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Wavelets in Electrochemical Noise Analysis 
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1University of Maribor, Faculty of Electrical Engineering and Computer Science 
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Slovenia  

1. Introduction  

Electrochemical noise (EN) is the term used to describe the spontaneous fluctuations of 
current or potential, which are generated during the corrosion processes. It has been 
investigated extensively since the 1968, and data has shown the use of EN measurements 
offers valuable sources of information about complex electrochemical reactions such as 
those in corrosion systems (Gabrielli et al., 1985; Bertocci & Huet, 1995) .  
Many methods can be used to analyze the data, such as the variance, standard deviation and 
root mean square in the time domain. Alternatively, the signal has been transformed from 
the time domain to the frequency domain using fast Fourier transform or the maximum 
entropy method, giving the power spectrum density (PSD). The technique of wavelet 
analysis may be used instead, where a set of wavelets of varying amplitude, duration, and 
location be constructed such that reproduces the signal of interest.  
Wavelets based methods are modern mathematical tools for multiscale time frequency 
analysis and characterization of in general nonstationary EN signals. This work presents the 
short overview to usability and possibilities of wavelet transformation in comparison with 
classic analysis. 

2. Corrosion processes and electrochemical noise 

Corrosion can be defined as the deterioration of materials due to its interaction with its 
environment and is appearing in various forms: as localized corrosion and as general 
(uniform) corrosion. Localized corrosion results in the accelerated loss of material at discrete 
sites in a passive materials surface, leading to the perforation or other failure. Since the 
majority of the surface is unaffected the difficulty with localized corrosion is its detection 
and prediction. Uniform corrosion results from the sites that are distributed randomly over 
the surface regarding both the space and time. Uniform corrosion damage is manifested in 
dissolving and the progressive thinning of a metal. To prevent corrosion or to predict the 
outcome of a corrosion situation the knowledge of mechanism of various form of corrosion 
is fundamental. Thermodynamic principles can be applied to determine which processes 
can occur and how strong the tendency is for changes to take place. Kinetic laws then 
describe the rates of the reactions.  
Corrosion of metals in aqueous environments is electrochemical in nature. It occurs when 
two or more electrochemical reactions take place on a metal surface, producing dissolved 
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species of metal or solid corrosion products and thus lowering the energy of the system. The 
corrosion process has been written as two separate reactions occurring at two distinct sites 
on the same surface: the anode (metal dissolution site) and the cathode (site of the 
accompanying reduction reaction). At corrosion of iron in an acid solution containing 
dissolved oxygen, iron is oxidized to ferrous ion which passes into solution in the anode 
region  

 Fe  Fe2+ + 2e- (1) 

 and H+ ion is reduced to hydrogen or O2  is reduced to water in the cathode region 

 2 H+ + 2e-    H2 (2) 

 O2  + 4 H+ + 4e-    2 H2O (3) 

The overall corrosion reaction is the sum of the anodic and cathodic partial reactions: 
sum of the reactions (1) and (2) 

 Fe + 2 H+   Fe2+ + H2 (4) 

and sum of the reactions (1) and (3) 

 2 Fe + O2 + 4 H+ + 4e-    2 Fe2+ + 2 H2O (5) 

Electrochemical corrosion processes can be investigated by observation of charge flows 
between the electrolyte and the corroding metal. The measure of the rate at which reducible 
or oxidizable species can gain or lose electrons is the current density, j i.e. the charge flux 

trough a metal/electrolyte interface. The potential dependence of charge transfer rate is 
known as the Butler-Volmer equation: 

   1
0

f fj j e e
       (6) 

where 0j  is exchange current density,   is transfer coefficient, η  is overpotential, i.e. 

measure of how far the reaction is from equilibrium, and f  is defined by: 

 
nF

f
RT

  (7) 

where F is Faraday constant, R is the gas constant and T is the absolute temperature. If the 
Butler-Volmer equation is used to express the current densities in corrosion processes, the 
anodic reaction is the metal dissolution and the cathodic reaction is the accompanying 
reduction of H+ or O2.  The equilibrium is achieved (the overpotential is zero) at the 
corrosion potential where no measurable current j flows: the anodic current density of metal 
dissolution must be equal to the cathodic current density and is equal to the corrosion 
current density, 0j . The overpotential is said to be positive if it is such as to produce a 
positive current, i.e. if it drives the anodic oxidation reaction and suppresses the reduction 
reaction.  
In measurements procedure a potentiostat is often used and the electrochemical cell with 
tree electrodes: working electrode (WE) represents the interface of interest, the reference 
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electrode (RE) acts as standard for potential measurements and the counter electrode acts as 
electron sink or source for reactions that occur on the surface of WE. The potential of the WE 
is controlled with respect to the RE at a constant value, and the current density j under those 
conditions is determined. If the mean current is compensated or subtracted from the data 
and only random fluctuations are remained then electrochemical current noise is obtained. 
Electrochemical current noise thus can be measured as the random fluctuation in current of 
WE that is held at fixed potential or as the galvanic coupling current between two nominally 
identical working electrodes. Electrochemical potential noise is measured as the random 
fluctuation in potential of a WE with respect to a RE or as the fluctuation in potential 
difference between two nominally identical working electrodes.  
In our investigations the current noise was monitored by a low-noise battery-operated 
potentiostat Jaissle IMP88 PC-R at a sampling rate of 10 points per second. The cell assembly 
was put in a Faraday cage. An example of measured time series for two processes (pitting as 
signal I0 and general corrosion as signal I2) is presented in Fig. 1. As is seen, the signal has a 
relatively smooth appearance for general corrosion and occasional sharp increases and 
decreases in the amplitude of current noise data occur for localized corrosion. 
 

 
Fig. 1. Current noise signal corresponding to: a) X5CrNiMo17-13 stainless steel in borate 
buffer solution + 0.1 mol/dm3 NaCl at the passive potential (I0);   b) Low Carbon Steel in 
0.1mol/dm3 H2S04 at the corrosion potential (I2) (Planinšič & Petek, 2008). 

3. Stochastic processes and 1/f noise 

EN-signals are generated from corrosion processes which are stochastic in their nature.  A 
short theoretical overview of stochastic processes follows (Schroeder, 1991;  Flandrin, 1992;   
Gao et al., 2007). 
For understanding the stochastic processes it is essential to understand the concept of 
probability which is associated with random events.  Often random events are presented by 
numbers, called a random variable. Let us denote a random variable by X, whose value 
depends on the outcome of random experiment ω. The probability ( )P X x  is denoted by 

Fx(x) which is called the cumulative distribution function (CDF). When exist, it is usually 
more convenient to use its derivative fx(x), called the probability density function 
(PDF): ( ) ( ) /x xf x dF x dx . Some commonly used distributions are normal or Gaussian 
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distributions, exponential and related distributions, binomial and related distributions and 
heavy tilled distributions. An important class of measures or parameters associated with 
CDF and PDF for a random variable is expected or mean value.  
The mean or average of X can be obtained by relation: 

   X( ) ( )xE X X xdF x xf x dx
 

 
      (8) 

The pth order moment of X around zero is defined as: 

 ( ) ( )p p p
X XE X x dF x x f x dx

 

 

           (9) 

The second moment represents the power of a random variable X. 
The pth order central moment of X around mean value is defined as: 

     ( )
p p

XE x X x X f x dx




          (10) 

Variance of X is denoted as Var(X)=X2 and is the second order (p=2) central moment. The 
square rot of variance X is called the standard deviation. 
For a a given sample space S, a set of events E and a probability measure P, one can define a 
stochastic process as follows:  For each sample point S , we assign a time function X(t,ω). 
The stochastic process consists of the family of these functions. For each allowable 
parameter t, X(t, ω) is a random variable.  For a fixed ω, X(t, ω) is a function of a time t; it is 
one realization of the stochastic process. There are many examples of stochastic processes. 
The well known examples are Markov processes and 1/f processes. We will focus our 
attention to 1/f processes. Stochastic process is also called a random process and for 
simplicity X(t,ω) is denoted as X(t). 
The activity of complex systems can usually be characterized by appearance of 1 / f  noise, 

a form of temporal fluctuations that has power-law power spectral density property over a 
wide range of frequencies.  β is the power spectral exponent. A convenient framework for 
studying 1 / f  stochastic process is the self affine stochastic process  ( ), 0X t t X , which 

is defined by  

 ( ) ( ), 0
d

HX t X t t      0  , 0 1H 
 

(11) 

where 
d

  denotes equality in distribution, because of using the concept of statistical self 
similarity of time series.  H is the Hurst parameter which is the measure of self-similarity.  It 
can be derived, that a mean of such process is: 

    ( )
( )

H

E X t
E x t




  (12) 

the variance  
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    
2

( )
( )

H

Var X t
Var X t




  (13) 

and autocorrelation 

 
2

( , )
( , ) xx

xx H

R t s
R t s

 


  (14) 

By proving that ( )HX t   and ( )X t  have the same power spectral density, one can also 
prove that the power spectrum density of irregular, self similar processes has 1/f property: 

 
2

( )S 




       
2 2

( )
2

K
S f

ff
 

 



   (15) 

where ω is radial frequency, 2  is the variance, K constant value, and β the spectral 
exponent, which defines the slope of power spectral density over several decades.  
An example of self-affine stochastic process is fractional Brownian motion process (fBm). It 
is nonstationary zero mean Gaussian process denoted as ( )HB t , characterized by scalar 
parameter H (Hurst parameter). The nonstrationary characteristic of fBm is evident from its 
covariance function structure: 

    
2

2 2 2
( ) ( )

2
H H H

H HE B t B s t s t s


      (16) 

where E is the expectation operator. From this covariance function follows that the variance 
is of the type: 

 
22 2( ( ) ( )

H

H HVar B t E B t t   
 (17) 

Although fBm process is nonstationary, it has stationary increments, which means that the 
probability properties of the difference process ( ) ( )H HB t B s  only depend on the lag t-s. It is 
this increment process which is self similar. The slope is in the range 1 3  . The slope β  
is 2 for the classic example Brownian motion.  
The other example of 1 / f  processes is fractional Gaussian noise (fGn), with 1 1   . 
fGn is stationary process. White Gaussian noise has the slope 0  . It can be shown that 
Brownian motion ( 2  ) is simply the integral of white noise. 
It was reported, that β is related to the Hurst parameter H, which measures statistical self 
similar properties of signals: 

 2 1H     (18) 

This is the reason for studying   1 / f   noise via self-affine stochastic processes. It was also 
shown, that for one dimensional signal, H is related to fractal dimension D by: 

 2D H   (19) 

D is noninteger parameter in the range 1 2D  and H in the range 0 1H  . The fractal 
dimension can also be used for characterizing the complexity of the stochastic signal. 
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Fractals are mathematical sets, which have a high degree of complex geometrical self 
similarity and can model many kinds of complex time series. The concept of statistical self-
similarity and fractals was extended to time series to describe irregular characteristics of 
signals, from white noise to Brownian motion. The irregularity of a fractal curve or signal 
can be measured by capacity or fractal dimension D, a simplification of Hausdorf 
dimension, which is easier to calculate numerically. The roughness of such curve depends 
on D. The straight line have dimension 1. The more irregular the curve, the closer is its 
dimension to 2. There are many definitions and methods for calculation the fractal 
dimension. We will give a definition on which basis the popular box counting method. 
Let S be a bounded set in n . The minimum number N(s) of balls of radius s is needed to 
cover S; ( ) DN s s . The fractal dimension is then defined as: 

 
0

log ( )
liminf

log( )s

N s
D

s
   (20) 

4. Classical statistical and Fourier analysis methods 

In the past, the most common EN-analysis methods were statistical and Fourier methods. 
These methods assume the stationary or quasi stationary nature of processes and signals 
under consideration. 
An early overview of different EN-data analysis methods was made in the work by R. A. 
Cottis (Cottis, 2001). Follows a little extended theoretical overview of classical methods 
(Orfanidis, 1996). 

4.1 Background of statistical and Fourier methods  

By analyzing random processes the statistical parameters as mean value and moments are 
defined by expectation operators, i.e. by statistical averaging of many realizations of 
stochastic process. In practice this is many times impossible and there is available only one 
block or array of N  time signal samples. The statistical averaging is then replaced by the 
estimation obtained using sample or time average. 
The pth moment of sample x(n); n=0,..N-1 is defined as: 

 
1

0

1
( , ) ( )

N
p

n

moment p x x n
N





   (21) 

The first moment is mean value x . The square root of second moment gives the root mean 
square value xrsm, which measures the amplitude of the signal. The square of xrsm represents 
the signal power. 
The pth central moment of sample is defined as: 

  1

0

1
_ ( , ) ( )

1

N p

n
central moment p x x n x

N




 


 (22) 

The second order central moment is the well known signal variance. The square root of 
variance is standard deviation, which is usually used for describing the amplitude of noise 
signals.  
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Classical spectral analysis bases on Fourier transform. The Fourier Transform of the 
deterministic continuous time signal x(t) of duration T1 is defined as : 

 
1

1

( ) ( ) j t
T T

X j x t e dt     (23) 

The Discrete Time Fourier Transform (DTFT) of the deterministic sampled signal with N 
samples is defined as: 

 
1

0

( ) ( )
N

j n T
N

n

X x n e 


   



   (24) 

where x(n) =x(nT); n=0,1,…,N-1, is according to sampling theorem sampled analog signal 
x(t), n is time index, and T the sampling period. It can be efficient computed by the Discrete 
Fourier Transform (DFT) and its fast version the Fast Fourier Transform (FFT).  

  
1

2 /

0

( ) ( ) ( ) ; 0,1..., 1
N

j k n N

n

X k DFT x n x n e k N


    



      (25) 

where n is time index and k is the frequency index . The corresponding frequency resolution 
is given by: 

 /s N    (26) 

where ωs is radial sampling frequency.  The main shortcoming of classical Fourier transform 
is the averaging the features across the whole time domain.  
EN signals are of stochastic nature; therefore sampled EN signals are random sequences. To 
obtain smooth spectra an ensemble averaging should be introduced and the spectrum 
calculated over autocorrelation function. The autocorrelation function of a zero mean 
random signal is defined as: 

  ( ) ( ) ( )xxR k E x n k x n  
 (27) 

where E is the averaging or expectation operator. For stationary signals, Rxx do not depend 
on time n, but only on the relative time lag k between sequences x(n) and x(n+k). The power 
spectrum of the random signal x(n) is defined as the Discrete Time Fourier Transform 
(DTFT) of its autocorrelation function Rxx(k): 

 ( ) ( ) j n T
xx xx

k

S R k e 


   



   (28) 

where  ω is the frequency in radians per sec. This power spectrum shows how the power is 
spread over frequencies and is also called PSD (Power Spectral Density).  
EN measurements cannot often be repeated to obtain smoothed spectra by ensemble 
averaging. One can compute an estimate of expected or true value by so-called sample 
autocorrelation using time average: 

 
1

0

1ˆ ( ) ( ) ( )
N k

xx
n

R k x n k x n
N

 



    (29) 
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for k=0,1,…N-1. It is known that ˆ ( )xxR k is an even function of the lag k. It is also well known 

that the results are statistical reliable only for small value of lag (5 to 10 percentages). 

The DTFT of ˆ ( )xxR k is ˆ ( )xxS   and is referred to as periodogram spectrum and can be viewed 

as an estimate of power spectrum: 

 ˆ ˆ( ) ( ) j n T
xx xx

k

S R k e 


   



   (30) 

Using the above equations we can express the periodogram also as: 

 
21ˆ ( ) ( )xx NS X

N
    (31) 

where ( )NX   is DFTF of N signal samples. It can be efficient computed using FFT. For wide 

sense stationary random signals the mean of periodogram converges to the true power 
spectrum ( )xxS   in the limit for large N: 

 
21ˆ( ) lim ( ) lim ( )xx xx N

N N
S E S E X

N
  

 

        
 (32) 

There are some problems with such classical Fourier spectral analysis method. To achieve 
high statistical reliability, very long signal sequences should be used. But long signal 
sequences can no longer be stationary. However, the main shortcoming is the averaging the 
futures over the whole time domain. 
This have lead researchers to find and develop of an advanced signal analysis methods. 
Recently wavelet based methods for signal analysis found to be useful for nonstacionary 
signals. Therefore in this overview chapter we will consider wavelet-based methods for EN-
signals analysis. 

4.2 Overview of works using classical methods  
In individual systems, the correlations between noise measurements and corrosion 
processes have been reported by many authors but only some can be mentioned here. The 
EN data for a passive system (SS 316L/Ringers solution) and several active systems (mild 
steel/NaCl, brass/NaCl, Al 6061/NaCl and Al 2024/NaCl) have been analyzed in the 
frequency domain using power spectral density (PSD) and spectral plots, obtained from the 
ratio of PSD plots of the potential and current fluctuations. Comparisons of spectral noise 
spectra with traditional impedance spectra have been made and good agreement has been 
observed for all systems after trend removal (Lee & Mansfeld, 1998; Mansfeld et al., 2001). 
Current fluctuation during general corrosion was analyzed upon a simple model, derived 
on the assumption that elementary fluctuation sources are related to the fluxes of electrons 
that are transferred from the metal to electron-acceptor ions in solution. The number of 
successful electron transfers obeyed a Gaussian distribution, from which the corrosion 
current density and transfer coefficients were determined (Petek et al., 1997; Petek & 
Doleček, 2001). The time-series noise patterns of the steel in bicarbonate solution (the 
simulated geological environment) were transformed into frequency domain by fast Fourier 
transformations, and then their power spectral densities at a frequency were determined to 
be compared with the corrosion rate (Haruna et al., 2003). Two new indices (SE and SG) were 
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derived to evaluate pitting corrosion by dimensional analysis of three parameters of PSD, 
the slope of high frequency linear region, the critical frequency and the low-frequency 
plateau level. As shown, the value of SE can be related to the fluctuation velocity, which can 
represent the pitting corrosion rate and SG should contain some information about slow 
corrosion processes (Shi et al., 2008). PSD had been employed to analyze EN data associated 
with corrosion behavior of A291D magnesium alloy in alkaline chloride solution. Three 
corrosion stages, the anodic dissolution process companying with the growth, absorption 
and desorption of hydrogen bubbles, the development of pitting corrosion, and the 
inhibition process by protective MgH2 film could be distinguished. However, the results 
obtained only from PSD was insufficient for better understanding the corrosion mechanism 
of alloy during the immersion and the wavelet transform was carried out (Zhang et al., 
2007).   

4.3 Our applications of classical methods  

EN signal (Fig. 1) is represented as a time series, where one can easily distinguish the 
fluctuations but not the intensity and frequencies of fluctuations. In the paper (Planinšič & 
Petek, 2003) we analyzed EN corrosion signals also with some classical methods, which use 
correlation functions and histograms. Figure 2 shows estimated autocorrelation functions of 
two corrosion signals I0 and I2, respectively. 
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Fig. 2. Estimated autocorrelation functions of EN-signals: a) I0; b) I2 

Noise data were transformed into frequency domain using FFT algorithm and presented as 
PSD in Figure 3. PSD of current noise data for pitting process exhibited two parts: a low-
frequency plateau and high-frequency part, and the roll-off frequency, which is the 
frequency to separate the two parts of PSD. PSD plot of general corrosion can be 
characterized by “white noise” which is independent of frequency.  
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Fig. 3. Estimated power spectral density of signals I0 (left) and I2 (right) 
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Amplitude distribution was studied using normalized histograms. As demonstrated by 
Figure 4, a current noise amplitude distribution of general corrosion is Gaussian.  
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Fig. 4. Normalized histograms of signals I0 (left) and I2 (right) 

5. Wavelet multiresolution analysis methods 

The assumption of stationary behavior of corrosion processes and random signals is not 
always correct. Corrosion signals are a non stationary in general.  
When we are interested on how signal frequency components vary with time, we should 
use joint time-frequency analysis. For this purpose we can use Window Fourier Transform 
(WTF), also called Short Time Fourier Transform (STFT) or spectrogram.  It is known that 
the STFT can be considered as the filter bank, consists of Finite Impulse Response Filters 
(FIR) with equal bandwidth or equal frequency resolution. Therefore it is difficult to meet 
sharp localization in time and frequency simultaneously. For this reason, this technique is 
not always appropriate for analyzing natural signals or phenomena, where in the signal 
exist long duration low frequency components and short high frequency components at the 
same time. This problem can be elegantly solved using modern multiresolution time 
frequency analysis methods based on wavelets. It was shown that the Discrete Wavelet 
Transform can be viewed and realized as multirate filter bank with octave, also called 
constant Q frequency resolution. 
A short theoretical overview of wavelet methods follows (Daubechies, 1992; Burrus, 1992;  
Fladrin,1992, 1993; Radolphe, 1994; Wornell, 1996; Mallat, 1998; Dai et al., 1994; 
Palawajjhalla et al., 1994). 

5.1 Background of wavelet methods  

Wavelets are waves which construct basis of signal decomposition in wavelet transforms, 
similar as trigonometric functions with different frequencies in Fourier Transform.  
Wavelets are scaled and shifted versions of the so called mother or primary wavelet 
function ( )t . Thus the family of functions is then defined as: 

 
 , ( )a b t ;    

( 1/2)

, ( )a b

t b
t a

a
      

 
 (33) 

where parameters a and b ( , ; 0a b a  ) are called dilation (scaling) and translation 
(shifting) parameters, respectively.  To be a good analyzing function, the mother wavelets 
must fulfill some conditions. The first is the so called ‘’admissibility’’ condition: 
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2ˆ( )

d
 








    (34) 

where ˆ ( )   is the Fourier transform of ( )t . Because the mother wavelet is absolutely 

inferable functions, we can show that: 

 ˆ (0) 0 ( ) 0t dt 




     (35) 

Admissibility implies that a wavelet must be an oscillatory decaying function with zero 
mean.  There are also additional other desirable properties for a function to be a useful 
wavelet, as smoothness, good time and frequency localization, number of vanishing 
moments. These properties suggest that wavelets are bandpass filters. ( )t is the impulse 

response of filter ˆ ( )  . 
In the contrast with Fourier analysis where basis functions are trigonometric functions, by 
wavelet-based analysis different kind of mother wavelet function can be used, appropriate 
for particular application. There are many types of wavelet transforms according to input 
signals, time and scaling parameters, used wavelet functions, namely continuous, discrete, 
bi-orthogonal and semi-orthogonal and orthonormal bases version. 
However wavelet transform can be broadly classified into Continuous Wavelet Transform 
(CWT) and Discrete Wavelet Transform (DWT).  CWT of a function 2( ) ( )f t L  involves the 
computation of scalar product. Wavelet coefficients are computed as: 

 , ,( , ) ( ) ( )a b a bC C a b f t t dt




     (36) 

Discrete wavelet transform involves discretization of parameters, a and b, respectively: 

 0
ma a

                     0b n b a    (37) 

 /2
. 0 0 0( ) ( )m m

m n t a a t n b       (38) 

 , , ,( ), ( ) ( ) ( )m n m n m nC f t t f t t dt 




     (39) 

where  ,m nC  are called discrete wavelet coefficients. Discrete wavelets . ( )m n t that satisfy the 

condition: 

 
2 2

,
,

( ) ( ), ( ) ( )m n
m n

A f t f t t B f t     (40) 

are called frames (Daubechies,1992) and form Riesz basis. Discrete wavelets can be further 
classified into orthogonal, semi-orthogonal or non-orthogonal. 
To obtain orthonormal basis, one can chose samples on dyadic grid (base 2): 

 2ma       2mb n      ,m n 
 

(41) 
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Orthonormal bases and orthonormal wavelet transform, play an important role in theory 
and practice of multiresolution analysis. The DWT can be further classified into Wavelet 
Series Transform (WST), when analyzed signal is continuous (f (t)), and into Discrete Time 
Wavelet Transform (DTWT), if the signal is time discrete (f(n)). One possibility of 
constructing wavelets is using a scaling function ( )t  and multiresolution analysis (Mallat, 

1998). Namely, multiresolution algorithm is a natural way of constructing orthogonal 
wavelets. Multiresolution analysis is decomposition of square integrable functions 

2( ) ( )f t L   into closes subspaces jV  , where coarser subspace jV  is contained in finer 

subspace 1jV  : 1j jV V  . The subspaces also satisfy separation condition (  0m
m Z

V

   ) and 

condition for completeness ( 2( ).m
m

V L

    Additionally, the functions ( )f t  satisfy the 

scaling property ( 1( ) (2 )m mf t V f t V    ). And, there exist a scaling function in the coarsest 

space 0( )t V  , so that the family of functions ,m n , /2
, 2 (2 )m m

m n t n    ,  form the so 

called Riesz basis of subspace mV .  Since 0 1( )t V V     and the (2 )t is a basis for the 

subspace 1V , we can write scaling function as linear combination with the so called two 

scale difference equation:  

 ( ) ( ) (2 )
k

t h k t k     (42) 

where h(k) is a finite sequence. It can be shown, that the frequency response of scaling 
function is a lowpass filter and h(k) form the lowpass FIR-filter coefficients. Define 1mW   as 

the orthogonal complement of subspace 1mV   in mV , than the direct sum of infinite subspaces 

jV  is the whole space 2( )L  . The subspace 1mW   contains the detail information needed to 

go from approximation of function at coarser to finer resolution level j. The multiresoluton 
analysis allows to approximate the given function f (t) by fj(t) at each coarser subspace or 
resolution level. If ( )t is a Riesz basis of space 0 1W V , we can also write:  

 ( ) ( ) (2 )
k

t g k t k     (43) 

where the finite sequence g(k) form the highpass (bandpass) filter coefficients, as the 
frequency response of wavelet is like that of band-pass filter. 
The multiresolution analysis form the theoretical basis for fast Discrete Wavelet Transform 
(fast DWT), using discrete signals f(n), n , that is sampled version of f(t). It was 
introduced by Mallat by the so called pyramidal multiresolution algorithm, where the signal 
f(n) is decomposed into J decomposition levels. The idea of multiresolution analysis is to 
write a function as a limit of successive approximations, each of which is a smoothed 
version.                
The sequences at scale j can be computed from sequences at scale j-1 by the following 
multirate filter or convolution, followed by subsampling by 2: 

 
1

1

,2 2

,2 2

( ) ( ), ( ) ( 2 )

( ) ( ), ( ) ( 2 )

j j

j j

j
m n

k

j
m n

k

a n f t t g k n a

c n f t t h k n a









    

    




 (44) 
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where 
2

( ) ( , )jc k c j k
 
are wavelet or detailed coefficients and 

2
( ) ( , )ja k a j k  are scaling or 

approximation coefficients. Data sequence 12
( ) (1, )a k a k at scale j=1 represents 

approximated or smoothed version of the original signal. The sequence 12
( ) (1, )c k c k  at 

level j = 1 represents difference or detail information. The above equations together describe 
jth level analysis filter bank. This calculation is repeated (iterated) up to scale J forming the 
multiresolution pyramidal algorithm; one stage is shown in Figure 5. As was mentioned, the 
lowpass filter is associated by scaling function and highpass filter by wavelet function. The 
filters for calculating the synthesis are the same by using orthogonal wavelet transform. 
Analysis and synthesis filters can have different length, as by using biorthogonal filter 
banks. However, this algorithm can be used for orthogonal and nonorthogonal wavelets. 
 

 
Fig. 5. One stage of analysis filter bank 

For EN-signal originating from corrosion process, wavelet transform decompose it into 
approximation and detail signal components at different scales and locations. The wavelet 
transform is therefore convenient tool to analyze the self-similarity of 1/f time series. 
The orthonormal wavelet transform based methods were used for estimating slope  , 
parameter H, and fractal dimension D (Akay,1998; Sekine, 2002; Planinšič & Petek, 2008).  
For orthonormal discrete wavelet decomposition the 1/f property can be replaced by the 
relation: 

 
 

2
2

2
j

j 

   (45) 

where  j2 is the variance of detail signal 
2 jd . Then the slope β can be calculated from the 

plot 2
2log j  versus level j, what can be obtained after short calculation: 

 2 2
2 2log logj j       (46) 

5.2 Overview of works using wavelets  

Wavelets have found many applications in different natural scientific disciplines, among 
them also in chemical engineering (Radolphe et al., 1994; Banjanin et al., 2001). The use of 
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wavelets to study electrochemical noise transients was reported by Aballe (Aballe et al., 
1999; 2001). The wavelet analysis of electrochemical noise signals, where the signal was 
decomposed into wavelet-subbands was used for the characterization of pitting corrosion 
intensity (Smulko et al., 2002). Wharton et al. demonstrated how the wavelet variance 
exponent can be used to evaluate corrosion behavior for variety of stainless steels in chloride 
medium, i.e. be able to discriminate between various corrosion processes covering a wide 
range of EN signals (Wharton et al., 2003). Wavelet analysis based on the fractional energy 
contribution of smooth crystals and the lowest frequency detail crystal can provide 
information on the type and onset of corrosion (general corrosion, metastable pitting, stable 
pitting) in performed potentiostatic critical pitting temperature test for a superduplex 
stainless steel (Kim, 2007). In study of the copper anode passivation by electrochemical noise 
analysis using wavelet transforms it has been found that during active dissolution the 
electrode surface is dominated by long time scale process and the change of the position of 
the maximum relative energy from D7 to D8 could be an indication of future passivation 
(Lafront et al., 2010). It was shown, that electrochemical potential noise analysis of Cu-BTA 
system using wavelet transformation can be used to achieve the inhibition efficiency 
(Attarchi et al., 2009). 
Some other authors also reported about the fractal nature of corrosion processes and 
corresponding electrochemical noise signals. The electrochemical potential and current noise 
originating from the corrosion of carbon steel in distilled water was analyzed using 
multifractal analysis. The multifractal spectra are found to be qualitatively different for 
different temporal stages of the corrosion process (Muniandy et al., 2011).  

5.3 Our applications of wavelets methods  

Our applications of wavelets transformation or combination with classical methods for the 
electrochemical current noise analysis were reported for different corrosion processes in 
several publications (Planinšič & Petek, 2003; 2004; 2007; 2008). For little more detailed 
insight the short overview of this research is as follows.   
Daubechies wavelets ‘’db2’’ were used to transform the EN signal from Fig. 1. The discrete 
wavelet transform (DWT) decomposition of signal into on joint time (position) and 
frequency (scale level) depended amplitudes are presented with color lightness in time-
frequency plane in Fig. 6.  
 

 
Fig. 6. Discrete wavelet transforms (DWT) of signals:  a) I0,  b) I2 (Planinšič & Petek, 2008) 
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Next, the DWT multiresolution decomposition of processes on 5 levels are shown in Fig. 7. 
The crystals from D1 to D5 are the details of the signal, and A5 is the approximation of the 
signal. The frequency range which takes into account each series of detail coefficients, can be 

computed from relation / 2 / 2 j
sf  where fs is the sampling frequency and j stands for the 

corresponding scale. 
 

 
Fig. 7. Multiresolution decomposition of discrete signals: a) I0, b) I2 on approximation signal 
Aj and detail signals Dj on five levels (Planinšič & Petek, 2008). 

Events with small time constants are taken into account by the fine scale coefficients, details 
D1, D2. The information dealing with larger time constant events is included in details D4 
and D5. Therefore, these kinds of plot allow the signal to be viewed over the full time range 
and considering different scales, which contains information about corrosion events 
occurring at a determined time – scale. 
Variances of details were calculated to detect the intensity of particular signal components 
on level j.  Fig. 8 shows variances as a function of the decomposition level and also the 
logarithmic plot of details variances versus level j for the slope ß determination. 
 

 
Fig. 8. Variances of details plotted as a function of the decomposition level j for two 
processes: a) I0 (slope ß = 3.0092) and b) I2 (slope ß = 0.7700) (Planinšič & Petek, 2008). 
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For the time series I2 and I0 were ß = 0.7700 and ß = 3.0092, respectively. As the value of  ß 
increases, the contributions of high-frequency components in time series are reduced. It is 
suggested that the events in the relatively higher frequency region may be associated with 
uniform corrosion. On the other hand, the events in the relatively lower frequency regions 
are responsible for pitting corrosion. 
After short computation the value for Hurst parameter H, and fractal dimension D can be 
obtained: 

 
2,5 0,5i iD         0,5 ( 1)i iH    ;    1,2.i   (47) 

The obtained slope ß is the estimated power spectral exponent ß. It can be associated with 
the strength of persistence within a time series. The persistence defines the correlation 
between adjacent values within time series. If  0 1  , than persistence is weak. For the 
time series with β between 2 and 3, the persistence is strong. Fractional Gaussian noise with 
β between -1 and 1, and fractional Brownian motion, with β between 1 and 3, are considered 
as proper representatives of such processes. The first process is stationary and the second is 
non-stationary. 
The obtained results indicating the presence of fractional Brownian motion in pitting 
corrosion with adjacent values in the time series being strongly correlated and fractional 
Gaussian noise in general corrosion, with adjacent values in the time series being weak 
correlated.  The Hurst parameter in case of pitting is greater than ½, indicating also the 
persistence, i.e. a dependence of new values on old values. A summary of the wavelet – 
based fractal analysis is given in Table 1. 
 

 βi Hi Di process persistence 
I0 – pitting 
corrosion 

3.0092 1.0046 0.9954 
non- 

stationary 
strong 

I2 – general 
corrosion 

0.7700 -0.1150 2.1150 stationary weak 

Table 1. The slope β, the Hurst parameter H, and the fractal dimension D, for two corrosion 
signals (Planinšič & Petek, 2008). 

We proposed also a new way for determination of persistence nature of the electrochemical 
noise on the basis of correlation coefficients between original signal and details R(Ii,Dj), 
Table 2. The pitting corrosion is positively correlated with long memory effect.  Increasing 
correlation of signal I2 to the D2 detail and then decreasing to D5, indicates weak persistence 
and short memory effect of general corrosion processes. 
 

 R(I0,Dj) R(I2,Dj) 
D1 0.0188 0.4196 
D2 0.0482 0.5303 
D3 0.1128 0.5097 
D4 0.2048 0.3648 
D5 0.3103 0.3138 

Table 2. Correlation coefficients between original signal and details, R(Ii,Dj), for two 
decomposed corrosion signals (Planinšič & Petek, 2008). 
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Correlation coefficients between successive details R(Dj,Dj+1) for two decomposed corrosion 
signals (Table 3) are all zero on the basis of analysis procedure.  
 

 I0 I2 
R(D1,D2) 0.0006 0.0006 
R(D2,D3) 0.0000 0.0004 
R(D2,D3) 0.0001 0.0004 
R(D4,D5) -0.0012 -0.0120 

Table 3. Correlation coefficients between successive details, R(Dj,Dj+1), for two decomposed 
corrosion signals (Planinšič & Petek, 2008). 

Additionally,  DWT with 3-decomposition levels was made using different kinds of wavelet 
functions, from Daubechie’s fractal-like wavelet “db2” (Massopust, 1994) to smoother 
wavelet functions, as Daubechie’s wavelet function “db5” and symmetrical Coiflet wavelet 
function “coif5”. After decomposition the coding gain (cg) was calculated from variances of 
decomposed sub-bands: 

 2 2

1 1

( ) / ( ) j

JJ

g j j j
j j

c
  

 

    (48) 

where 2
j  are variances of sub-bands and j are the relative length of sub-band sequences 

and J the number of sub-bands. The coding gain is a measure of spectral flatness. For 
(uniform) white noise it has the value 1. Also the Shannon’s entropy was calculated and can 
be viewed as a measure of signal complexity. The numerical experimental results are 
collected in Table 4. 
 

 cg, I2 cg, white noise entropy, I2 entropy, white 
noise 

db2 1.3486 1.0090 4.5384 4.9304 
db5 1.3411 1.0076 4.5384 4.9304 
coif5 1.3411 1.0116 4.5384 4.9304 

Table 4. Coding gain and Shannon’s entropy obtained with different wavelet functions 

The chose of different wavelets did not influence on the obtained cg and entropy. We found 
also, that the coding gain and entropy can be used as an additional parameter to distinguish 
the corrosion processes.  
To study the approximation properties of DWT’s using different wavelet basis functions, a 
synthesis (inverse DWT) to different approximation levels was made. We expected better 
results with ‘’db2’’ assuming the fractal–like shapes of EN-signals. However, no significant 
differences were found, a smaller approximation error was obtained even using smoother 
wavelets, what confirms the approximation theory. 

6. Conclusion 

The most attractive prospective benefit of EN measurement is the ability to obtain 
information about the type of corrosion that is occurring, but there is much less agreement 
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about the optimum analysis method for obtaining such information (Cottis, 2006). Wavelet 
transform has been developed over a number of years and only recently has been applied to 
electrochemical noise analysis. The main advantage of wavelet analysis of EN is the 
detection of transients which are localized in both the time and frequency domain and 
shows promise to be discriminatory for the intensity as well as the type of corrosion.  

7. References  

Aballe, A., Bethencount, M., Botana, F. J. & Markos, M. (1999). Using wavelets   transform in 
the analysis of electrochemical noise data, Electrochimica  Acta, Vol.44, No.26,   
(September 1999), pp. 4805-4816, ISSN: 0013-4686 

Aballe, A., Bethencount, M., Botana, F. J., Markos, M. & Sanchez-Amaya, J. M. (2001). Use of 
wavelets to study electrochemical noise transients, Electrochimica  Acta, Vol. 46, No. 
15 (April 2001), pp. 2353- 2361, ISSN: 0013-4686 

Akay, M., Mulder, E. J. H. (1998). Effects of Maternal Alcohol Intake on Fractal Properties in  
Human Fetal Breathing Dynamics, IEEE Transaction on Biomedical Engineering,   Vol. 
45, No. 9, ( September 1998), pp.1097 – 1103, ISSN: 0018-9294 

Attarchi, M., Roshan, M. S., Norouzi, S. & Sadrnezhad, S. K. (2009). Electrochemical 
potential noise analysis of Cu-BTA system using wavelet transformation, Journal of 
Electroanalytical Chemistry,  Vol. 633, No. 1, (2009), pp. 240-245, ISSN: 1572-6657 

Banjanin, B., Gergič, B., Planinšič,P. & Čučej, Ž. (2001). Entropy-threshold method for best 
basis selection, Image and Vision Computing Elsevier, Vol. 19, No. 7,  (May 2001), pp. 
477- 484, ISSN: 0262-8856 

Burrus, C. S. (1992). Introduction to wavelets and wavelet transforms, A primer. Prentice Hall, 
ISBN: 0-13-489600-9, Upper Saddle River, New Jersey, USA 

Cottis, R. A. (2001). Interpretation of Electrochemical Noise Data, Corrosion, Vol. 57, No.3,   
(2001), pp.265-285, ISSN: 0010-9312 

Cottis, R.A. (2006). Sources of Electrochemical Noise in Corroding Systems, Russian Journal 
of Electrochemistry, Vol. 42, No. 5, 2007, pp. 497-505, ISSN: 1023-1935 

Dai, X., Joseph, B. &  Motard, R. L. (1994). Introduction to Wavelet Transform and Time-
Frequency Analysis, In: Wavelet Applications in Chemical Engineering, Motard, R. L. 
&Joseph, B., (Eds.), 1-32, Cluwer Academic Publisher, ISBN: 0-7923-9461-5. 
Norwell, Massachusetts, USA.    

Daubechies, I. (1992). Ten Lectures on Wavelets, Siam, ISBN: 0-89871-274-2, Philadelphia, 
Pennsylvania, USA 

Farge, M. (1993). Wavelets, Fractals, and Fourier Transforms, J. C. Hunt, J. C. Vassilicos (Eds.), 
Clarendon Press, ISBN: 0-19-853647-X, Oxford, USA 

Flandrin, P. (1992). Wavelet analysis and synthesis of fractional Brownian motion, IEEE 
Trans. Information theory, Vol. 38, No.2, Part 2, Mar. 1992, pp.904-909, ISSN: 0018-
9448 

Flandrin, P. (1993). Fractional Brownian Motion and Wavelets, In: Wavelets, Fractals, and 
Fourier Transforms, Farge, M., Hunt, J. C. R. & Vassilicos, J. C., (Eds.), 109-142, 
Clarendon Press, ISBN: 0-19-853647-X, Oxford, USA 

Gao, Y., Cao, Y., Tung, W.-W.  & Hu, J. (2007). Multiscale analysis of complex time series  
(Integration of  chaos and random fractal Theory, and Beyond),  John Wiley & Sons, 
ISBN: 978-0-471-65470-4, New Jersey, USA 

www.intechopen.com



 
Wavelets in Electrochemical Noise Analysis 

 

219 

Haruna, T., Morikawa, Y., Fujimoto, S. &  Shibata, T. (2003). Electrochemical noise analysis 
for estimation of corrosion rate of carbon steel in bicarbonate solution, Corrosion 
Science, Vol. 45, No. 9, pp. 2093-2104, ISSN: 0010-938X 

Kim, J.J. (2007). Wavelet analysis of potentiostatic electrochemical noise, Materials Letters, 
Vol. 61, No. 18, 2007, pp. 4000-4002, ISSN: 0167-577X 

Lafront, A.M., Safizadeh, F., Ghali, E.& Houlach, G.(2010).  Study of the copper anode  
Passivation by electrochemical noise analysis using spectral and wavelet  

transforms, Electrochimica Acta , Vol. 55, No. 22, 2010, pp. 2505-2512, ISSN: 0013-4686 
Lee, C. C. & Mansfeld, F. (1998). Analysis of  electrochemical noise data for a passive system 

in the frequency domain, Corrosion Science, Vol. 40, No. 6, pp. 959-962, ISSN: 0010-
938X 

Mallat, S. (1998). A wavelet tour of signal processing, Academic Press, 1998. ISBN :0-12-466606- 
X, San Diego, California, USA 

Mansfeld, F., Sun, Z: & Hsu, C.H. (2001). Electrochemical noise analysis (ENA) for active 
and passive systems in chloride media, Electrochimica Acta , Vol. 46, No. 24-25, 2001, 
pp. 3651-3664, ISSN: 0013-4686 

Massopust, P. R. (1994). Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, 
ISBN: 0-12-478840-8,  San Diego, California, USA 

Mathworks Inc.(2007), Matlab® 7.5.0 (R2007b), 2007  
Muniandy, S.V., Chew, W.X. & Kan, C.S. (2011). Multifractal modeling of electrochemical 

noise of corrosion of carbon steel, Corrosion Science, Vol. 53, No.1, pp. 188-200, ISSN: 
0010-938X 

Orfanidis, S.J. (1996). Introduction to Signal Processing, Prentice Hall,  ISBN 0-13-209172-0,  
Upper Saddle River, New Jersey, USA 

Palavajjhalla, S., Motard, R. L & Joseph (1994), B. Computational Aspects of Wavelets and 
Wavelet Transforms, In: Wavelet Applications in Chemical Engineering, Motard, R. L. 
&Joseph, B., (Eds.), 33-83, Cluwer Academic Publisher, ISBN: 0-7923-9461-5. 
Norwell, Massachusetts, USA.    

Petek, A., Doleček, V. & Vlachy, V. (1997). Stochastic Analysis of Current Fluctuations 
During General Corrosion of Stainless Steel in Sulfuric Acid, Corrosion, Vol. 53, 
No.12, (1997), pp.928-934, ISSN: 0010-9312 

Petek, A: & Doleček, V. (2001). Interpretation of current noise generation by a simple model, 
Materials and Corrosion, Vol. 52, No.6, (2001), pp.426-429, ISSN: 1521-4176 Planinšič, 
P., Gergič, B., Gleich, D.  & Čučej, Ž.(2001). Fuzzy control of subband codded image 
quality using standard and fuzzy quality measure, Optical Engineering, Vol.8, 
No.40, (August 2001), pp. 1529-1544, ISSN 0091-3286 

Planinšič, P. & Petek, A. (2003). Analysis of electrochemical noise signals with classical 
methods and methods based on fractal-like wavelets, Proceedings IEEE ICIT 2003, 
871-876, ISBN: 0-7803-7853-9, Maribor, Slovenia, December 10-12, 2003 

Planinšič, P. & Petek, A. (2004). Analysis of electrochemical noise signals using fractal-like 
function wavelets, In: Interdisciplinary applications of fractal and chaos theory, R. 
Dobrescu, C. Vasilescu, (Ed.), 322-334, Editura Academica Romane, ISBN 937-27-
1070-5, Bucaresti, Romania 

Planinšič, P. & Petek, A. (2007). Electrochemical noise signals discrimination using wavelet-
based fractal analysis, Proceeding of 3rd international symposium on Interdisciplinary 

www.intechopen.com



 
Discrete Wavelet Transforms - Biomedical Applications 

 

220 

approaches in fractal analysis IAFA 2007, pp. 322-334, ISBN 842-6508-23-3, Printech, 
Bucaresti, Romania, May 23-25, 2007 

Planinšič, P. & Petek, A. (2008). Characterization of corrosion processes by current noise -
based fractal and correlation analysis, Electrochimica Acta, Vol. 53, No. 16, June 
2008), pp. 5206-5214, ISSN: 0013-4686 

Sekine, M., Tamura, T., Akay, M., Fujimuto, T., Togawa, T. & Fukuji, Y. (2002). 
Discrimination of Walking Paterns Using Wavelet-Based Fractal Analysis, IEEE 
Transaction on Neural Sysems and rehabilitation Engineering, Vol.6, No.3, (September  
2002), pp. 188 -196,  ISSN: 1534-4320 

Shi, Y.Y., Zhang, Z., Cao, F.H. & Zhang J.Q. (2008). Dimensional analysis applied to pitting 
corrosion measurements, Electrochimica Acta , Vol. 53, No.6, 2008, pp. 2688-2698, 
ISSN: 0013-4686 

Schroeder, M. (1991). Fractals, Chaos, Power Laws (Minutes from an Infinite Paradise), W. H. 
Freeman and Company, ISBN: 0716721368, New York, USA 

Smulko J., Darowicki, K. & Zielinski, A. (2002). Pitting Corrosion in Steel and 
Electrochemical Noise Intensity, Electrochemistry Communication, Vol. 4, No. 5 (May 
2002), pp 388-391(4). ISSN: 1388-2481  

Wharton, A., Woo, R. J. K. & Mellor, B. G. (2003). Wavelet analysis of electrochemical noise 
measurements during corrosion of austenitic and superduplex stainless steels in 
chloride media, Corrosion Science, Vol. 45, No. 1, (January 2003), pp 97-122. ISSN: 
0010-938X 

Wornell, G. W. (1996). Signal Processing with Fractals, A Wavelet–Based Approach, Prentice Hall 
PTR, ISBN 013120999X, Upper Saddle River, New Jersey, USA 

Zhang, T., Shao, Y., Meng, G. & Wang, F. (2007). Electrochemical noise analysis of the 
corrosion of AZ91D magnesium alloy in alkaline chloride solution, Electrochimica 
Acta , Vol. 53, No.17, 2007, pp. 561-568, ISSN: 0013-4686 

www.intechopen.com



Discrete Wavelet Transforms - Biomedical Applications

Edited by Prof. Hannu Olkkonen

ISBN 978-953-307-654-6

Hard cover, 366 pages

Publisher InTech

Published online 12, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas

of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed

signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete

Wavelet Transforms - Biomedical Applications reviews the recent progress in discrete wavelet transform

algorithms and applications. The book reviews the recent progress in DWT algorithms for biomedical

applications. The book covers a wide range of architectures (e.g. lifting, shift invariance, multi-scale analysis)

for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in

implementations of the DWT algorithms in biomedical signal analysis. Applications include compression and

filtering of biomedical signals, DWT based selection of salient EEG frequency band, shift invariant DWTs for

multiscale analysis and DWT assisted heart sound analysis. Part II addresses speech analysis, modeling and

understanding of speech and speaker recognition. Part III focuses biosensor applications such as calibration of

enzymatic sensors, multiscale analysis of wireless capsule endoscopy recordings, DWT assisted electronic

nose analysis and optical fibre sensor analyses. Finally, Part IV describes DWT algorithms for tools in

identification and diagnostics: identification based on hand geometry, identification of species groupings, object

detection and tracking, DWT signatures and diagnostics for assessment of ICU agitation-sedation controllers

and DWT based diagnostics of power transformers.The chapters of the present book consist of both tutorial

and highly advanced material. Therefore, the book is intended to be a reference text for graduate students

and researchers to obtain state-of-the-art knowledge on specific applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Peter Planins ̌ic ̌ and Aljana Petek (2011). Wavelets in Electrochemical Noise Analysis, Discrete Wavelet

Transforms - Biomedical Applications, Prof. Hannu Olkkonen (Ed.), ISBN: 978-953-307-654-6, InTech,

Available from: http://www.intechopen.com/books/discrete-wavelet-transforms-biomedical-

applications/wavelets-in-electrochemical-noise-analysis

www.intechopen.com



51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

Phone: +86-21-62489820 

Fax: +86-21-62489821



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


