
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1. Introduction

Conventional endoscopic exams do not allow the entire visualization of the gastrointestinal
(GI) tract. Push enteroscopy (PE) is an effective diagnostic and therapeutic procedure,
although it only allows exploration of the proximal small bowel (Pennazio et al., 1995).
Simultaneously, convetional colonoscopy is limited at the terminal ileum. Therefore, prior to
the wireless capsule endoscopy era, the small intestine was the conventional endoscopy’s last
frontier, because it could not be internally visualized directly or in it’s entirely by any method
(Herrerías & Mascarenhas-Saraiva, 2007). The small intestine accounts for 75% of the total
length and 90% of the surface area of the gastrointestinal tract. In adults it measures about 570
cm at post mortem, which is substantially longer than conventional video endoscopes (100-180
cm) (Swain & Fritscher-Ravens, 2004). Intraoperative enteroscopy is the most complete but
also the most invasive means of examining the small bowel (Gay et al., 1998).
Given the technical and medical improvements introduced on the assessment of the
gastrointestinal (GI) tract, Capsule Endoscopy (CE) is considered as the first major
technological innovation in GI diagnostic medicine since the flexible endoscope (Kaffes, 2009).
More recently, a new technique, the double-balloon enteroscopy (DBE), has been introduced
into clinical practice (Yamamoto & Kita, 2006). DBE has the potential to examine the entire
length of the small bowel with biopsy and therapeutic capability. Nevertheless, it is a time
consuming procedure that requires specialist training for the operating physician. We should
note that DBE and CE are complementary tools and not competitive (Chen et al., 2007). Hence,
the diagnostic ease of CE can be complemented with a targeted and often therapeutic DBE
(Kaffes, 2009). Therefore, CE can be used as a first line diagnosis method, while DBE can be
used as a confirmatory or therapeutic modality for lesions first visualized by CE (Pennazio,
2006).
The endoscopic capsule is a pill-like device, with only 11mm x 26 mm, and includes a
miniaturized camera, a light source and circuits for the acquisition and wireless transmission
of signals (Iddan et al., 2000). As the capsule moves through GI tract, propelled exclusively by
peristalsis, it acquires images at a rate of two per second and sends them to a hard disk receiver
that is worn in the belt of the patient, in a wireless communication scheme. The acquisition
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2 Will-be-set-by-IN-TECH

of images is limited by the battery life of the device, usually around eight hours, which imply
that in a single CE exam more than 50000 images are acquired. If no complications arise, the
capsule should be in the patient’s stool, usually within 24-48 h, and not reused (Pennazio,
2006). Capsule endoscopy has evolved in a few short years to become a first-line, noninvasive
diagnostic technique for the small bowel. CE is now being utilized worldwide to assess
patients for obscure gastrointestinal bleeding, possible Crohn’s disease, celiac disease and
small bowel tumors (Lee & Eisen, 2010). It is now available in over 4500 practice sites around
the world (Munoz-Navas, 2009).
The time required to a physician to analyze the resulting video is, on average, 40-60
min (Pennazio, 2006). The reading time and interpretation of CE exams is very time
consuming given that more than 50,000 images have to be reviewed (Delvaux & Gay, 2006;
Mergener et al., 2007), which contributes to the high cost of a CE exam (Westerhof et al.,
2009). Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams
faster and more accurately is an important technical challenge and an excellent economical
opportunity.
After the introduction of CE, it was discovered that the prevalence and malignancy rates
for small bowel tumors are much higher than previously reported and that the early
use of CE can lead to earlier diagnoses, reduced costs and, hopefully, prevent cancer
(Herrerías & Mascarenhas-Saraiva, 2007).
The application of texture analysis techniques to classify capsule endoscopic frames is feasible
and presents promising results. Kodogiannis et al. proposed two different schemes to extract
features from texture spectra in the chromatic and achromatic domains (Kodogiannis et al.,
2007). The first is a structural approach based in the theory of formal languages, while the
second is a statistical approach, where statistical texture descriptors are calculated from the
histograms of the RGB and HSV color spaces of CE video frames. Recently, Mackiewicz
et al. proposed an automatic capsule endoscopy segmentation algorithm based in color
and texture features to determine the topological division of capsule endoscopic videos
(Mackiewicz et al., 2008). Several other CE image processing methodologies were reviewed
recently by Karargyris and Bourbakis (Karargyris & Bourbakis, 2010).
In the present chapter, several multiscale texture descriptors are extracted from both wavelet
and curvelet domains and their classification performance is assessed. In section 2, we present
a brief introduction to multiscale image representation, namely through Discrete Wavelet
Transform and Discrete Curvelet Transform. In section 3, the algorithm used to extract
the multiscale texture descriptors is described, as well as modelling techniques that allow
to extract statistical dependence of textural descriptors taken in different color channels.
In section 4, the implementation details of the method are discussed. In section 5, the
performance of the proposed methods is assessed and discussed. Section 6 resumes the key
findings and presents future research orientation.

2. Multiscale representation of image information

It is known for a long time that human perception of texture is based in a multi-scale
analysis of patterns, which can be modeled by multi-resolution approaches. In fact, the
multi-resolution ability of the Discrete Wavelet Transform (DWT) has been vastly explored
in several fields of image processing such as compression, denoising and classification.
However, the directional information of the DWT is limited, which might not be enough to
capture all the complex texture patterns within an image.

156 Discrete Wavelet Transforms - Biomedical Applications
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Introduced in 2000, the Continuous Curvelet Transform (CCT) is based in an anisotropic
notion of scale and high directional sensitivity in multiple directions (Candès & Donoho,
2000). While wavelets are certainly suitable for dealing with objects where the interesting
phenomena, e.g., singularities, are associated with exceptional points, they are ill-suited for
detecting, organizing, or providing a compact representation of intermediate dimensional
structures. Given the significance of such intermediate dimensional phenomena, there has
been a vigorous effort to provide better adapted alternatives by combining ideas from
geometry with ideas from traditional multi-scale analysis (Candès et al., 2006). Therefore,
this tool can be used as a multi-resolution and multi-directional representation of the
information within an image. The Discrete Curvelet Transform (DCT) coefficients are accurate
representations of the original image with different detail, given by the different frequency
content in each scale, but also with different detail in multiple directions, overcoming the
directional limitations of the Discrete Wavelet Transform. This might be well suited for the
analysis of complex spatio-frequency patterns as texture.

2.1 Wavelet Transform

The scientific breaktrough achieved with the introduction of the Wavelet Transform has
inequivocally changed the research direction on the biomedical signal/image processing.
Indeed, since the seminal works of Daubechies (Daubechies, 1988) and Mallat (Mallat, 1989),
more than 9000 papers and 200 books were published between the late eighties and 2003,
with a significant part being focused in biomedical applications (Unser et al., 2003). While not
being exhaustive, and in order to provide to the interested reader an idea of some applications
of wavelets in medical imaging, the DWT has been applied in several problems such as:

• Image denoising

• Compression of medical images

• Feature extraction and image classification

• Tomographic reconstruction

• Image Enhancement

Since the main goal of this section is to provide to the reader the key concepts regarding
the DWT, the mathematical details will be kept to a minimum. The Continuous Wavelet
Transform (CWT) is a signal representation in a scale-time space, and the CWT coefficients
of a time-varying signal x(t) are given through:

XΨ(τ, s) =
∫ +∞

−∞
x(t)Ψ∗

(

t − τ

s

)

dt (1)

where Ψ is the mother wavelet function and ∗ stands for the complex conjugate.
Analogously, signal can be recovered from its wavelet coefficients through the Inverse
Continuous Wavelet Transform (ICWT):

x(t) =
∫ +∞

−∞

∫ +∞

−∞
XΨ(τ, s)Ψ

(

t − τ

s

)

dτds (2)

By varying both the scale and the translation shift parameters, s and τ respectively, we can
obtain a family of daughter wavelets from the mother wavelet function Ψ:

Ψs,τ(t) =
1√

s
Ψ

(

t − τ

s

)

, (3)
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Thus, for a fixed value of the scale parameter s, the CWT, which is now a function of the
continuous shift parameter τ, can be written as a convolution equation where the filter
corresponds to a rescaled and time-reversed version of the wavelet as shown by equation
(1) setting t=0. Combining the variation of the scale parameter s and the time shift parameter
τ, the CWT provides a complete scale-time representation of a signal. Furthermore, a given
CWT coefficient can be simply seen as the inner product:

XΨ(τ, s) = 〈x(t), Ψs,τ〉. (4)

Each 〈x(t), Ψs,τ〉 can be seen as a quantom of information that is represented as a rectangle
in the time-frequency plane. However, it can be shown through the uncertainty principle
theorem that this rectangle has a minimum surface that limits the joint time-frequency
resolution. The ultimate consequence of this limit is the trade-off between temporal and
frequency resolution. Thus, an increase in the frequency resolution would lead to a decrease
in the temporal resolution. In limit, we could perfectly identify the frequency content of the
signal and simultaneously lose all the localization details of these frequency components,
as in the case of the typical Fourier transform. However, and given the relevance of the
temporal localization of abnormal frequency content phenomena, there is the need of a better
use of the joint time-frequency resolution. A possible solution could be the use of Short Time
Fourier Transform (STFT). However, the constant window size implies a uniform tilling of the
time-frequency plane. The wavelet can tackle this problem very elegantly, as will be shown
ahead.
As can be easily understood, by varying both the scale s and the time shift τ parameters,
the CWT representation of the signal x(t) is highly redundant. Indeed, the CWT maps
the information within a one-dimensional signal to a two-dimensional time-scale joint
representation. This implies a heavy computational burden which reduces its application
potential to daily life problems. Nonetheless, this problem can be tackled by limiting the
continuous scalability and translatability of the daughter wavelets Ψs,τ. Using such scheme,
the mother wavelet function Ψ generates a smaller family of daughter wavelets:

Ψj,k(t) =
1

√

s
j
0

Ψ

(

t − kτ0s
j
0

s
j
0

)

(5)

where j and k are integers and s0>1 a fixed dilation step. The discretization of the time-scale
plane is usually achieved using a dyadic sampling, where s0=2 and τ0=1.
A wavelet atom Ψj,k(t) is localized around the point 2jk and has a support size proportional

to the scale 2j. Using this approach, the scale index j corresponds to the level of focus from the
which the signal is viewed, which is related to the frequency range involved. Indeed, a lower
j corresponds to the high frequency contents, which can be easily deducted from the support
size.
In the time-frequency plane, the Heisenberg resolution box of Ψj,k(t) is a dilation by 2j

and translation by 2jk of the Heisenberg box of Ψ. This leads to a perfect tiling of the
time-frequency plane illustrated in Fig. 1. The height and width of the Heisenberg boxes
in the time-frequency plane represents the resolution on the frequency and time domains
respectively. Note that there is an intrinsic trade-off between good temporal localization of
high frequency content and good frequency resolution of low frequency content in the signal,
as in opposition to the homogeneous time-frequency resolution of the STFT. This is the central
advantage of the Wavelet Transform when compared to the Short Time Fourier Transform.
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Fig. 1. Inhomogeneous dyadic tilling of the time-frequency plane with wavelet atoms.

From the previous figure, another property of the wavelet atoms Ψj,k(t) becomes evident:
their frequency spectrum has a band-pass nature. Indeed, from Fourier theory, we know that
the dilatation operation in the time domain corresponds to a compression in the frequency
domain and a shift towards the zero frequency. However, this would imply that an infinite
number of scales would be needed to cover the entire frequency spectrum, as can be seen
in Fig. 2. Since this would not be a plausible solution, Mallat (Mallat, 1989) introduced the
scalling function to cover the spectrum not spanned by the wavelet atoms. Indeed, when
analyzing a signal using a combination of a scalling function and wavelets, the scalling
function will represent the signal information in the spectrum covered by all the wavelet
atoms up to a scale j, while the remaining spectrum is analyzed by wavelets. This can be
observed in Fig. 3.
When regarding the schematic representation of the Wavelet Transform in Fig. 3, one can
easily observe that the tilling of the spectrum with scaling and wavelet functions is similar to
consecutive low-pass and band-pass filter operations. Due to its low-pass nature, the scalling
function will allow to extract coefficients that express an approximate version of the signal
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Fig. 2. Wavelet atoms spectrum resulting from dyadic scaling of the mother wavelet Ψ.

Fig. 3. Scaling function (φ) and wavelet atoms (Ψ) spectra. Note how the scaling function (φj)
covers the spectral region spanned by the wavelet atoms until j + 1.

content, whereas the wavelet coefficients correspond to detail information at different levels
of focus. Although this concept, commonly designated as subband coding, is not unique from
the Wavelet Transform, it greatly helps its practical implementation.

2.1.1 Discrete Wavelet Transform

In several practical problems, the signal under analysis is of discrete nature. Thus, there is
the need to discretize the Wavelet Transform in order to use it in sampled discrete signals.
This can be efficiently done using recursive filtering in iterated filter-bank as show in Fig. 4.
Indeed, it can be shown that both scaling and wavelet coeficcients at a given scale can be
calculated from the coefficients at the previous scale using appropriate filters. Furthermore,
half of the samples after applying the filter can be eliminated according to the Nyquist’s rule,
since the signal now has only half of the bandwith.
There is an important relationship between these low and high-pass used recursively in the
iterated filter-bank. Indeed, these filters are not independent from each other and satisfy the
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Fig. 4. Iterated filter-bank for practical implementation of the Discrete Wavelet Transform.

condition of Quadrature Mirror Filters (QMF):

g[L − 1 − n] = (−1)n · h[n], (6)

where g[n] is the high-pass filter, h[n] is the low-pass filter and L is the filter lenght. The
consecutive filter and subsampling operation at each scale can be expressed by:

yapprox = ∑
n

x[k] · h[−n + 2k], (7)

ydetail = ∑
n

x[k] · g[−n + 2k], (8)

Note that, given the finite time resolution of sampled signals, there is an upper limit in the
scale at which the signal is analysed, which is of course dependent on the low-pass filter
length. However, it is common that the DWT analysis is not done until this limit, being
thus the output of the low-pass filtering corresponding to the scalling function coefficients.
However, and for sake of readability, we shall globally denominate the coefficients arising
from the application of these iterated filter-banks simply as DWT coefficients.
As for the continuous case, the original signal can be recovered from its DWT coefficients
applying Inverse Discrete Wavelet Transform (IDWT). In order to reconstruct the signal,
the iterated filter-banks has to be reversed. Thus, at each scale, the DWT coefficients are
upsampled, by simply introducing a zero between every two samples, and then filter the
signal with synthesis filters, closely related with the analysis filters used in the direct DWT.
However, and in order to achieve perfect reconstruction, the analysis and synthesis filters
must fulfill the following conditions (Daubechies & Sweldens, 1998):

h̃(z)h(z−1) + g̃(z)g(z−1) = 2, (9)

h̃(z)h(−z−1) + g̃(z)g(−z−1) = 0, (10)

where g and h are the analysis filters used in the direct DWT and h̃ and g̃ are the synthesis
filters used in the inverse DWT.

161Multiscale Texture Descriptors 
for Automatic Small Bowel Tumors Detection in Capsule Endoscopy

www.intechopen.com



8 Will-be-set-by-IN-TECH

Fig. 5. Iterated filter-bank for 2D Discrete Wavelet Transform in images. Note that A will
keep an approximation of the original image, whereas D will carry detail information.

2.1.2 2D Discrete Wavelet Transform

Given the one-dimensional nature of the signals under analysis in the Wavelet Transform
framework, the direct application of this mathematical tool to higher dimensional signals
is not directly possible. However, a N-D signal can still be analyzed along each of its N
dimensions. Using this reasoning, Mallat also introduced in his seminal paper a very elegant
extension of the concepts of multi-resolution decomposition in order to use the DWT in image
processing problems. The key idea is to expand the application of 1D filterbanks to the 2D
in a straightforward manner, by simply applying the designed QMF filters to the columns
and rows separately. Thus, the DWT applied to an image can be implemented using an
iterated filter-bank, illustrated in Fig. 5, which can be described as consecutive filtering and
subsampling operations:

An = [hl ⋆ [hc ⋆ An−1]↓1,2]↓2,1, (11)

Dn1 = [gl ⋆ [hc ⋆ An−1]↓1,2]↓2,1, (12)

Dn2 = [hl ⋆ [gc ⋆ An−1]↓1,2]↓2,1, (13)

Dn3 = [gl ⋆ [gc ⋆ An−1]↓1,2]↓2,1, (14)

where (i, j) ∈ R
2, ⋆ denotes the convolution operator, ↓ 1, 2 (↓ 2, 1) is the sub-sampling

operation applied to the columns (lines) and A0 is the original image I. The low and high-pass
filter h and g are the QMF filters referred in the previous section. As shown nicely in Fig. 6, An

arises from a low-pass filtering operation, being thus an approximated version of the image at
scale n. On the other hand, Dn1 and Dn2 arise from high-pass filter in a specific direction,
namely horizontal and vertical, while low-pass filtering is applied in the other direction.
Thus, these coefficients held detail information along a specific direction in the image, at
scale n. Lastly, Dn3 arises from high-pass filtering in both horizontal and vertical directions,
possessing thus information regarding details in the diagonal direction. This behaviour can
be easily observed when applying the DWT transform to a square binary image, as shown in
Fig. 6.
From the previous image, another important characteristic of DWT is evident: it provides a
sparse representation of the information present in image. This has been a feature widely used
in compression schemes, being perhaps the JPEG2000 the best know example.

162 Discrete Wavelet Transforms - Biomedical Applications

www.intechopen.com



Multiscale Texture Descriptors for Automatic Small Bowel Tumors Detection in Capsule Endoscopy 9

Fig. 6. Example on the directional sensitivity of the 2D Discrete Wavelet Transform (right:
original image, center: DWT coefficients up to j=4, left: correspondence between the DWT
coefficients and the equations (11))-(14)).

Note that, as for the 1D case, the original image can still be recovered from its DWT
coefficients, trough inverse transform. Therefore, the DWT can be manipulated in order to
enhance features, which can be then synthesized to a new image using IDWT .

2.2 Curvelet transform

The multi-resolution capability of the DWT has been vastly explored in several fields of signal
and image processing, as seen in the last section. The ability of dealing with singularities is
another important advantage of the DWT, since wavelets provide an optimal representation
for one-dimensional piecewise smooth signal (Do & Vetterli, 2005). However, and as seen in
the previous section, the application of DWT to multidimensional data is done in a separate
way along each dimension. As can be easily understood, natural images are not simply stacks
of 1-D piecewise smooth scan-lines, and therefore singularities points are usually located
along smooth curves rather than having an independent location. Indeed, these intermediate
dimensional structures like discontinuities along curves often provided structures of interest
and relevant information within the image. However, and being the DWT directional
sensitivity limited to three directions, there is the need to develop mathematical tools to
overcome this limitation. Thus, the limitations of the DWT triggered the quest for new
concepts capable of overcome these limits. The alternatives proposed until now make use
of a combination between concepts from traditional multi-scale analysis and ideas taken from
geometry.
Given the focus of the present book being the DWT and its applications, the description
of multi-directional and multi-scale transforms will be kept brief and mostly conceptual.
The first attempts to extract multi-scale information at different orientations date from the
beginning of the nineties, with the introduction of steerable pyramids. This was the first
approach to this problem, being a practical, data-friendly strategy to extract information at
different scales and angles. More recently, more advance techniques have been proposed,
such as the Curvelet Transform (Candès & Donoho, 2000) and the Contourlet Transform
(Do & Vetterli, 2005). These new and promising image analysis tools are already starting to
prove its usefulness.
The Continuous Curvelet Transform has been introduced by Candès and Donoho and
has as key concept the anisotropic notion of scale and high directional sensitivity in
multiple directions (Candès & Donoho, 2000). Thus, and contrarily to DWT, the orientational
sensitivity is not limited to the horizontal, vertical and diagonal directions but rather span
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Fig. 7. Tilling of the 2D Fourier polar plane for the Curvelet Transform (a) and the 2D
Discrete Wavelet Transform (b). Note that the radius stands for the frequency, where higher
radius will encode higher frequency information, and the angle for the orientation.

a wider set of orientations, which stems from the anisotropic notion of scale (parabolic
rescaling). In fact, the CCT is based in the tilling of the 2D Fourier space (which has both
scale and orientation information) in different concentric coronae, one of each divided in
a given number of angles, accordingly with a fixed relation shown in Fig. 7. As it can be
observed, there is still a division of the scale information (the center of the 2D Fourier plane
corresponds to low frequencies, while the outer regions to higher frequency components),
being the directional sensitivity dependent on the scale.
Each of these different regions corresponds to a different curvelet. Indeed, these polar wedges
can be defined by the superposition of a radial window and an angular window. To each of
this polar wedges, a tight frequency window or coronae can be associated in the 2D Fourier
space. This frequency window will then correspond to the Fourier transform of a curvelet
function ψj,θ function. In fact, and for a single scale, all ψj,θ may be obtained by rotations and
translations of a mother curvelet ψj. As for the wavelet case, the curvelets coefficients will
then simply arise from the inner product between the image and the rotation/translation of
the mother curvelet.
In the seminal work of Candès and Donoho a discretization scheme was also proposed.
However, its complexity led to further research, from which arose the conceptually simpler,
faster and less redundant second generation of curvelets, proposed in 2006 (Candès et al.,
2006). However, it must be noted that the Curvelet Transform is continuous in its nature and
will always have to be redesigned in order to be applied to discrete image data. Keeping this in
mind, Do and Vetterli have introduced the Contourlet Transform, a discrete mathematical tool
having similar multi-resolution and directional sensitivity characteristics (Do & Vetterli, 2005).
However, the Contourlet Transform is formulated from a double filter bank approach, as
shown in Fig. 8. The first stage corresponds to Laplacian pyramid which separates the image
content into different detail levels. The second step is a a directional filter bank which links
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Fig. 8. Two-stage iterated filter-bank for implementation of Contourlet Transform.

point discontinuities into linear structures. Thus, there is multi-scale and multi-directional
decomposition of the image content.
Although sharing similar fundamental concepts, Curvelet and Contourlet transforms are not
equivalent. Indeed, the theoretical support of Curvelet Transform outranks the Contourlet
Transform, in the sense that the curvelet elements have a sharply defined location in the
frequency plane, materialized as a polar wedge (in contrast to other approaches with discrete
nature). On the practical side, this means that contourlets lack smoothness along the ridge in
the spatial domain and exhibit spurious oscillations which may be the source of numerous
problems, especially if one wants to use these transforms for scientific computing. On
the other hand, the Contourlet Transform is directly designed for discrete applications,
whereas the discretization scheme of the curvelet transform faces some intrinsic challenges
in the sampling of the Fourier plane in the outermost coronae. Furthermore, the Contourlet
Transform presents less redundancy and has a lower computational burden.
As a final note, Curvelet coefficients are, as in the DWT, an accurate representations of the
original image with different detail, given by the different frequency content in each scale,
but also with different detail in multiple directions, overcoming the directional limitations of
the DWT. This might be well suited for the analysis of complex spatio-frequency patterns as
texture.

3. Feature extraction algorithm

3.1 Multiscale image pre-processing

In order to extract different scale information from capsule endoscopic frames, both Discrete
Wavelet Transform and Discrete Curvelet Transform (DCT) were applied to CE data. A two
level DWT and a three scales (including the coarsest) DCT were computed for each color
channel of the CE video frames, leading to coarsest, medium and finest detail coefficients
for both domains. Note that in the coarsest detail level there is no directional information
for both transforms. On the other hand higher detail levels possess directional information.
The DWT has 3 sub-bands of different directional information, while the DCT has a number
of subbands dependent on the parameters used. In the present case, there were 8 and 16
sub-bands of different directional information in the medium and finest detail scales of the
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Fig. 9. Example of a capsule endoscopic frame (center) and its DWT coefficients (left) and
DCT coefficients (right). Note that the number of coefficients in the DCT image is not
equivalent to the other two images.

DCT respectively. Nonetheless, a note should be made regarding the number of coefficients
arising from these two transforms. While the DWT leads to a compact representation, with
a number of coefficients equal to the number of pixels in the image under analysis, the DCT
results in a higher number of coefficients. For illustrative purposes, the DWT and the DCT
coefficients of a CE frame are show in Fig.9. Note that the DCT is far less compact.
Color transformations of the original image I result in three decomposed color channels:

I i, i = 1, 2, 3, (15)

where i stands for the color channel.
A two level DWT is applied to each color channel, I i, as shown in Fig. 9. This transformation
results in a new representation of the original image by a low resolution image and the
detail images, possessing higher frequency content in three orientations. Therefore the new
representation is defined as:

γi
DWT = DWT(I i) = {Ai

n, Di
s,d}, n=2 , s=1, 2 , d=1, 2, 3 (16)

where d stands for the wavelet directional sub-band, s for scale and n is the decomposition
level.
A three scale DCT is applied to each color channel, I i, as shown in Fig. 9. This transformation
results in a new representation of the original image by a low resolution image and the detail
images, possessing higher frequency content in multiple orientations. Therefore the new
representation is defined as:

γi
DCT = DCT(I i) = {Ai

n, Di
s,d}, n = 3 , s=1, 2 , d=1, · · · , 8 ∨ d=1, · · · , 16 (17)

where d stands for the curvelet directional sub-band, s for scale and n is the decomposition
level. Note that, contrarily to DWT, the number of directional sub-bands at each scale depends
on the scale itself. Thus, for the first scale there are 16 directions, while for the second there
are 8 directions.
After the application of DWT and DCT transform to the image data, its content is divided
in different multiscale and multi-directional information. It should be stressed that the
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textural information is usually better presented in the middle scale coefficients channels.
Thus, mid scale coefficients should be considered in theory. However, the relatively low
image dimensions (256 × 256) limit the representation of the details, becoming the first
level more adequate, than previously expected, for texture representation Barbosa et al.
(2008). Nevertheless an image resolution normalization might be required for different image
resolutions.

3.2 Statistical texture features

There are several statistical features that can be extracted from the wavelet and curvelet
domains as texture descriptors, being the most common the mean, the standard deviation, the
energy and the entropy of each DWT/DCT sub-band (µ, σ, E, Ent) (Dettori & Semler, 2007).
Nonetheless, in authors’ previous work it was observed that the introduction of energy and
entropy in the feature set did not significantly contributed to an increase in the classification
performance (Barbosa, Correia, Ramos & Lima, 2009; Barbosa, Ramos, Correia & Lima, 2009).
Thus, only the mean and standard deviation in each DWT/DCT sub-band were computed.
The proposed texture descriptors can be calculated as:

µ = E{P(i, j)} =
1

N ∑
i

∑
j

P(i, j) (18)

σ =
√

E{(P(i, j)− µ)2} =

√

1

N ∑
i

∑
j

(P(i, j)− µ)2 (19)

where P(i, j) corresponds to the pixel value at position (i, j). Note that capsule endoscopic
video frames are usually square images of 256x256 but the information is restricted to a
circular area in the middle of the image, as it is observable in Fig.9. Therefore, it is vital
to only consider the pixels inside this area, since the information regarding to the CE exam
is contained in this part. In order to cope with this constraint, the summation limits of the
equations (18)-(19) were set in order to correspond to this area.
In the present work, it was decided to start the comparison between the different DWT and
DCT detail levels only with the mean and variance as statistical descriptors, in order to better
compare the two different multi-resolution domains. Since the low frequency components
of the images do not contain major texture information, the most important scales in the
DWT and DCT will be those in which are present medium and high frequency, texture
encoding, information. Furthermore, the coarsest scale coefficients of the DCT and DWT
are not directional, and consequently do not possess directional sensitivity. Therefore, each
of the afore mentioned statistical features is computed at each sub-band of the DWT/DCT
coefficients, for all the color channels, at medium and finest detail level.
The statistical dependence of textural descriptors taken in different color channels is useful
to distinguish normal from abnormal texture patterns, as stated in authors’ previous
work. Furthermore, the same finding was previously reported in (Karkanis et al., 2003), for
colonoscopy videos. Therefore, the covariance of textural descriptors in the different color
channels will be used as a classification feature. Note that in the present framework, the
high directional sensitivity of the DCT will be likely to lead to more robust descriptors than
a similar scheme used in textural descriptors taken from DWT coefficients. This was recently
suggested by the authors and shown in (Barbosa, Ramos, Correia & Lima, 2009). In the
present chapter, this methodology is followed and the scope of the comparison of this recently
proposed algorithm and other existing features is expanded. In the Color Curvelet Covariance
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framework the covariance of textural descriptors in the different color channels is used as a
classification feature. The Color Wavelet/Curvelet Covariance of a texture descriptor can be
calculated as:

C∗C(a, b, s, m) = ∑
α

((Fm(a, s, α)− E{Fm(a, s, α)})× (Fm(b, s, α)− E{Fm(b, s, α)})) (20)

where a and b represent the different color channels in the covariance calculation, Fm is the
statistic textural descriptor, α is the considered angle of the DWT/DCT coefficients, s the
considered detail scale and E{Fm(a, s, α)} the average of the statistical textural descriptor Fm

over the different angles α, in the color channel a. As it is clear from Fig.9, the Color Wavelet
Covariance features will arise from a covariance of only three different angles, while the Color
Curvelet Covariance features will take more angles into account in this computation. One
should note that if a = b, the C∗C features will enconde the angular variance of the textural
descriptor Fm. On the other hand, for a 	= b, the C∗C features will give a measure of the
similarity of the angular covariation of Fm between two color channels.
The proposed C∗C features allow to capture additional information regarding the texture
patterns and can be regarded as second order statistical modelling of the texture descriptors
Fm. However, the texture descriptors Fm already possess information regarding the existing
textures in the image. Thus, it is proposed to add the average value E{Fm} to the feature set.
It should be referred that E{Fm} corresponds to the mathematical expectancy for the value
of Fm and therefore does not possess as much information as the sequence of the different Fm

values taken from the DCT/DWT coefficients at different angles. Nonetheless, the inclusion of
the entire Fm feature set helds dimensionality problems, which can compromise the training
and consequently the performance of the classifier and the speed of the classification step.
Furthermore, if the same texture pattern was rotated, the sequence of the different Fm would
be affected, which could decrease the classification performance.

4. Implementation issues

4.1 General considerations

A 2.8 GHz Intel i7 dual core processor, with 4 GB of RAM, was used with MATLAB to run
the proposed algorithm. The average processing time is between 0.2s (DWT) and 0.75s (DCT)
for each CE frame. Note however that the implementation of the proposed algorithm was not
optimized for speed, so the processing time can still be improved.
The DWT calculation was done using the MATLAB Toolbox Wavelets (made available by G.
Peyré at http://www.ceremade.dauphine.fr/~peyre/matlab/wavelets/content.html). The
basis used was the standard Daubechies wavelet with 4 vanishing moments.
The DCT calculation was done with the routines implemented in the toolbox CurveLab
(available for research purposes at www.curvelet.org). The method chosen for the
discretization of the Curvelet Transform was the wrapping algorithm, for the reasons referred
in (Candès et al., 2006).
For both DWT and DCT, the reader is highly advised to explore the tutorial and demos
offered in the used toolboxes in order to better understand the underlying principles of these
mathematical tools.
The selected color space was the HSV, since it is more similar to the physiological perception
of human eye (Li & Meng, 2009), and therefore more adequate than the standard RGB color
space.
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4.2 Feature sets

In order to assess the impact of the choice of texture descriptors, several feature sets were
generated for the the analyzed data. The feature set A corresponds to a feature set comprising
the mean and standard deviation of each DWT/DCT sub-band. A more advanced feature
set is also formulated by using the covariance of the textural descriptors, as well as their
average value for all the analyzed sub-bands. The covariance+average approach is applied to
the texture descriptors mean and standard deviation and results in the feature set B. These
different feature sets were computed for both the medium and finest detail scales of the
DWT/DCT transforms, since it is known from before hand that low detail coefficients do
not possess relevant texture information.

4.3 Classification scheme

The features were imported into the open source machine learning package WEKA (available
at http://www.cs.waikato.ac.nz/ml/weka/). A stratified 10-fold cross-validation procedure
was chosen to train a standard multilayer perceptron neural network. The default parameters
were kept in the classifier options. The choice of a simple classification scheme, with default
parameters, was done in order to make the results more representative of the choice of the
features. The 10-fold cross-validation method is a standard procedure to validate machine
learning classification outputs and has been found to provide an adequate and accurate
estimate of the true error rate (Alpaydin, 2004). The 10-fold cross-validation algorithm
splits the data into 10 partitions, where the proportion of both normal and abnormal frames
in each partitions is similar to the entire dataset. The training and classification process
is then repeated 10 times, where 9 partitions are used to train and 1 partition is used to
assess the classification process. This way, each frame will be used exactly once as test
data, allowing to efficiently use the available dataset. In order to have an accurate error
estimate, the cross-validation process was repeated 10 times, being this a standard procedure
(Witten & Frank, 2005). Note that the splitting of the training and testing datasets in the 10
repetitions of the 10-fold stratified cross-validation were similar for the different feature sets,
allowing thus a paired comparison.

4.4 Evaluation of classification performance

The ultimate goal of the proposed method is to provide a binary classification of whether a
given CE frame presents patterns of abnormal tissue. Thus, it is vital to understand how such
classification performance is assessed. Confusion matrices offer a simple yet effective way of
visualizing the classification errors:

A false negative, FN corresponds to a CE frame presenting tumor pathology which is
misclassified as normal, while a false positive, FP, corresponds to a normal frame wrongly
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considered as abnormal. While the overall accuracy can be defined as:

Accuracy =
TP + TF

TP + TF + FP + FN
, (21)

it is more frequent to report the performance of a binary classification test using sensitivity
and specificity:

Sensitivity =
TP

TP + FN
, (22)

Speci f icity =
TN

TN + FP
. (23)

There is an intrinsic trade-off between sensitivity and specificity of a classifier, which can
be adapted to each situation in order to penalyze a specific type of error. This can be
nicely visulized through Receiver Operating Characteristic (ROC) curves. Although no
single number is able to capture this trade-off, being thus such 2D representation needed,
the area under the ROC curve is usually used as a measure of the classifier performance
(Witten & Frank, 2005).
Lastly, it was decided to include the Cohen’s kappa coefficient, k, in the set of classification
evaluation measures, since it is a statistical measure of agreement between the classifier output
and theground truth. Furthermore, k takes into account the agreement that may occur simply
by chance, being thus a better performance metric for the classification performance. It can be
simply calculated as:

K =
P(a)− P(e)

1 − P(e)
, (24)

where P(a) is the relative observed agreement and P(e) the probability of agreement due
to random chance. Note that relative agreement is not more than simply the classification
accuracy.
In order to assess the statistical significance of differences in the classification, a standard
paired t-test was employed.

5. Experiments and results

5.1 Dataset

The experimental dataset was constructed with frames from capsule endoscopic video
segments of different patients’ exams, taken at the Hospital dos Capuchos in Lisbon by
Doctor Jaime Ramos. The final dataset consisted in 400 normal frames and 196 abnormal
frames. Examples of the dataset frames can be observed in the Fig.10. These frames have been
manually classified by the expert physician.

5.2 Influence of the scale on the classification Performance

From authors’ previous work, it is highly expectable that the most relevant information for
classification purposes is encoded as high frequency content in the scale correspondent to
the highest detail level. Table 1 shows that the most relevant information for classification
purposes is encoded as high frequency content in both DWT and DCT finest detail coefficients.
Note that M and F stands for medium and finest detail scales. For comparison purposes,
the feature sets A was chosen. The values in Table 1 correspond to the mean and standard
deviation for a ten-fold stratified cross-validation scheme repeated 10 times.
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Fig. 10. Examples of Wireless Capsule Endoscopy video frames (top: normal frames, bottom:
frames containing tumoral tissue).

Transform DWT DCT
Feature Set A A

Detail Level M F M F

Features (#) 18 18 48 96
Accuracy (%) 77.15 ± 1.56 96.34 ± 0.42 87.44 ± 0.96 95.54 ± 0.31

Specificity (%) 84.78 ± 3.23 97.34 ± 0.29 90.61 ± 2.29 96.76 ± 0.37
Sensitivity (%) 61.64 ± 4.60 94.29 ± 1.10 81.01 ± 3.39 93.13 ± 0.62

ROC Area 0.834 ± 0.012 0.990 ± 0.003 0.936 ± 0.008 0.989 ± 0.002
Cohen’s K 0.473 ± 0.032 0.917 ± 0.010 0.716 ± 0.020 0.899 ± 0.007

Table 1. Influence of the Detail Level in the Classification Performance

From the results in the previous table, there is no clear advantage arising from the use of DCT,
although better results are observed for the medium detail coefficients. However, the large
difference between the number of features extracted does not allow a strong conclusion in
this comparison, since it is known that large feature vectors pose difficulties to the training
algorithm. Thus, the key observation from the results presented in Table 1 is that for both
DWT and DCT domains, the features extracted from the sub-band corresponding to the higher
detail yield indeed a better classification performance.
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Transform (Detail Level) DWT (F) DCT (F)
Feature Set A B A B

Features (#) 18 18 96 18
Accuracy (%) 96.34 ± 0.42 96.30 ± 0.45 95.54 ± 0.31 97.65 ± 0.55

Specificity (%) 97.34 ± 0.29 97.45 ± 0.65 96.76 ± 0.37 98.47 ± 0.58
Sensitivity (%) 94.29 ± 1.10 94.04 ± 1.40 93.13 ± 0.62 96.0 ± 0.61

ROC Area 0.990 ± 0.003 0.990 ± 0.003 0.989 ± 0.002 0.994 ± 0.003
Cohen’s K 0.917 ± 0.010 0.916 ± 0.010 0.899 ± 0.007 0.947 ± 0.012

Table 2. Color Covariance Texture Descriptors Classification Performance

5.3 Color covariance texture descriptors

In the present section, the added value for the color covariance texture descriptors is shown.
Given the results presented in the previous section, this approach was applied only to the
finest detail coefficients of both DWT and DCT transforms, as these possess the most relevant
texture information for classification purposes. The results are shown in the Table 2. The
values correspond to a ten-fold stratified cross-validation scheme repeated 10 times.
Using the Color Covariance approach, a visible increase in the classification performance of
the features extracted from the DCT domain was observed. Nonetheless, in the performance
of DWT features there were no significant changes. These results support the hypothesis
that C∗C features can extract complex texture patterns between color channels, leading
to good texture classificantion performance. The Color Curvelet Covariance approach is
able to significantly reduce the feature set dimensionality, while improving its classification
performance. These results also point that features extracted from the DCT domain possess
more relevant information for classification purposes when compared to the DWT. This can
be intrinsically linked with the higher directional sensitivity of the DCT, which helps to better
handle complex two-dimensional patterns such as texture.

5.4 Statistical analysis of the classification performance

Given the results shown in subsection 5.2, the statistical analysis was limited to the features
extracted from the highes detail coefficients of both DWT and DCT domains. The significance
of the statistical differences found between the different feature sets extracted from both
domains can be observed in the Table 3, for the metrics used to evaluate the classification
performance. For sake of clarity, NS stands for not statistically significantly different, † for
p < 0.05 and ‡ for p < 0.001. Note also that DWT(F, A) stands for the feature set A extracted
from the finest detail level of the DWT transform, while DCT(F, B) corresponds to the feature
set B extracted from the DCT coefficients corresponding to the finest detail level.
From these results, some important highlights appear, confirming statistically some previous
observations. First and foremost, the proposed Color Curvelet Covariance approach presents
significantly higher classification performance for all the metrics used to compare the different
methods. Second, the C∗C approach in the DWT domain does not lead to a significant
difference in the classification performance. Last, the feature vector A extracted from the DCT
scale of finest details helds a much higher dimensionality than the remaining ones. Thus, no
strong conclusions can be taken from the statistical comparison with the remaining feature
sets, since the high dimensionality of this feature set may pose a problem to the performance
of the classifier.
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Accuracy

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS ‡ ‡
DWT(F,B) ‡ ‡
DCT(F,A) ‡
DCT(F,B)

Specificity

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

Sensitivity

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

ROC Area

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

K

Transform(Detail Level,Feature Set) DWT(F,A) DWT(F,B) DCT(F,A) DCT(F,B)

DWT(F,A) NS † ‡
DWT(F,B) † ‡
DCT(F,A) ‡
DCT(F,B)

Table 3. Statistical Significance of the Differences for the Classification Accuracy
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6. Conclusion and future work

The more significant information content for classification purposes is encoded as high
frequency information. Indeed, texture corresponds to medium/high frequency image
content. However, and contrarily to what has been found in (Karkanis et al., 2003) for
colonoscopy videos, the most relevant sub-bands for texture classification correspond to the
highest detail levels, for both DWT and DCT domains.
The proposed color covariance approach achieves an optimal balance between feature vector
size and classification performance, presenting promising results that support the feasibility
of the proposed method. The Color Curvelet Covariance method yielded the higher
classification accuracy, achieving 97.65 ± 0.55% of correctly classified frames.
Future work will include the extraction of different texture descriptors from the DCT and the
use of different classifiers. The enlargement of the available dataset will be equally pursued,
in order to further validate the observed results over a wider range of images and pathologies.
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