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Sugeno Inference Perturbation  
Analysis for Electric Aerial Vehicles 

John T. Economou and Kevin Knowles 
Intelligent Propulsion and Emissions Laboratory 

Aeromechanical Systems Group 
Cranfield University, Defence Academy of the United Kingdom 

UK 

1. Introduction 

The Chapter is focusing in the area of the Electrically-powered Unmanned Aerial Vehicles 

(UAVs) in association to bounded sensor noise. The increased requirements for 

airworthiness and safety of such vehicles have resulted in the requirement of improving the 

analytical methods for subsystem level mathematical  modelling, such as for example the 

electrical propulsion system. The Takagi-Sugeno fuzzy inference  has been formulated in the 

context of bounded multi-sensor errors for a range of error classes. The modelled system is 

an electrical propulsion system together with the associated sensor boundaries in relation to 

a typical UAV operation.  

Unmanned aerial vehicles have been used in various operational conditions where other 

vehicles fail to operate. UAVs have been used to inspect hazardous areas  such as  flooded 

areas, earthquake  areas, and generally areas that may have a high risk of radioactive 

contaminants. The immediate result of the effective use of UAVs is reducing the risk of 

endangering human lives while still capable of operating safely and efficiently. This chapter 

addresses the issue of sensor operational  boundaries and  the UAV’s  electrical thruster 

parametric variation due to altitude variations. UAVs normally operate over a range of 

altitudes Kladis et al. (2010) depending on their operational role. Hence, these can be 

exposed to a range of temperature conditions which can affect their normal operation. This 

chapter addresses this specific consideration which can have airworthiness implications,  

and focuses on the description of the electrical permanent magnet direct current thrusters in 

the context of UAVs and operations .  

The UAV’s propulsion options can vary depending on the user and operational 
requirements, however the focal point for the work described in this chapter is  for an 
electrical thruster system. Such systems being supplied from a fuel cell are described in 
more detail in Karunarathne et al. (2007). In particular, the work in Karunarathne et al. 
(2007), describes for a given example UAV operation the effectiveness of the electric 
propulsion option together with the importance of a sophisticated power management 
system utilising intelligent based methods. In Miller (2004), the propulsion system options 
are described  within the context of power and energy and thus assist towards the 
importance of electro-mechanical systems for propulsion. In  Ehsani et al. (2005), the authors 
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contribute towards a structured approach towards the theory of propulsion systems and the 
general design considerations surrounding these systems. Both resources together with this 
chapter will enhance the readers’ awareness towards the power and energy design 
considerations in relation to sensing  and the boundaries that these systems have when 
related to UAV operations. 
In particular in this chapter, the electrical thruster is modelled as an ordinary differential 

equation  which can operate in either motoring or generator mode depending on the 

operational shaft angular velocity and the motor torque. The theoretical parts present the 

Sugeno fuzzy inference in association to the fuzzy-hybrid concept developed by Economou 

& Colyer (2005). The latter is demonstrated from the simulated behaviour of the PMDC 

thruster. Part of the electrical thruster, based on Economou & Colyer (2005)  can  be 

presented in an ordinary differential equation representation while when the UAV altitude  

is included  then the model exerts partially a Sugeno type fuzzy behaviour. The collection of 

these behaviours is shown in this chapter. 

In effect  part of the thruster is modelled utilising physical system modelling methods while 

the remaining part of the system is modelled using an intelligent based method (fuzzy logic). 

Overall the thruster is a fuzzy-hybrid system as per Economou & Colyer (2005). In particular, 

the fuzzy inference system utilised in this chapter is a Sugeno system Sugeno (1999). 

Furthermore when a system is realised in practice it is also  highly likely to contain some 

deviations from its nominal  measurements Economou et al. (2007). The sensors  are 

expected due to operational temperature variations for example to incorporate an error 

deviating from the nominal value. For the UAV electrical thruster the consequence is that 

the thruster angular velocity will tend to  deviate from the expected nominal value and this 

could lead to loss of aerodynamic propeller thrust  and can therefore lead to airworthiness 

and safety implications. This chapter clearly shows that the thruster’s angular velocity can 

vary  from its nominal (expected value), when the additional effects of sensor  error 

boundaries and temperature variation (due to altitude), are both included in the 

mathematical modelling. The resulting  analysis is demonstrated for a given operational 

UAV scenario, indicating that the percentage errors exceeded the value of  20% over the 

nominal value for the armature thruster’s resistance. 

2. Analysis 

2.1 Sugeno output perturbation 
Fuzzy logic is a methodology  which  results in representing a system or controlling  a 
system using If-Then rules. For the purpose of this Chapter a Sugeno type inference is 
utilised as a modelling tool. The system  n-th rule can be represented as follows: 
 

1 2
1 2

1 2

: .... ..........

. ...... ( , ,..., )

j
n n j n

n n j

n IF z is Z AND z is Z AND z is Z

THEN h f z z z

 

 

              Consequent 

Antecedent
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The membership functions represent the belonging of the sampled variable at a specific time 

instant  t     to the  specific membership function j
nZ  for rule (n) and sensor (j). The 

corresponding (j-th)  membership functions which are not the left and right edge 
membership functions are Gaussian type functions  (1): 

 

2( )

( )

j j

j

z c

dj
n jZ z e




   (1) 

(1) is valid for  max2,3,..., 1n n    i.e. the membership functions representing the centred 

membership functions. The left edge (n=1) and right edge (n=nmax) are sigmoid type of 
membership functions  . These are given from the following expressions (2a) and (2b):  
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e
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e
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
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 
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 
  

 

(2a) 
 
 
 
 

(2b) 

The graphical illustration of the membership functions  is shown next in Figure 1 for the j-th 
sensor. 
 

 

Fig. 1. Generalised Membership Functions for the j-th sensor 

The polynomial for each Sugeno rule  is  given from the following expression (3): 

 
max

1

: :
j

n n jn j
j

n h b z


      (3) 

Based on the general  Sugeno rule description the resulting  defuzzyfied output  is given 
from the following expanded equation (4) for time t    which represents the nominal 

system response: 
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The antecedent “AND” operator results into the following expressions (5):  
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 (5) 

From (5)  it can be deduced that  if the “left” edge triggers only uniformly for all rules (nmax), 
then the following equality (6)  holds: 

 max

max

1 2 3
1 1 1 1 2 1 3 1( ). ( ). ( )..... ( )j

jZ z Z z Z z Z z    (6) 

It can also be deduced that if  a “right” edge trigger only triggers then the following equality 
holds (7): 

 max

max max max max maxmax

1 2 3
1 2 3( ). ( ). ( )..... ( )j

n n n n jnZ z Z z Z z Z z    (7) 

For all other remaining conditions the following “centred” rules can trigger as shown from 
the set of equations in (8): 
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2.2 Sugeno output perturbation models 
Based on the research work in Economou & Colyer (2005)  it can be deduced that  the 
preferred architecture of a fuzzy-hybrid is the following equation (9): 

 
*

1 1 2 2 3( ) ( ) ( ) ( )y f p u f p g u f p      (9) 

Where  1 2 3( ), ( ), ( )f p f p f p   are the parametric  functions with respect to a vector  p . 1 2,u u are 

the fuzzy-hybrid system inputs. And 2( )g u  is a function of the input  2u . The mathematical 

expression  (9) will be associated to the electric propulsion equation. The  (H*) term 

represents the fuzzy Sugeno  non-singleton type system which will associate to sensor 

perturbations n n    and thus observe how key  variables can potentially drift from their 

expected nominal value for given conditions. Hence, by incorporating the work in 

Economou et al. (2007),  the Singleton type inference  is provided from the following 

equation: 

 

max max
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

 


  (10a) 

 

max max
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* 1 1

1

( )
n n

n n n n
n n

n

n
n

h

H  




   




 


  (10b) 

Which assumes  that (11) is true for (10a) and (10b). 

 

max

1

0
j

jn j
j

z

    (11) 

Where the term n  is the perturbation for the n-th rule for the given antecedent conditions.  

2.3 Static error bound models 
2.3.1 Class of Static Isotropic Error Bounds (SIEB) 
For this class of errors we have a set  with lower and upper bounds for each sensor (j), 

1 : [ , ]jj jS     . These errors are valid for the entire observation interval [0, ]ft t . For this 

class of errors it is possible that the errors for each sensor (j) are equal. Hence we could have  
the special case that for the sets, 

1 1 1 2 2 21 1 21 2: [ , ] [ , ], [ , ] [ , ].... [ , ] [ , ]j j jj jS                      , 

1 21 2 .... , .... jj           ,  

Although it is more often the case that the following condition will be true: 

1 21 2 .... , .... jj            . 
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2.3.2 Class of Static Anisotropic Error Bounds (SAEB) 
In the case  the upper and lower bound errors are considered to be anisotropic which 
therefore result in the following condition: 

1 2 1 22 1 21 2 1 2: [ , ], [ , ].... [ , ], , ,....,j jj j jS                       

2.3.3 Class of Static Clustered Isotropic Error Bounds (SCIEB) 
For this particular class of systems  identical classes of sensors can used in order to acquire 
experimental data. For these cases the numbering order of the sensors will result in a unique 
system  representation. Hence the following figure can be used in order to refer to a 
selection of choices, 
 

 

Fig. 2. SCIEB representation  for a Generalised System with  8 sensors (Se) and 4 clusters 
(SS). 

For this system the following expression exists: 

1 2 1 21 1 21 2 1 2

3 4 3 42 3 43 4 3 4

7 8 7 83 7 87 8 7 8

5 6 5 65 5 65 6 5 6

: [ , ], [ , ],

: [ , ], [ , ],

: [ , ], [ , ],

: [ , ], [ , ],

SS

SS

SS

SS

              

              

              

              

 

Figure 2 for the same system, sensors and clusters is not unique because it is based on the 
ordering of the subsystems and the ordering of the individual sensors. 

2.4 Dynamic error bound models  
The dynamic error bounds are time based and therefore represent the variation in a 
polynomial form and can be similarly divided into three main categories similar to the static 
case but with the error bounds being represented in a polynomial form. These are divided into 
the Class of dynamic isotropic error bounds (DIEB), Class of dynamic anisotropic error bounds 
(DAEB), Class of dynamic clustered isotropic error bounds (DCIEB). The results shown for the 
UAV application are based on the SIEB  type of errors for illustration purposes. 
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2.5 Relation of sugeno perturbation and error type classification  
For the SIEB type of perturbation equations (10a) and (10b) hold, while for the case of SAEB 
the perturbations are unequal for each sensor and therefore the following expression holds: 

 

max max
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* 1 1

1
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n n n n
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n

n
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h
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  (12a) 

 

max max

max

* 1 1

1

( )
n n

n n n n
n n

n

n
n

h

Z



 



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



 


  (12b) 

 n n
      (12c) 

Where n n
     corresponds to the asymmetry of the perturbations in the consequent 

fuzzy component. Subject to the constraint (12d): 

 

max

1

0
j

jn j
j

z


    (12b) 

2.6 Application: Electric aerial vehicle propulsion system 
2.6.1 System description 
The system is an unmanned aerial vehicle electrical propulsion permanent magnet system 
linked via a gearbox to the propeller. It is assumed that suitable power electronics/controls 
and energy sources are in place for supplying the electrical thrusters. The aerial vehicle is 
capable of flying over a range of altitudes and therefore the thrusters and propeller are 
capable of meeting a range of angular velocity and load torque demands.  

2.6.2 Mathematical problem modelling 
The electric machine (permanent magnet d.c.) is modelled as a dual mode ordinary 
differential equation representing using fuzzy switching the two operational  modes.  
Case 1: Motoring mode (Torque , speed quadrants 1,3): 

 
( )

( ) ( ) ( ) a
a a a a

di t
V t K t R i t L

dt
      (13a) 

Case 2: Generator  mode (Torque, speed quadrants 2,4): 

 
( )

( ) ( ) ( ) a
a a a a

di t
E t V t R i t L

dt
     (13b) 

For case 1, an applied external voltage is required in order to provide rotor motion while 
also the motor provided torque is sufficient to drive at any given time the applied load and 
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mathematically presented in (13a). For case 2, the expression is shown in (13b) while the 
rotor  is rotating due to an external mechanical force (generation) as long as the back emf 
voltage  is higher than Va  then generation occurs (it is assumed that the power electronics 
will satisfactory re-root the power back into a rechargeable battery source and therefore 
store energy). For both  modes the following equations are valid. The motor back emf is 
provided from (13c): 

 ( )a aE K t    (13c) 

The rotor angular velocity is given from (13d): 

 
( )

( )
d t

t
dt


    (13d) 

The motor shaft torque is  given from (14): 

 ( ) ( )m a TT t i t K   (14) 

The motor supplied torque is linked to the mechanical system load as shown next (15): 

 
2

2 21 1
2

2 2

( ) ( ( ) ) ( ( ) )m a L a L

N d N d
T t J J B B

N N dtdt

 
      (15) 

Revisiting the equations from case 1 and case 2  can both be generalised  and result in 
equation (16): 

 
( )

( ) ( ) ( ). ( ) ( ). a
a a m a a m

di t
V t K t sign P R i t sign P L

dt
     (16) 

The “sign” function is provided as shown next in (17): 

 

1 0

( ) 0 0

1 0

m

m m

m

P

sign P P

P

 
 
 

  (17) 

Alternatively the sign function can also be approximated to equation (18): 

 
2 2

( )
( ( )) ( ( ), ),

( ( ) )

m
m m

m

P t
sign P t P t

P t

    
 

  (18) 

The variable   Pm   is the mechanical motor power. Modes 1 and  2  from (16) and equation 
(18) will result in the following expression (19). 

 
2 2 2 2

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

m m a
a a a a

m m

P t P t di t
V t K t R i t L

dtP t P t
   

   
  (19) 

Allowing an armature resistance  variation  with reference to the aerial vehicle altitude (h) 
and environmental conditions such as air moisture parameter (ξ) given from equation (20): 
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 [1 ( )] ( , )a ref c refR R T T f         (20) 

Hence by combining the results from (19) and (20)   the following expression is obtained 
(21): 

 
2 2 2 2

( ) ( ) ( )
( ) ( ) ( ) ( , )

( ) ( )

m m a
a a a

m

P t P t di t
V t K t i t f L

dtP t P t
     

   
  (21) 

This can be simplified to equation (22): 

 
( )

( ) ( ) ( ( ), ) ( ) ( , ) ( ( ), ) a
a a m a m

di t
V t K t P t i t f P t L

dt
            (22) 

                                            Term 1                 Term 2                        Term3 

With reference to equation (22), term 1 represents the mechanical equivalent voltage  which 
causes the aircraft propeller to rotate. Term 2, corresponds to the motor windings copper 
voltage loss which is temperature-sensitive, due to a change of aircraft altitude and air 
moisture for example. The third term relates to the propeller motor thrust equivalent voltage.  
When a  change of thrust is required for the same shaft  angular velocity, then the current 
will vary  with time and therefore the inductive element will become active. The ordinary 
differential  equation with respect to the thruster armature  current is given from (23): 

 
( ) 1 1

( ( ) ( ( ), ) ( ) ( , )) ( )
( ( ), ) ( ( ), )

a
a m a a

m m

di t
K t P t i t f V t

dt P t L P t L
       

   
  (23) 

Equation (23) as time  0t   can be simplified to the following expression (24a): 

 ( ) ( ) ( ( ), ) ( , ) ( )a a m aV t K t P t f i t         (24a) 

Equation (24) can be  rearranged to obtain the EPS angular velocity (24b). 

 
1 1

( ) ( ( ), ) ( , ) ( ) ( )m a a
a a

t P t f i t V t
K K

         (24b) 

When (24b) is compared to the fuzzy-hybrid topology shown in (9) the  following 
equalities are valid: 
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  (24) 

www.intechopen.com



  
Electric Vehicles – Modelling and Simulations 

 

406 

2.6.3 Electrical propulsion power consumers 
The electrical propulsion system has  several power consumers. In order to illustrate these, 

the power flow equation needs to be considered first which relates the input thruster power 

to the power consumers.  

The power inserted to the electrical actuator Pa(t)  is provided from the following expression 

(25): 

 
2 ( )

( ) ( ) ( ) ( ( ), ) ( ) ( , ) ( ( ), ) ( )a
a a a m a m a

di t
P t K t i t P t i t f P t L i t

dt
            (25) 

                                    Term1                 Term2                         Term3 

In equation (25)  term 3 is normally non-zero when there is a change in thrust and therefore 

armature current and can be neglected for quasi-static conditions. Term 2 represents the 

conductive armature resistance  losses while the useful power is the mechanical power 

shown as term 1. Normally, the following inequality (26) is desired: 

 
2 ( )

( ) ( ) ( ( ), ) ( ) ( , ) ( ( ), ) ( )a
a a m a m a

di t
K t i t P t i t f P t L i t

dt
           (26) 

However in practice efficiencies can vary depending on the angular velocity and loading 
over a wide operational envelope. For a UAV application the expected efficiencies are 
typically very high due to the near to optimum  angular velocity operation. 

2.7 Sensor class and simulation demonstration of implications to the electric 
application 
For the Unmanned Aerial Vehicle  (UAV) application our objective is to investigate the 

effects that the user implicitly incurs to the UAV. In particular when the UAV operator, due 

to mission requirements, selects to change altitude in the range of 0-6km, for example, then 

the ambient temperature conditions can cause the temperature to drop several degrees (K)  

per 1000m increase in altitude (7K/km) for given moisture conditions.  

Consequently, the electrical propulsion system will experience a temperature drop which 

results in variation of the coil armature resistance. Therefore, the angular velocity of the 

propulsion will be affected thus resulting in further changes to the UAV propeller thrust.  

The purpose of this analysis is to demonstrate the effects of these variations and error 

tolerance in the temperature sensing and  show how these can affect UAV performance via 

the loss of thrust. Figure 3 illustrates this: 

The exogenous altitude variations represent the source of altitude and air moisture which 

both affect the ambient   temperature and therefore both can affect the UAV operation and 

deviate this from its nominal (or expected)  behaviour due to variations in the Electrical 

Propulsion System (EPS). 

Although Figure 3, shows four interconnections in essence these are repetitive. After the first 

sequence from stage 1 to 4 has lapsed then the operator does receive visual  feedback and 

therefore reacts in order to compensate according to the mission plan. Therefore, the effects 

of the EPS parametric variation and the effects of the perturbation for the temperature  

sensing boundaries will be investigated, as shown in Figure 4. 
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Fig. 3. UAV operator and  EPS performance for varying altitudes 

 

 

Fig. 4. EPS Parametric Variation and Exogenous  Altitude Variations 

The proposed simulation block diagram for the UAV which incorporates a perturbation and 
the fuzzy-hybrid model for the UAV thrusters is presented as shown next in Figure 5: 
Figure 6  shows the system’s operational requirements for a near to sea level UAV altitude 
thus having overall a constant armature resistance. Figure 6. shows a similar block diagram 
which includes  the  UAV Altitude Profile, UAV “dry/moist”  profile  which provide an 
estimate for the perturbed temperature via a Sugeno-type  Fuzzy Inference System (FIS). 
The armature resistance variation with temperature and the electrical thrusters are based on 
physical system modelling.  The fuzzy Sugeno system produces a nominal armature 
resistance variation which is related to the UAV altitude and air moisture conditions. Lastly 
figure 8 shows the Sugeno FIS which produces the perturbed  armature resistance values for 
the electrical thruster. Two inputs, the  UAV armature voltage and UAV current profile are 
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driving the electrical thruster for the given airframe and associated aerodynamics. 
Meanwhile the thruster’s armature  resistance will vary significantly depending on the UAV 
altitude. Furthermore, the thruster’s  angular velocity  variation can be observed for given 
system demands and compared to the nominal and the expected (perturbation) values 
obtained in the later figures clearly showing the key variations. 
 

 

Fig. 6. UAV EPS Model  near sea level altitude 

 

 

Fig. 7. UAV EPS Model at variable exogenous conditions with Sugeno  (fuzzy-hybrid 
system) 
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Fig. 8. UAV EPS Model at variable exogenous conditions with Sugeno  (fuzzy-hybrid 
system) and Sugeno parameter perturbations. 

The inputs of  Figure 5 are shown next in  Figure 9 (top, centre graphs) while the resulting 
thruster’s input electrical power is also shown (lower graph). The quasi-static  approach 
shows that the armature input electrical power does vary  in order to balance the UAV flight 
requirements for altitude and overcome the atmospheric air moisture conditions. 
Clearly, Figure 10, shows a realisable UAV test scenario. Initially the UAV starts at ground (sea 
level)  and gradually gains altitude with a realisable  climb rate. During its mission the UAV 
remains at a fixed altitude and  then gains altitude again reaching before its 6 km requirement, 
where it remains for a given time (25 min) until it starts to descend back to sea level.  
Meanwhile, the air moisture  varies between two fuzzy logic extremes of  “1” and “0.5” each 
representing a different condition, “dry air” and “saturated moist air” respectively. The 
moist air affects the temperature variation as  the UAV altitude varies and hence was 
modelled utilising the Sugeno FIS topology.  
Based on the chapter hypothesis, the armature resistance will  affect the propeller shaft 
angular velocity for given conditions. Therefore, the next step is to observe the armature 
resistance  during the UAV mission and compare this to the nominal (sea level) conditions. 
Figure 11, successfully demonstrates the nominal “blue line” armature resistance at sea level 
and the variable resistance due to the altitude and air moisture  conditions.  
In Figure 11, the dotted upper and lower lines demonstrate the injected ±10% perturbation 
in the Sugeno consequent. Both the effects of altitude, air moisture and the sensor SIEB type 
of perturbations affect the thruster’s armature resistance and therefore it is expected to 
observe this variation to cascade also to the thruster’s variables such as the propeller shaft 
angular velocity. 
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Figure 12, shows more clearly the injected ±10% perturbations in the Sugeno consequent 
and the effect of these. Typically,  the boundaries (upper and lower) indicate the line for 
instantaneous measurements  where the sensor measurement is used rather than the exact 
value of the sensor.  
 

 

Fig. 9. UAV thruster armature voltage, current and input electrical power. 

 

 

Fig. 10. UAV operational scenario, indicating  altitude and air moisture conditions. 
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Fig. 11. Thruster armature resistance for nominal conditions (blue) and altitude based 
conditions (red). 

Normally, UAV propulsion pack designs  have a limited maximum rated electrical power 
which is available for use, including the propeller power requirements and thruster’s power 
losses. Figure 12, shows the armature resistance related copper losses for the given UAV test 
scenario. Clearly, the power copper losses relating to the nominal (sea level) when 
compared to the variable altitude and air moisture conditions result in different losses. In 
particular the variable altitude scenario power losses are less than the sea level equivalent, 
hence resulting in a gain in net power available for thrust for the same power pack.  
 

 

Fig. 12. Nominal (blue) and altitude based copper losses and propeller shaft powers. 
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Figure 12, (lower graph), shows the propeller shaft available power for the  test scenario 
shown earlier. During time intervals (0,1500)s and (2200,3000)s the UAV requires its 
maximum rated power in order to climb to the desired altitudes of 3000 m and 6000 m.  
 

 

Fig. 13. Geared shaft RPM for nominal (blue) and altitude based (red), second graph 
showing the  percent variation in the shaft RPM. 

Figure 13, shows (top graph) the propeller geared shaft RPM for the nominal (in blue) and 
the altitude varied angular velocity (in red). As expected because the power pack has a 
maximum rated power capability and the armature resistance losses reduce, the propeller 
shaft  mechanical power increases for the same rated input power. Hence, while the 
propeller loading remains as shown in the previous profiles the angular velocity at the 
propeller shaft is expected to increase as shown from the analysis. 
Figure 13, also shows a zoomed version (lower graph) clearly showing the implications of 
the added phenomenon of  speed changing due to an example injected ±10% perturbations 
in the Sugeno  sensor. It appears that this specific  injected perturbation does not cause a 
substantial change compared to the altitude based angular velocities.  
Figure 14. shows the armature resistance  percentage error when  compared to the sea level 
conditions. Clearly the expected error (top graph) exceeds 20% from nominal, therefore  
demonstrating the importance of the Sugeno fuzzy inference modelling within the context 
of the fuzzy-hybrid modelling process. The armature resistance  percentage error for both 
the  upper and lower boundaries (centre graph), are approximately 2.5 % for the 
upper/lower boundary or 5% for both boundaries. This indicates that the Sugeno 
perturbation based on  SIEB-type  errors can indeed affect the model  behaviour. The (last 
graph), shows the  SIEB errors with reference to the sea level equivalent. These are expected 
to be high and exceeding 20%  due to the inclusion of the fuzzy-hybrid model which 
includes the altitude/moisture and perturbation effects. 
Figure 15  shows the thruster’s angular velocity error comparing the sea level and altitude 
based models. Clearly the error (top graph) is  nearly 5% and variant throughout the UAV 
flight scenario. The centre graph shows the thruster’s upper and lower injected ±10% 
perturbations in the Sugeno FIS and compared to the non-perturbation model. The error 
resulting from this test run is less than 1%, thus  shown some influence of the armature 
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resistance variations cascading and affecting the propeller shaft angular velocity. However, 
(last graph), when the perturbation model is compared to the sea level model the error 
increased by approximately 10 times  reaching a percentage error of up to 6%. 
 

 

Fig. 14. Altitude-based armature resistance error with respect to the nominal (top graph);  
altitude-based armature resistance error wrt   ± 10% FIS Consequent perturbation (Centre 
graph); the lower graph is showing the error due to ± 10% FIS Consequent perturbation wrt 
the nominal armature resistance. 

 

 

Fig. 15. Altitude-based shaft angular velocity error with respect to the nominal (top graph);  
altitude-based angular velocity error wrt   ± 10% FIS Consequent perturbation (Centre 
graph); the lower graph is showing the error due to  ± 10% FIS Consequent perturbation wrt 
the nominal angular velocity. 
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3. Conclusion 

In this chapter we have learned how to incorporate sensor perturbations via the Sugeno 
fuzzy logic inference for electrical thruster systems which are propelling a class of 
electrically-powered unmanned aerial vehicles. Therefore, design considerations have 
included the UAV altitude variation and atmospheric moisture via the fuzzy logic Sugeno 
design framework.  
Furthermore the necessity of the fuzzy-hybrid modelling topology became apparent for the 
electrical thruster system. While the thruster was modelled utilising an  ordinary differential 
equation  form, the additional UAV operational conditions such as altitude and atmospheric 
moisture required the inclusion of the Sugeno-based fuzzy inference system thus 
amalgamating the two topologies into a single fuzzy-hybrid topology.  

4. Nomenclature 

Nomenclature (Units are in SI) 

n  Rule number 
nmax  Maximum number of rules 
j  Number of Sensors 
jmax  Maximum number of sensors 
zj  j-th sensor variable 

j
nZ   Membership function for the  

nh   n-th rule function 

1 2 3( , , )nf z z z   Linear polynomial  in terms  of  z1,z2, ... ,zj 

jc   Centre for Gaussian type membership function for the j-th sensor 

jd   Dispersion for Gaussian type membership function for the j-sensor 

η  Horizontal shift operator 

nb   Rule consequent  offset  

jn   n-th rule j-th sensor polynomial coefficients 

*h   Sugeno FIS output at time   . 

n   n-th rule rule firing 

j   j-th sensor error  

j   j-th sensor error upper boundary 

j   j-th sensor error lower boundary 

( )aV t   PMDC Armature thruster voltage 

( )t   Thruster angular velocity 

( )ai t   Thruster Armature Current 

aK   Thruster back emf constant 

aR   Thruster armature resistance 

aR   Sugeno upper bound for armature resistance for different 
altitudes 
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aR   Sugeno lower bound for armature resistance for different altitudes 

L   Thruster inductance 

aE   Thruster equivalent back emf voltage 

( )t   Shaft angle 

TK   Thruster torque constant 

mT   Thruster produced torque 

aJ   Thruster armature inertia 

LJ   Load  inertia 

aB   Thruster armature viscous angular damping 

LB   Load viscous angular damping 

1N   Thruster side gear teeth 

2N   Load side gear teeth 

mP   Thruster mechanical power 

   Constant in W 

refR   Reference resistance for thrusters armature at temperature refT  

ca   Coefficient of thermal expansion for copper 

   UAV Altitude in m 

   Air moisture condition 

T   Temperature at altitude   

refT   Reference temperature 
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