globally and it remains in the standard treatment of OPP intoxication in 
many countries. However, the pralidoxime reactivation of OPP inhibited AChE was found 
to be debatable for many reason (Eddleston 2009). Whilst the reactivator concentration 
attainable in human blood after i.m. or i.v. administration was formerly suggested to be 
maximally 100 µM (Tattersall 1993), the in vitro studies reported limited pralidoxime 
reactivation of some OPP-inhibited (paraoxon, methylparaoxon, lephtophos-oxon, 
dichlorvos, methamidophos) hAChE (Table 1; Jun 2010, Jun 2011). Though pralidoxime 
presented some in vitro reactivation ability at 100 µM, it had limited reactivation at 10 µM 
that is more probably presented in human body after i.v. or i.m. administration of its 
suitable dose. Moreover, some published studies presented very high doses of pralidoxime 
in vitro (up to 700 µM), but did not consider attainable plasma concentration or possible 
adverse effects (Rios 2005). From in vitro evaluation point of view, pralidoxime seems not to 
be valuable reactivator for OPP intoxication compared to other commercially available 
compounds. 
The in vivo animal studies concerned to pralidoxime also suggested its limited reactivation 
of OPP intoxicated animals. These findings were confirmed for e.g. paraoxon (Petroianu 
2006a), methylparaoxon (Petroianu 2007a) or dichlorvos (Khan 1988). The pralidoxime was 
also determined with intermediate acute toxicity among standard five reactivators for mice 
and rats (Table 2; Musilek 2007a, Musilek 2010). Furthermore, many human studies with 
pralidoxime treatment of OPP intoxications are available, because pralidoxime chloride or 
dimethansulfonate is globally the most used cholinesterase reactivator and usually the 
antidote of the first choice. However, the pralidoxime was introduced to clinical practice 
without relevant clinical studies (Eddleston 2008). Thus, some randomised and double blind 
placebo controlled trials were made in the last two decades (Johnson 1996, Cherian 1997, 
Eddleston 2002). However, the opinion on pralidoxime effectiveness or ineffectiveness 
during OPP poisoning treatment had varied among such trials from the point of e.g. OPP 
type, OPP dose, delay before treatment, pralidoxime dosage (Buckley 2005, Eddleston 2008). 
Thus, the randomised controlled trial was performed (Eddleston 2009). Though patients 
with relatively low-dose occupational poisoning by diethyl OPPs showed clinically 
improvement after low-dose pralidoxime administration, the use of WHO recommended 
high pralidoxime doses did not improved survival of the OPP self-poisoned patients. 
Summarizing the in vitro, in vivo and human data, the use of pralidoxime remains 
questionable issue and it does not seem to be relevant drug of OPP poisoning treatment. 
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X
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NOH
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Fig. 6. Pralidoxime salts used against OPP intoxication. 
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 Reactivation±SD (%) 

Reactivator pralidoxime methoxime asoxime trimedoxime obidoxime 

Reactivator 
concentration/ 

OPP (Reference) 
100 µM 10 µM 100 µM 10 µM 100 µM 10 µM 100 µM 10 µM 100 µM 10 µM 

paraoxon 
(Musilek 2011b) 

10.7±0.3 2.1±0.1 16.1±0.5 1.8±0.3 6.2±0.6 1.7±0.1 44.3±0.6 22.5±1.3 59.7±1.0 22.4±0.4 

methylparaoxon 
(Musilek 2011b) 

30.2±0.3 22.4±0.7 14.2±0.1 14.3±0.2 13.6±0.2 17.9±0.4 51.4±0.9 59.5±0.7 61.7±0.3 45.3±0.9 

leptophos-oxon 
(Jun 2010) 

13.3±0.9 4.1±1.3 52.7±0.5 12.0±0.9 32.8±8.0 11.6±0.4 51.3±0.5 26.4±2.7 50.3±0.9 31.5±0 

dichlorvos 
(Jun 2011) 

2.6±0.6 0.2±0.6 0 0 0 0.6±1.1 0 0 2.0±1.2 3.3±2.3 

methamidophos 
(Jun 2011) 

53.4±3.1 53.8±22.6 61.7±2.4 68.1±11.4 37.4±12.3 75.2±14.6 9.4±7.5 53.1±10.9 45.0±0.5 93.5±3.9 

Table 1. In vitro reactivation of human OPP inhibited AChE by commercially available 
oximes. 

2.2 Methoxime and asoxime 

The methoxime and lately asoxime (HI-6; Figure 7) were firstly described in 1960's 

(Hobbiger 1960, Hagedorn 1969). Both compounds were found to be very effective in case of 

nerve agent inhibited cholinesterases (Kassa 2002). Notably, the asoxime was found to be 

one of the most broad spectrum reactivators of nerve agent inhibited AChE up-to-date 

(Jokanovic 2008). However, asoxime was also found to be poor reactivator of dimethyl or 

diethyl OPP inhibited hAChE in vitro, if compared to other commercial reactivators (Table 1; 

Musilek 2011b, Jun 2010, Jun 2011). Similarly, the methoxime presented low reactivation 

ability for dimethyl or diethyl OPP inhibited hAChE, especially at human attainable 

concentration 10 µM. Thus, both compounds represent AChE reactivators with improved 

ability against nerve agents, but reduced for OPPs in vitro. 
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Fig. 7. Methoxime and asoxime salts available for organophosphorus intoxication treatment. 
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Reactivator/ 
Acute toxicity 

(Reference) 
pralidoxime methoxime asoxime trimedoxime obidoxime 

LD50 mice 
(mg/kg) 

(Musilek 2010) 

263.6 
(253.7-273.8) 

641.8 
(590.5-716.0) 

671.3 
(627.4-718.3) 

149.3 
(124.1–184.5) 

188.4 
(156.3–208.0) 

LD50 rat 
(mg/kg) 

(Musilek 2007a) 

377.5 
(325.7-437.4) 

441.8 
(384.6-518.4) 

781.3 
(738.4-826.6) 

150.5 
(142.1-159.4) 

211.07 
(176.4-252.6) 

Table 2. Acute toxicity of commercially available reactivators in mice and rat after i.m. 
administration. 

The in vivo animal data available for OPP reactivation by both compounds are very limited. 
Their acute toxicity for mice and rats was found very low among commercially available 
reactivators (Table 2; Musilek 2007a, Musilek 2010). The methoxime was suggested to be 
better AChE reactivator than pralidoxime for rats intoxicated by paraoxon (Petroianu 
2006a). For methylparaoxon intoxicated rats, methoxime resulted as better reactivator than 
pralidoxime or obidoxime, but worse reactivator than trimedoxime (Petroianu 2007a). The 
asoxime use for in vivo animal model intoxicated by OPP was not found. Similarly, no 
relevant data of methoxime or asoxime use for human intoxicated by OPP were found. The 
explanation probably consists in poor in vitro reactivation of OPP by methoxime and 
asoxime that presumed their poor reactivation ability in vivo and the possible use of other 
potent reactivators. Though both compounds were found less toxic in comparison with 
other standard reactivators, they do not seem to be relevant drugs for OPP poisoning 
treatment, when only in vitro, limited in vivo animal data and no human data are available. 

2.3 Trimedoxime and obidoxime 

Trimedoxime and obidoxime were developed as bisquaternary bis-oximes with the aim to 

improve reactivation ability of pralidoxime (Poziomek 1958, Luettringhaus 1964). Both of 

them were successfully used against nerve agent inhibited AChE and belong to standards 

on the field (Antonijevic 2007). Their reactivation ability against OPP inhibited hAChE in 

vitro was found quite similar with slightly better results in case of the obidoxime. They were 

able to effectively reverse the dimethyl or diethyl OPP exposure in vitro at human attainable 

concentration 10 µM (Table 1; Musilek 2011b, Jun 2010, Jun 2011). Though their reactivation 

ability for dichlorvos inhibited hAChE remained poor, they resulted as the best hAChE 

reactivators of OPPs among five commercial standards in vitro. 

The in vivo animal toxicity for rat and mice (Table 2; Musilek 2007a, Musilek 2010) assumes 

both trimedoxime and obidoxime as relatively toxic compounds among standard five 

oximes, when trimedoxime is the most toxic one. Plausibly, these finding may explain 

trimedoxime underutilization during OPP-animal studies, where relevant literature data 

were not found (Lorke 2009). On the other hand, the less toxic obidoxime was several times 

used for animals exposed to OPPs. The in vivo efficacy of obidoxime in rats exposed to 

paraoxon was found superior to pralidoxime (Nurulain 2009). The older study in parathion 

poisoned dogs suggested that obidoxime is able to reverse parathion inhibited AChE in 

blood and some brain areas (Kewitz 1980). 
The human data for OPP poisoned patients with trimedoxime treatment are again not 
known. However, one study suggested that unintentional application of trimedoxime and 
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Fig. 8. Trimedoxime and obidoxime. 

atropine combination from auto-injector to healthy adults causes only very mild adverse 

effects (Bentur 2006). More interestingly, similar study determined unintentional application 

of trimedoxime-atropine auto-injector to children in adult relevant doses, where no adverse 

effects related to trimedoxime were found (Kozer 2005). Both findings presume the safe 

human use of trimedoxime in human relevant doses. The obidoxime treatment of OPP 

poisoned patients was better reported. The combined obidoxime-atropine treatment was 

effective in patients poisoned by smaller doses of parathion, while the poisoning by the high 

dose of parathion was not successfully reactivated until parathion levels declined 

(Thiermann 1997). In the same study, obidoxime was reported as ineffective for 

oxydemetonmethyl poisoning, but the time elapsed between ingestion and oxime therapy 

was longer than one day (Thiermann 1997). The enzyme-based assay for quantification of 

paraoxon in blood of parathion poisoned patients confirmed significant obidoxime 

reactivation of low plasma paraoxon concentration, whilst diethylphosphoryloxime 

formation during obidoxime-induced reactivation did not markedly contribute to the re-

inhibition of AChE (Eyer 1998). Though obidoxime presented some increased animal 

toxicity, it seems to be convenient oxime for treatment of human OPP poisoning from the 

standard five AChE reactivators in human relevant doses. 

3. Upcoming acetylcholinesterase reactivators 

There were many attempts to develop potent AChE reactivators for treatment of OPP 

poisoning (Musilek 2011a). Besides the oximes developed against nerve agents (Musilek 

2007b), there were over 300 oximes prepared and tested. In the last decade, some of them 

presented very promising results against OPP exposure. Namely, some mono-oximes from 

K-compound series such as K027 (1,1'-trimethylene-(4-hydroxyiminomethylpyridinium)-(4-

carbamoylpyridinium) dibromide; Kuca 2003a; Figure9) and K048 (1,1'-tetramethylene-(4-

hydroxyiminomethylpyridinium)-(4-carbamoylpyridinium) dibromide; Kuca 2003b; Figure 

9) were highlighted against some OPP poisoning in vitro and in vivo. 
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Fig. 9. Novel AChE reactivators developed for treatment of OPP poisoning. 
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Both compounds showed some reactivation of dimethyl- and diethyl-phosphorylated 
human AChE in vitro (Table 3; Musilek 2011b). The oxime K027 resulted better than K048 at 
both used concentration for paraoxon inhibited hAChE and almost comparable with the 
best commercial oxime against OPP (obidoxime) at human attainable concentration 10 µM. 
On the other hand, obidoxime was found superior to K027 or K048 for methylparaoxon 
inhibited hAChE in vitro. Though the obidoxime was again superior to K027 or K048 for 
leptophos-oxon inhibited hAChE at human attainable concentration 10 µM, the results of 
obidoxime and K027 reactivation at higher concentration (100 µM) were found quite similar. 
 

 Reactivation±SD (%) 

Reactivator K027 K048 obidoxime 

Reactivator concentration/OPP 
(Reference) 

100 µM 10 µM 100 µM 10 µM 100 µM 10 µM 

paraoxon (Musilek 2011b) 48.0±0.5 20.8±1.0 25.7±0.7  12.5±0.2  59.7±1.0 22.4±0.4 

methylparaoxon (Musilek 2011b) 55.6±0.7 33.9±0.3 54.4±0.9  29.1±0.4  61.7±0.3 45.3±0.9 

leptophos-oxon (Jun 2010) 49.3±0.5 16.4±0.9 26.1±0.4 6.6±0.4 50.3±0.9 31.5±0 

Table 3. In vitro reactivation of human OPP inhibited AChE by promising upcoming oximes. 

The in vivo animal data of K027 and K048 showed some interesting findings. Firstly, their 
acute toxicity was found lower than toxicity of trimedoxime or obidoxime in mice and rats 
(Table 4; Calic 2006, Lorke 2008, Kovarik 2009, Musilek 2010). Whereas reactivator K048 was 
only slightly less toxic than obidoxime, compound K027 was found to be less or comparable 
toxic with methoxime or asoxime that are the least toxic commercial reactivators (Table 2). 
The low acute toxicity of K027 might allow its higher dosage in comparison with obidoxime. 
Secondly, the experiments with rats exposed to paraoxon and methylparaoxon showed that 
both K027 and K048 provided statistically significant protection against chosen OPPs in vivo 
(Petroianu 2007a-b). Unfortunately, there are no available data for other animal species (e.g. 
guinea-pigs, pigs, dogs, monkeys) that might confirm/disprove published findings and 
predict reactivation effect of K027 or K048 in human (Worek 2011). Nevertheless, oxime 
K027 presented up-to-date very promising results in reactivation of some OPPs that are 
comparable or better than the best commercially available compound (obidoxime) together 
with K027 decreased animal toxicity. For these reasons, further experiments are necessary 
and might reveal K027 valuable properties in reactivation of OPP inhibited AChE. 
 

Reactivator/Acute toxicity (Reference) K027 K048 Obidoxime 

LD50 mice (mg/kg) 
(Calic 2006, Musilek 2010) 

672.8 
(599.0–755.3) i.p. 

224.9 
(154.2–328.0) i.p. 

188.4 
(156.3–208.0) i.m. 

LD50 rat (mg/kg) 
(Musilek 2007a, Lorke 2008, Kovarik 2009) 

612.0 i.p. 
238.3 

(199.7-284.3) i.p. 
211.07 

(176.4-252.6) i.m. 

Table 4. Acute toxicity of promising upcoming reactivators in mice and rat. 

4. Structure activity relationship of AChE reactivators for OPP intoxication 

From the point of view of medicinal chemistry, some trends based on structure activity 
relationship (SAR) may be considered for reactivators of OPP inhibited AChE (Figure 10; 
Musilek 2011a). Concerning the functional group, the oxime moiety remains essential for the 
activity of the reactivator (Kuca 2006). Its position on the heteroaromatic ring influences the 
reactivation ability. The 4-position of oxime moiety is preferred for OPPs reactivation, 
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Fig. 10. Structural model suitable for reactivation of OPP inhibited AChE. 

instead of the 2-position or 3-position (De Jong 1981). This finding is affected by pKa, where 
the 3-positioned oxime has a high value, and also by steric hindrance of the reactivator 
molecule (Cabal 1998). The increased quantity of the oxime moieties in the molecule of 
AChE reactivator is not essential for reactivation and it usually increases toxicity (Musilek 
2007a). The mono-oxime compounds (K027, K048) showed similar or higher reactivation 
ability compared to bis-oximes (trimedoxime, obidoxime) and presented a lower animal 
toxicity (Lorke 2009). 
Additionally, bisquaternary compounds were found to be superior to monoquaternary 
compounds (Kuca 2006). Apparently, cation-π or π-π interactions with AChE aromatic 
residues (His, Phe, Trp, Tyr) are responsible for these findings (Musilek 2010, Musilek 
2011b). Among various used heteroaromatic moieties, the pyridinium compounds were the 
most often utilized. Other moieties (e.g. 5-membered rings) did not show satisfactory 
reactivation which might be caused by inappropriate pKa values or steric hindrance within 
the enzyme active site (Cabal 1998). 
Concerning the connecting linker at bisquaternary compounds, it has a significant effect on 
reactivation capability and toxicity. The length and constitution of the linker are the most 
important factors. For OPPs, alkylene linkage from 3 to 5 equivalents of C-C bond was 
found to be optimal for reactivation (Kuca 2003a-b), whereas the animal toxicity was not 
affected by this type of linkage (Petroianu 2006b). The addition of a double bond or an 
aromatic moiety (source of π-electrons) increased the reactivation ability, but it also 
increased reactivator toxicity (Musilek 2005, Musilek 2006, Musilek 2007c-e, Musilek 2010). 
Concerning the non-oxime part of the molecule, various functional groups may be 
introduced to increase the reactivation ability as was found beneficially with the use of 3- or 
4-carbamoyl, methylcarbonyl or isoquinolinium moieties (Musilek 2007a, Musilek 2007e, 
Musilek 2008). Indeed from a toxicity point of view, the carbamoyl, carboxyl and 
methylcarbonyl moieties were found to be very promising candidates (Kassa 2008, Kassa 
2009, Berend 2008). 

5. Conclusion 

The organophosphorus pesticides (OPPs) are heterogeneous group of organophosphorus 
compounds. Their biological activity manifests as inhibition of cholinesterases and so ranks 
them as life endangering agents. The necessary treatment of OPP exposure contains 
parasympatholytics (e.g. atropine), oxime reactivator and anticonvulsive drug (e.g. 
diazepam) (Bajgar 2007). The causal treatment of organophosphorus intoxication (oxime 
reactivator) varies globally among five commercial compounds. Recently, the most 
important oximes in case of OPP intoxication are pralidoxime and obidoxime. Although 
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pralidoxime was the first oxime available for OPP treatment and it is currently the most 
frequently used, its ability to reactivate AChE inhibited by various OPPs, is rather poor 
(Buckley 2011). Consequently, bisquaternary compounds have been found to be more 
effective. Surprisingly, asoxime developed for nerve agent intoxication, showed in the case 
of OPPs intoxication, little or no reactivation capability (Stojiljkovic 2006). On the other 
hand, the trimedoxime and obidoxime were found to be very good for the treatment of OPP 
intoxication. Specifically, obidoxime should be the first choice compound in combination 
with atropine and diazepam for a positive clinical outcome (Stojiljkovic 2006). 
Since the first use of pralidoxime against OPP intoxication, over 300 different oximes have 
been synthesized and evaluated (Musilek 2011a). From these, there are some very promising 
novel reactivators produced in the last decade. Though some of them were originally 
developed for nerve agent poisoning, they showed increased reactivation ability against 
various types of OPPs. Notably, compound K027 showed an increased reactivation 
capability (dimethoxy- and diethoxy- OPPs) with decreased toxicity, as compared to 
commercial compounds both using in vitro and in vivo animal models (Petroianu 2006a-b, 
Petroianu 2007a-c). These findings make compound K027 the lead compound for further 
studies and development. 
 

 

Fig. 11. Structural differences between aphid/human AChE (green/blue; 2hcp/1b41.pdb) 
AChE (Kryger 2000, Pang 2007). 
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Additionally, molecular modelling has become an important technique for understanding 
the mechanisms of OPP action in the last decade. Namely, OPP inhibit the AChE active site 
differently than the nerve agents. This experience will most probably be used for the future 
design of new antidotal compounds. Additionally, safer OPPs more specific for insect 
parasites may be constructed based on the differences between insect and human AChE 
(Figure 11; Pang 2009a-b). 
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