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1. Introduction  

Epilepsy is an episodic disease; hence the aim of the therapy is to minimize frequency of 
epileptic seizures and to improve the quality of patients’ life with minimal adverse effects of 
antiepileptic drugs (AEDs) (Gidal & Garnett, 2005). Therapeutic Drug Monitoring (TDM) is 
a concept of individualisation of therapy based on drug concentration data, and application 
of pharmacokinetic (PK) and pharmacodynamic (PD) principles. It is not only a process of 
measuring drug concentration levels in biological fluids, but putting them into service of an 
optimized individual pharmacotherapy. The aim of TDM is to accomplish the optimal 
therapeutic drug response with minimal adverse drug effects e.g. better pharmaceutical care 
of patients (Bauer, 2008; Pokrajac, 2008). 
Due to marked inter- and intraindividual PK characteristics of AEDs, TDM is indicated since 
the beginning of 1960s during the therapy of phenitoin (Buchthal et al., 1960). Shortly 
afterwards, it was recommended to monitor other AEDs, and correlate their concentrations 
with therapeutic effects (Kutt & Penry, 1974; Patsalos et al., 2008). Since PK and PD of AEDs 
demonstrate large interindividual variability, which is sometimes hard to identify, TDM of 
AEDs is incorporated into the therapy of epilepsy (Bauer, 2008; Commission on 
Antiepileptic Drugs, 1993; Dhillon & Kostrzewski, 2006). AEDs are being monitored also 
nowadays, but much of the available TDM data is insufficient due to inappropriate 
indication for performing the test, timing of samples collection, length of unchanged dosing 
regimen before measuring drug concentration, and unreliable documentation. Hence, TDM 
should be performed only if there is a clear indication: after initiation of treatment or after 
dose adjustment when the clinician decides to aim at preselected target concentration for 
that patient, to establish individual therapeutic range after achievement of desired clinical 
response, when there is suspicion of signs or symptoms of concentration-related toxicity, 
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when seizures persist despite apparently adequate dosage, if there is an alteration of PK 
(e.g. combination therapy, impairment of liver and/or renal function, paediatric population 
of patients, pregnancy), if there is change in drug formulation/switching to generic 
formulations, if there is unexpected change in clinical response, and if non-compliance is 
suspected (Patsalos et al., 2008). Throughout TDM, it is crucial to be aware of the dosing 
regimen, the duration of therapy, sample timing, as well as to keep high-quality recordings 
in patients’ charts. In routine TDM of AEDs, it is recommended to obtain samples in steady-
state corresponding to expected peak (maximum) and trough (minimum) concentration. 
Information from TDM must be interpreted in an adequate way since they could be used in 
rational pharmacotherapy of epilepsy (Bauer, 2008; Patsalos et al., 2008). 
Owing to the fact that different factors affect individual PK parameters of AEDs, and 
consequently also the dosing regimen and clinical effects of a drug, identification of sources 
of intra- and interindividual variability among patients is essential for optimal drug therapy. 
Population modelling is a powerful tool to study whether demographic parameters (e.g. 
age, weight), pathophysiological conditions (e.g. other health problems, impairment of liver 
or/and renal function, concomitant therapy), and other sources of variability influence the 
dose-concentration relationship, and if so, to what extent. It is usually emphasized that 
population analysis is the analysis of variability, and it is more precise in determination of 
variability of PK parameters in the specific population over traditional PK analysis (Food 
and Drug Administration [FDA], 1999; Sheiner et al., 1977). Since many factors contribute to 
PK variability of AEDs, due to features of TDM data (1-2 plasma samples per patient), and 
characteristics of population analysis, population approach has irreplaceable role in PK 
analysis of TDM data. In this chapter, it the importance and advantages of population PK 
analysis in routine TDM of AEDs will be emphasized, the protocol of population studies 
explained, as well as the process of collecting and manipulating data, and finally the 
importance and application of the final population model in the clinical practice will be 
thoroughly discussed.  

2. Traditional versus population pharmacokinetic approach 

Traditional (classical) PK analysis refers to two-stage analysis using compartmental or 
noncompartmental PK approach. An accurate estimation of PK parameters requires 
frequent data sampling and concentration measurement in individual patients. In contrast, 
the population approach is based on one or more samples from an individual patient which 
are evaluated using model-dependent (compartmental) data analysis which, additionally, 
takes into account drug variability using specific statistical analysis. Hence, there are 
marked differences between these two approaches (Table 1). The subjects of traditional PK 
analysis are usually healthy volunteers or highly selected patients, whom drugs are being 
given by relatively simple dosing regimens (e.g. single bolus dose or single infusion). 
Protocol of the study with restrictive inclusion/exclusion criteria requires many samples per 
patient (sometimes as much as 10) – rich/dense data, which allows obtaining the individual 
PK profile of the drug. Sampling schedule is usually designed to obtain samples in short 
intervals and is the same for each individual in the study. Interindividual variability in PK is 
minimized in this way, and traditional controlled PK study focuses on the effect of a single 
factor on PK of a drug (FDA, 1999). In the first step of a two-stage approach, individual PK 
parameters are estimated through non-linear regression (e.g. one-compartment model) 
using individual dense concentration-time data. The individual values of PK parameters are 
used for the second stage, by calculating descriptive statistics typically average parameters 
values, standard deviation, coefficient of variation, or variance (Ette & Williams, 2004b). 
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Moreover, the dependencies between PK parameters and factor(s) that are not controlled by 
study design are calculated using classical statistic approaches such as linear stepwise 
regression, covariance analysis (Sun et al., 1999).  
 

CHARACTERISTICS 
TRADITIONAL  
(TWO-STAGE) ANALYSIS 

POPULATION (NONLINEAR 
MIXED EFFECTS) ANALYSIS 

Nature of the analysis 

Pharmacokinetic model is fit 
to the data to each individual, 
whereas parameters are 
summarized 

Pharmacokinetic model is fit to 
the data from all individuals, 
whereas based on empirical 
Bayes approach individual 
parameters are calculated 

Experimental design 
Stringent/controlled design is 
necessary 

Stringent or non-stringent 
study design 

Study population 
Healthy volunteers or highly 
selected patients Target patient population 

Study size Small Large 

Sampling data 
Frequent sampling (usually 1-
6 per patient – rich data) 

Rich or sparse (1-2 samples) 
data within individuals with 
possibility of uneven number 
of data from different 
individuals 

Interindividual variability 
Minimized due to restrictive 
inclusion/exclusion criteria 

Possible to identify sources of 
interindividual variability 

Table 1. Characteristics of traditional and population pharmacokinetic analysis of data 

On the other hand, in the population PK analysis individual patient is not the centre of the 
study; hence the aim is to develop population profile of a drug, whereas based on empirical 
Bayes approach individual parameters values are calculated. Study design allows large 
heterogeneous (e.g. by age, body weight, etc.) study population of patients from whom 
small number of samples – sparse/poor data are available. Sparse sampling in population 
PK analysis enables obtaining data from patient populations who are difficult to study due 
to ethical barriers, such as neonates, severely ill patients (Sheiner et al., 1977). 
The protocol of the study is unbalanced, and it gives the opportunity to analyze data from 
individuals which differ in the number of samples per patient (FDA, 1999). Great advantage of 
population studies is that patients with insufficient data can be included in the study, whereas 
these subjects are usually excluded in traditional PK studies. Usual solutions to this problem 
include case imputation sample mean, median or estimation via linear regression values (e.g. 
total body weight can be predicted based on patients’ age and gender) (Bonate, 2005). 
Concentrations bellow the limit of quantification (LOQ) of the assay are handled similarly. The 
usual strategy is not to exclude these data but to give them the value of LOQ/2. In order not to 
have doubts if the low concentrations is indication of noncompliance, the recommendation is 
to record the concentration even if it is below LOQ. This matter is a subject of much discussion, 
and there is no consensus on handling below LOQ data (Barrett, 2002; European Medicines 
Agency [EMEA], 2007). These alternative ways of treating problematic data give the possibility 
to maximally exploit the data, which is not possible in the traditional analysis. The milestone 
of population approach is the possibility to determine sources of variability with are usually 
consequence of a complex interaction of more factors (Vučićević et al., 2005; Sheiner et al., 
1977). It is usually regarded as an analysis which is a study of drug variability, not only from a 
qualitative but also from quantitative aspect.  
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The population approach to PK analysis of data was originally proposed for application to 
routinely collected clinical – TDM data (Sheiner et al., 1977), i.e. sparse and unbalanced 
observations from a large group of heterogeneous individuals. TDM data are heterogeneous 
(according to patients’ characteristics, therapy, dosing regimens), but they are representative 
of the actual population of patients taking the drug of interest since they are gathered 
directly from such patients, and from the ethical perspective there is a justifiable purpose of 
patients’ care. At the same time, heterogeneous data are the source of the information of 
drug behaviour (Barrett, 2002; Sheiner et al., 1977), and discovery of unexpected but 
important influences of various factors on PK is possible. However, in order to evaluate the 
effect of one factor on PK parameter, number of covariates in the studied group must be 
sufficient, so the results of the study would lead us to significant conclusions about the 
effect of the specific covariate on the PK parameter. In other words, if we want to estimate 
the effect of valproic acid (VPA) co-therapy on carbamazepine (CBZ) PK, the results of our 
study suggest that at least 10-20% of patients co-treated with VPA are needed (Vučićević et 
al., 2007, 2009). This is necessary in order to obtain a sufficient level of certainty in the results 
of the analysis. Thus, an analysis of routine TDM data possesses several advantages in terms 
of data availability, representativeness of patients, and richness of the data set. Therefore, it 
is not overestimated to claim that routine TDM data on AED is a very attractive and often 
unused source of drug information with a strong potential. The advantage is mainly in the 
quantity of samples, and the fact that they represent the population of all patients who are 
treated with that drug in a certain setting. Moreover, the study protocol is not as strict as in 
traditional PK studies and therefore much more viable in the daily routine, from the 
perspective of ethics (blood sampling is an invasive procedure which is not justified only for 
research purposes) and time management. Owing to the characteristics of population 
approach, and characteristics of routine data, population modelling serves as a logical 
extension of TDM of AEDs with possibility of identification and quantification of factors 
that contribute to PK variability (Sheiner et al., 1977). 

3. Methodological aspects of population pharmacokinetic analysis 

Term population analysis is used as a synonym for nonlinear mixed effects modelling. The 
same phrase, abbreviated, is used for the name of the widely used population 
pharmacokinetic analysis software – NONMEM® (ICON Developments, USA). In this 
section main methodological aspects will be addressed.   

3.1 Nonlinear mixed effects models 

The basis of nonlinear mixed effects modelling is one stage approach, which means that all 
parameters are being estimated simultaneously. The purpose of this analysis is to estimate: 
population and individual PK parameters, interindividual and residual variability, and to 
identify and investigate sources of variability that influence PK of a drug. All aspects are of 
great interests since they are required for the optimal dosage regimen design for individual 
patients, and they provide quantitative PK characteristics of a drug. Potential factors 
affecting PK behaviour of a drug (covariates) are: 
- Demographic such as age, gender, body weight, race. 
- Genetic due to polymorphism of cytochrome P (CYP) 450 isoenzymes (CYP2D6, 

CYP2C9, CYP2C19, etc.) involved in the metabolism of AEDs. 
- Physiological and pathophysiological including pregnancy, gastrointestinal diseases, 

decreased function of elimination organs (liver, kidneys), acute and chronic diseases. 
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- Concomitant therapy as a result of drug-drug interactions, since two or more AEDs can 
be included in the therapy of epilepsy. 

- Enviromental factors like smoking, alcohol intake or diets. 
- Other factors such as drug formulation, biological rhythms, compliance (Ette & 

Williams, 2004a; Sun et al., 1999).  
The main components of population PK model are given on Fig.1. 
 

 
Fig. 1. Components of a nonlinear mixed effect (population) model  

Term “mixed” stands for combination of fixed and random effects. Parameters of fixed effects 
represent population PK parameter values which are actually values of central tendency or 
typical values of parameters. These parameters are components of a structural PK model 
which refers to compartmental PK model. For example, intravenously given drug on a Fig. 1 
follows one-compartment model with first-order elimination, and structural model is: 
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Vd
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d
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C e
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⋅
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Dependent variable is observed drug concentration (Cp), whereas clearance (CL) and 
volume of distribution (Vd) are fixed parameters since they quantitatively describe the effect 
of a given dose (D) in specific time (t) on a drug level. Fixed effects parameters have 
symbols theta (θ). Population (typical) values of PK parameters (TV) can be explained in 
terms of covariates. As presented on Fig.2, patients’ CL is defined in terms of a linear 
function of body weight (WT), given by: 

 1 2TVCL = + WTθ θ ⋅  (2) 

Parameters of random effects include: interindividual (between subject) variability which is 
partially but not completely possible to describe using available covariates and residual 
variability consisting of intraindividual (within subject) variability, measurement error, 
model misspecification, etc. 
Since each individual in the population has specific value of a PK parameter which differs to 
some extent from the population typical value, it is described in terms of interindividual 
unexplained variability. This variability is described using parameter eta (η), and a variety of 
error models can be used. As given in Fig. 2, all etas in the studied population for a specific 
PK parameter (e.g. ηCL) are assumed to be normally distributed with a mean value of zero, 
and variance of ω2CL. 
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Residual error refers to the deviation of measured (observed) drug concentration from the 
predicted level in a specific time using structural PK model. This parameter uses the symbol 
epsilon (ε). All parameter values for residual variability are assumed to be normally 
distributed with a variance of σ2 (Fig. 2).  
Covariates, as previously mentioned, represent any variable/factor specific for a patient 
which can influence PK of a drug. Covariate submodels are integrated part of a structural 
part of a population model (Fig.1). A relationship between PK parameters and covariates 
depends on its nature, and range values (Jonsson & Karlsson, 1998; Mentre & Mallet, 1994). 
Therefore, there are: 
- Categorical covariates that are qualitative, and they can be dichotomous with two 

values (e.g. gender: male or female; mono- or combination therapy) or polychotomous 
with more than two values (e.g. patients’ race: white, black or yellow). 

- Continuous covariates which have defined scale of its values and they are quantitative, 
such as body weight, age, creatinine clearance etc. Relationship between this covariate 
and PK parameter can be linear or nonlinear. 

 

 
Fig. 2. Schema of nonlinear mixed effect model. Interindividual variability (left) and residual 
variability (right). Population (○) and individual (●) pharmacokinetic parameter/predicted 
and observed concentration (□) (Beal & Sheiner, 1989-2006)  

Selection of an adequate model describing effect of a factor on PK parameter depends on 
preliminary modelling results. These results include individual values of PK parameters 
based on a distribution of base model parameters (empirical Bayes estimates), and its 
graphical dependences of covariates. Details of a modelling process will be explained in the 
following section.  

3.2 Population model building and validation techniques 
Since the aim of the population analysis is to describe interindividual variability in PK 
parameters, it can be done through the most commonly used stepwise covariates model 
building method, also known as forward inclusion-backward exclusion method. After 
defining the structural and statistical models (which form base model), influence of each 
covariate on PK parameter is examined (Bonate, 2005; Jonsson & Karlsson, 1998).  
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Software NONMEM® fits data to defined structural and error models according to 
principles based on maximum likelihood which is expressed via objective function value 
(OFV). Software performs iterative search of a parameters values that maximizes the 
probability of input data leading to minimization of OFV. OFV is proportional to double 
negative logarithm of data probability. Logarithm of data probability follows chi-squared 
(χ2) distribution (Beal & Sheiner, 1989-2006).  
Apart from finding important covariates, the functional relationship also has to be specified. 
There are several suggestions on covariate model building (Bonate, 2005; Jonsson & 
Karlsson, 1998; EMEA, 2007), but no consensus has been reached. Mainly graphics which 
demonstrate correlation of individual empirical Bayes parameter estimates of the base 
model versus selected covariates are used for identification of candidate covariates.  
Each covariate was added in the base model, and examined for its effect on PK parameter by 
evaluating the drop in OFV. Each covariate was ranked against the base model by minimum 
decrease in OFV of 3.84 (χ2 distribution, p<0.05 for 1 degree of freedom), and only significant 
covariates were introduced into the full model. The final model was determined by removing 
the covariates one by one from the full model, and a difference in the OFV more than 6.63 (χ2 
distribution, p<0.01 for 1 degree of freedom) was required to maintain covariate in the model 
(Beal, 2002; Beal & Sheiner, 1989-2006). Maintaining/excluding one covariate in/from the 
model in based on the combination of several considerations: statistical, graphical, and clinical 
relevance of the obtained relationship (Wählby et al., 2001). Additional indicators for the 
retention of a covariate in the model are decrease in interindividual and residual variability, 
minimal correlation between parameters, improvement in the precision of the parameter 
estimates, small standard errors of parameter estimates, gradients for each estimated 
parameter in final iteration step should be between 10-3 and 102. In each model-building step 
improvement of the model is assessed by the goodness-of-fit plots, including the agreement 
between the observed and predicted drug concentrations, reduction in the range of weighted 
residuals, and uniformity of the distribution of weighted residuals when plotted against 
predicted concentrations (Barrett, 2002; Beal & Sheiner, 1989-2006).  
One of the most demanding tasks is the demonstration whether the final population PK model 
accurately represent the studied population. Depending on the objective of the analysis, the 
need for model validation may vary. There are generally two types of validation: 
- Internal which is performed in the group of patients used for model development. 

Methods commonly used are data splitting, bootstrap, cross-validation. 
- External which includes a separate, independent group of patients not included in 

model development (Bonate, 2006).  
However, if developed population PK model is going to be used for dosage 
recommendations the predictive performance needs to be tested (Sun et al., 1999). To 
evaluate the performance of the final model in predicting drug concentrations, a second, 
validation group of patients is studied. Hence, external validation is performed. The 
measured drug concentrations in this group must be compared with the corresponding 
predicted values obtained using the final population PK model, patients’ covariates and 
dosing information. Predictive performance of the model is assessed by calculating the 
mean error and its 95% confidence interval (CI) as an estimate of bias, and the root mean 
squared prediction error and 95% CI as an estimate of precision. CIs including the value of 
zero were considered unbiased (Sheiner & Beal, 1981; Wu, 1995).  

3.3 Population pharmacokinetic modelling of routine therapeutic drug monitoring data 
As previously stated, routine TDM data are particularly attractive and available source of 
information since they represent PK behaviour of a drug in the group of patients receiving 
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the drug for the therapeutic purposes. From economical perspective, an analysis of routine 
data is reasonable, since it reduces experimental costs (Sheiner et al., 1977). Nevertheless, the 
drug dosing history is often poorly recorded and the level of noncompliance is 
underestimated, which leads to biased estimation of population model parameters.  
During TDM of AEDs, sampling enables mainly the collection of trough and to less extent 
peak drug concentrations. Commonly, from each patient a single blood sample is obtained 
at or close to trough concentration, shortly before the next dose. The relationship of patients’ 
characteristics and minimum drug level can be explored by simple statistical analysis, but 
calculation of PK parameters seems almost impossible using traditional PK approach. 
Whereas, with population PK analysis it is possible to estimate PK parameters and two 
levels of variability (Sheiner et al., 1977).  
However, the nature of the data influences the parameters that can be estimated in the 
analysis (Sun et al., 1999). In other words, a certain PK parameter cannot be calculated with 
any degree of a precision unless data used for analysis reflect the parameter. As reported by 
Sheiner & Beal, 1983, the use of mostly trough samples in the sampling design results in a 
good precision of the CL and its variability, and poorer precision of Vd and its variability. 
For that reason Vd is usually not estimated in population analysis of TDM data. Moreover, 
insufficient sampling during the absorption phase of per os given drugs, does not allow 
estimation of the parameters of the absorption process (rate constant of absorption); hence 
its values should be fixed to the literature value (Booth & Gobburu, 2003; Jiao et al., 2004; 
Wade et al., 1993). It has been shown (Wade et al., 1993) when no data were available from 
the absorption phase, misspecification of rate constant of absorption had no effect on other 
estimated parameters of the model. When doing this, a sensitivity analysis can be performed 
in order to confirm the effect of fixed parameter value on the final model parameter 
estimates. These methodological issues have been extensively applied during population PK 
analysis during the modelling of routine sparse TDM data of AEDs (Yukawa, 1999).  
If an absolute bioavailability of a drug is either unknown or very variable, it is possible to 
refer to apparent PK parameter values. Therefore, in the population PK studies of AEDs 
data, the only PK parameter which can be estimated with good precision from routine TDM 
data (mainly trough concentrations) is the apparent clearance (CL/F). Clearance is a vital PK 
parameter in dosage adjustment regimen, since the most widely used method of AEDs 
dosage adjustment is based upon the fact that in steady-state the rate of drug administration 
equals the rate of drug elimination (determined by a product of CL/F and the average 
steady-state drug concentration), given by equation (3). 

 ssD
R = = CL / F C⋅

τ
 (3) 

As reported (Sheiner & Beal, 1983) there is no significant loss in estimating CL/F and its 
variability by population modelling from routine type of data compared to better designed 
studies where more samples per patient are available.  

4. Importance and application of population pharmacokinetic models from 
therapeutic drug monitoring of antiepileptic drugs 

When a drug is marked and used for the treatment of a disease or condition, the main goal 
of therapy is to optimize dosage regimen in the individual patient. Degree of PK and/or PD 
variability of a drug influences the applicability of average dosing regimen for an individual 
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patient. Since AEDs show marked PK variability, poor correlation between plasma levels 
and dose was observed (Bauer, 2008; Miljković et al., 1991). Therefore, interindividual 
variability in drug disposition as well as in drug’s response is often the reason for adverse 
drug reactions, as well as lack of therapeutic efficacy. Various factors contribute to large 
differences in plasma drug concentrations at steady-state among patients receiving the same 
dose, and consequently affect individual PK parameters of AEDs. For instance, patients’ age 
or body weight are the commonly identified factors that affect AEDs’ elimination since they 
show functional and physiological status of organs (e.g. liver, kidneys) involved in 
metabolism and/or excretion of a drug. Among other factors patients’ race, gender, 
smoking status, drug formulation were found to affect PK parameters of some AEDs. 
Consequently, evaluation and management of the variability is the aim of rational drug 
therapy with its individual approach to each patient. Understanding the factors which can 
influence AEDs PK characteristics throughout population modelling technique in 
combination with TDM is a valuable tool in designing a safe and effective dosing regimen 
for epileptic patients. 
Therapy of epilepsy usually begins with one AED depending on the type of the seizure. 
When increasing the dose or substituting a drug with another AED does not give a desired 
therapeutic effect, a combination of AEDs might be considered. When another drug is 
added on, PK and/or PD drug-drug interactions may occur, leading to greater variability. 
However, the extent to which corresponding parameters are changed, indicate the need for 
the change of dosage regimen. It is a well known that some AEDs such as CBZ and PB are 
inducers of CYP450 isoenzymes, thus consequently affect PK parameters of elimination of 
AEDs that show CYP450 dependent elimination. In addition, VPA inhibits the metabolism 
of lamotrigine and PB, and a reduction in the dosage of the latter drugs is usually indicated 
when VPA is added on (Patsalos & Perucca, 2003a, 2003b; Perucca, 2006). To conclude, 
many drug-drug interactions between AEDs and AEDs with non-AEDs are proven by 
controlled PK studies; however population PK studies allow quantification of such 
interactions using sparse data. Drug interactions represent constant concern in the clinical 
practice owing to the fact that the treatment of epilepsy usually requires polytherapy, and 
that interindividual variability in PK can be caused by drug interactions (Patsalos & 
Perucca, 2003a, 2003b; Perucca, 2006). Therefore, it is logical the importance of population 
approach to identify and quantitatively describe drug-drug interactions in the clinical 
practice (Vučićević et al., 2007a, 2008, 2009a). It has been found that population PK analysis 
was powerful tool in detecting interaction, but also showed its’ superiority over traditional 
PK approach (Grasela et al., 1987; Zhou, 2006). In the traditional PK studies it is possible to 
observe, under controlled conditions of the study, if one drug statistically significant 
changes the average PK parameter of another. Consequently, population-based analysis is 
particularly important to quantify known or suspected drug-drug interactions, as well as to 
detect any unexpected interactions. Several examples of developed population PK models 
for AEDs from routine TDM data in adult population are given in Table 2. Traditionally, 
TDM has mainly focused on the older antiepileptic drugs, such as CBZ, phenobarbital, 
phenytoin, primidone, and VPA, which all have been in clinical use for several decades. For 
that reason, population PK models are numerous, and some of them are presented in Table 
2. Based on these population PK models, it is possible to observe quantitative effect of 
concomitant drugs in therapy with CBZ, or VPA. 
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DRUG POPULATION PHARMACOKINETIC MODEL REFERENCE 

Carbamazepine   

,

0.591 0.564

5.35 1 0.414 1.18
15 2 70

VPADCBZ DPB WT
CL F l h =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⋅ ⋅ + ⋅ ⋅ ⋅⎡ ⎤ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

where DCBZ and DPB are daily doses of carbamazepine and 
phenobarbitone in mg/kg; VPA=1 if valproic acid dose is greater 750 
mg/day, or 0 if else 

Vučićević  
et al., 2007b 

0.406 0.1170.141 1.23 1.44 1.26 ,VPA PHT PBCL F l h = DCBZ WT⋅ ⋅ ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦  

where DCBZ is daily dose of carbamazepine in mg; VPA=1, PHT=1, PB=1 
if valproic acid dose greater than 18 mg/kg, phenytoin, phenobarbitone 
are present in therapy, or 0 if else 

Jiao  
et al., 2004 

0.465 0.33664.9 1.03 1.44 1.16 ,VPA POLY PBCL F ml h kg = DCBZ WT −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦  

where DCBZ is daily dose of carbamazepine in mg/kg; VPA=1, PB=1, 
POLY=1 if valproic acid, phenobarbitone or more than two AEDs are 
present in therapy, or 0 if else 

Yukawa & 
Aoyama, 
1996 

0.494 1.1740.7 1.44 ,PBCL F l day kg = AGE WT −
⋅ ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦  

where AGE is in years, PB=1 if phenobarbitone is present in therapy, or 0 if 
else 

Chan  
et al., 2000 

( )0.0134 3.58 1.42 1.17 1.62 0.749 ,PB FEL PHT PB FELPHT AGECL F l h = WT +
⋅ + ⋅ ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦

where PHT=1, PB/FEL=1, PHT+PB/FEL=1, AGE=1 if patient is treated with 
phenytoin, phenobarbitone or felbamate, phenytoin and 
phenobarbitone/felbamate, or is older than 70 years, or 0 if else 

Graves  
et al., 1998 

 

Valproic acid   
0.556

0.517 1.43 0.765 ,
70

VPA TPRWT
CL F l h =

⎛ ⎞
⋅ ⋅ ⋅⎡ ⎤ ⎜ ⎟⎣ ⎦
⎝ ⎠

 

where VPA=1 if  VPA dose is greater 1000 mg/day, and TPR=1 in co-
therapy with topiramate, or 0 if else. 

Vučićević  
et al., 2009b 

0.105 0.151 0.000248 0.0968 0.0803 ,
20

AGE
CL F l h = CBZ DVPA INDI+ ⋅ + ⋅ + ⋅ + ⋅⎡ ⎤⎣ ⎦

where DVPA is valproic acid dose in mg/day; CBZ=1 in co-therapy with 
carbamazepine, or 0 if else; INDI is uncontrolled epilepsy 

El Desoky  
et al., 2004 

0.159 0.264 0.821 0.896 ,CZP GENCL F ml h kg = 17.2 DVPA WT −
⋅ ⋅ ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦  

where DVPA is daily valproic acid dose in mg/kg; CZP=1 for concomitant 
therapy with clonazepam, GEN=1 for female, or 0 if else 

Yukawa  
et al., 2003 

0.3040.004 1.363 1.541 1.397 ,CBZ PHT PBCL F l h = WT DVPA⋅ ⋅ ⋅ ⋅ ⋅⎡ ⎤⎣ ⎦  

where DVPA is daily dose of valproic acid in mg/kg; CBZ=1, PHT=1, 
PB=1 if carbamazepine, phenytoin, phenobarbitone are present in therapy, 
or 0 if else 

Blanco-
Serrano  
et al., 1999. 

Table 2. Population pharmacokinetic models of carbamazepine and valproic acid derived 
from routine therapeutic drug monitoring data in adult population of epileptic patients 
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The importance of a population PK models is best shown in an example. It is a well known 
fact that PB acts as an inductor of CYP450 isoenzymes, thus consequently it effects CBZ 
elimination (Patsalos & Perucca, 2003a). Since induction process requires synthesis of new 
enzymes, time course of an induction is a function of enzyme synthesis rate. Hence, time 
course of induction is dose dependent (Patsalos & Perucca, 2003a). Using the population PK 
approach, the possibility to examine the influence of various PB doses on CBZ metabolism 
(CL/F) was shown, and the results indicate a linear relationship (Table 2). 
Clinical significance in population modelling converts the estimated values of population PK 
models into potential benefits for an individual patient. In modelling, clinical relevance of the 
covariate effect usually assumes reduction in the interindividual variability of the specific PK 
parameter while adding a covariate/factor to a model. On the other hand, clinical relevance 
can also be evaluated by estimating the change in the predicted individual parameter values. 
For example, if predicted CL/F of a CBZ in a patient increases by 20% after adding PB (as a 
covariate) in the model, PB co-therapy may be regarded as a clinically relevant predictor of 
CBZ CL/F. In order to make the effect of a covariate on PK parameter robust, 95% CI of the 
value of parameter explaining covariate effect should be addressed. Finally, what is regarded 
as clinically relevant varies between investigators, physicians and regulators (EMEA, 2007). 
Knowledge of population PK models can assist in choosing initial dosing regimen of a drug, 
modifying dosing regimens according to observed drug levels, and they can elucidate 
certain clinical questions. Identification of the factors which contribute to PK variability of 
AEDs provides a foundation for individualization of the therapy. An adjustment of drug 
therapy is directed by individual values of PK parameters which depend on patient and 
disease characteristics.  
In order to optimize dosing regimen for a specific patient, individual PK parameters are 
needed. Hence, patient’s CL/F represents fundamental PK parameter for individualization 
of therapy (given by equation (3)). Bayes approach is used to determine individual PK 
parameters using mutually the data from individual patient and population PK models of a 
drug defined via population typical values of PK parameters and their variability (Bonate, 
2006; Jelliffe et al., 1993; Sheiner et al., 1979). This prediction is possible to perform using 
different PK softwares. Though, in Bayes regression approach it is of a great importance to 
use population PK model that represents individual patients. Furthermore, if population PK 
behaviour of AEDs is integrated with pharmacological and clinical effects, it would provide 
a better rationale for the proper selection of optimal dose, type and duration of 
administration of AED therapy in different patient populations. 

5. Conclusion 

Clinical experience demonstrated the need of therapeutic drug monitoring in optimizing 
therapy of epilepsy. Identification of sources of intra- and interindividual variability among 
patients is essential for individualization of drug therapy, and it can be accomplished by 
population approach to data analysis. The major strength of the population 
pharmacokinetics approach is that useful information can be extracted from sparse data 
collected during routine clinical care. Therefore, population approach serves as a natural 
and expected extension of therapeutic drug monitoring and it can significantly contribute to 
more rational pharmacotherapy of antiepileptic drugs. Knowledge of population 
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pharmacokinetic models can assist in selecting an initial dosing regimen, and modifying 
dosing regimen appropriately according to the observed drug level and patients’ 
characteristics. In order to truly individualize dosing regimen, patient’s individual PK 
parameters are required, and they can be estimated as a function of significant covariates by 
Bayes analysis and the population pharmacokinetic model. 
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