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1. Introduction 

The notion of replacing brain cells affected by a particular disease or unable to synthesize a 

molecule crucial for adequate brain function has been around for many years.  The first 

experiments entailed the transplantation of adult tissue into an adult or young animal; they 

were met with limited success (Björklund & Stenevi, 1984).  Later, scientists started working 

with fetal tissue, because this tissue fares better when dissected, axons are shorter, cells are 

still dividing, and growth factors are present in the tissue.  These studies were more 

successful and led to clinical trials using human fetal tissue, and autologous transplants of 

adrenal chromaffin cells, especially for Parkinson´s disease (Freed, 1991).  Transplants were 

first used in this neurodegenerative disorder because it was assumed that the main problem 

was the lack of dopamine in the striatum, and this neurotransmitter could be readily 

provided by chromaffin cells from the adrenal medulla or by mesencephalic dopaminergic 

cells.  Initial preclinical studies had shown, using the 6-OHDA model developed by 

Ungerstedt (Ungerstedt 1968; Ungerstedt & Arbuthnott, 1970), that intrastriatal grafts of 

mesencephalic cells could reduce the number of ipsilateral or contralateral rotations induced 

by apomorphine or amphetamine, suggesting that the dopaminergic tone had been restored 

in the lesioned striatum. These studies led to others using fimbria fornix lesions (e.g., 

Dunnett et al., 1982), diabetes insipidus model (e.g., Gash & Sladek, 1980), Huntington´s 

disease models (e.g., Norman et al., 1989), and epilepsy models (e.g., Castillo et al., 2006).  In 

addition to the experiments showing functional effects of the transplants, there were others 

looking for the mechanisms underlying the effects of the transplans. A series of studies 

showed that transplanted cells could establish reciprocal anatomical connections with the 

host (Wictorin, 1992; Murata et al., 1990).  A couple of studies using electrophysiology, and 

markers or cell activation showed that these connections were functional (Xu et al., 1991; 

Rutherford et al., 1987; Labandeira-Garcia & Guerra, 1994).  Neuroscientists involved in this 

field concluded that neural transplants could affect the host brain by releasing growth 

factors, and neurotransmitters, and by establishing functional connections with the host 

brain, thus reestablishing lost circuits. 

However, the source of tissue for transplantation was still an issue to be considered.  Fetal 

tissue was not readily available in all countries, and its use implicated ethical and legal 
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issues not easily resolved.  In addition, fetal tissue included all kinds of cells, and in spite of 

the immuno-privileged status of the brain, it could lead to an inflammatory response in the 

host.  Autologous transplants of chromaffin cells (Freed et al., 1990) and xeno-transplants 

(Fink et al. 2000) had been used as an alternative source of  tissue for transplantation.  Then, 

with the advent of new molecular biology techniques, cell lines with particular properties 

and characteristics were developed.  GABAergic cell lines proved easier to develop than 

dopaminergic cell lines, and given the fact that epilepsy has been considered as a disorder in 

which there is an imbalance between excitation and inhibition, these cell lines started to be 

tested in epilepsy animal models.  More recently, once it was demonstrated that Cajal’s 

notion that in the adult nervous system neurons no longer divide was incorrect, and that 

there are neurogenic pools in the adult brain (Nottebohm, 2002), the potential use of these 

immature cells for transplantation became a possibility.  Furthermore, a myriad of studies 

started looking for factors to differentiate these immature nerve cells into the desired type of 

nerve cell, dopaminergic, cholinergic, GABAergic, among others (Vazin & Freed, 2010; 

Mejía-Toiber et al., in press).  Cell lines could be developed from these adult but immature 

cells, thus solving the problem of having a source of tissue for transplantation.  Moreover, 

now we know that cells, such as fibroblasts can be reprogrammed into neuronal cells (e.g., 

Takahashi & Yamanaka, 2006), thus, in theory the host could eventually replace its own 

damaged cells.  In this brief overview of the field of neural transplantation, we have seen 

how the sources of tissue for transplantation have expanded, the techniques have been 

refined, and new possibilities have emerged to try and restore function in the nervous 

system.  Still, questions remain, how is it that the new cells can modify the function of the 

host nervous system, is it the transplant that changes the host brain and takes some of its 

functions, or is it the host brain itself that is modified as a result of the presence of the alien 

cells in its midst.  Is it necessary to transplant new cells into the brain, or do we have to learn 

how to activate the neurogenesis that is already taking place in the adult brain.  How can 

cells be differentiated without posing a risk for the host, which plasmids are safe to us, and 

which are not. In the following sections we will focus on the advances of neural transplants 

in animal models of epilepsy, and in the clinical setting in Parkinson’s disease. 

2. Preclinical studies using cell transplants of fetal tissue and neural stem 
cells in animal models of epilepsy 

Epilepsy is a neurological disorder with a prevalence of about 1% (Morimoto, Fahnestock 

et al. 2004) characterized by seizures that occur in a spontaneous and recurrent manner. 

Seizures are classified as generalized and can manifest themselves as uncontrolled 

muscular activity or as a sudden interruption of physical and mental activity (absence 

seizures); or as focal seizures, that are classified according to their manifestation, i.e., if 

they involve psychic or sensory phenomena, motor or autonomic components, loss of 

awareness, or evolving to a bilateral, convulsive seizure (Berg et al., 2010). Epileptic 

seizures are the result of abnormal, excessive and synchronic discharges of groups of 

neurons that occur as a result of changes in synaptic function and intrinsic properties of 

neurons that upset the balance between inhibitory and excitatory neurotransmission, 

favoring the latter (Cossart et al., 2001). In the recent document published by the 

International League Against Epilepsy (ILAE) Commission on Classification and 
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Terminology (Berg et al., 2010), the underlying type of causes of epilepsy are considered to 

be genetic, structural-metabolic or unknown.  
Epilepsy is one of the neurological disorders that could benefit from transplantation of cells, 
since some types of epilepsy are focal, and in the case of generalized seizures they can be 
suppressed by local injections of GABAergic agents into particular areas of the brain such as 
the substantia nigra, or piriform cortex (Gale, 1992). Indeed, Kokaia et al. (1994) observed a 
reduction in generalized seizures in rats previously kindled in the amygdala when GABA-
releasing polymer matrices were implanted bilaterally and dorsal to the substantia nigra.  
The effect lasted until GABA release from the polymer matrices was reduced. Thus, local 
delivery of an inhibitory neurotransmitter could reduce the neuronal excitability in brain 
regions from which seizures originate or in brain regions from which they propagate to the 
rest of the brain.  
Initially, studies using transplants in epilepsy models used fetal tissue with some success.  

Barry et al., (1987) (Table 1), evaluated the effect of fetal noradrenergic transplants in the 

hippocampus using the kindling model of epilepsy.  This model consists in the use of 

repeated subthreshold electrical stimulations of specific regions of the Central Nervous 

System (CNS). Afterwards, the animal presents focal epileptiform seizures that then 

generalize to the rest of the brain.  The work of Barry et al. (1989) involved first, the 

administration of 6-hydroxydopamine (6-OHDA) icv, and then the transplant of fetal 

noradrenergic cells into the hippocampus.  The authors of the study found that animals 

required a greater number of stimulations to induce the various phases of kindling, in 

comparison with rats that did not receive the transplants.  Also the delay in kindling was 

related to the density of innervation of the transplant in the host hippocampus.  They 

obtained similar results when transplanting cells of the locus coeruleus into the amygdala 

and piriform cortex (1989) (see Table 1).  A study using noradrenergic cells obtained from 

locus coeruleus (LC) from E13-E14 rats showed that these cells could reinstate noradrenergic 

transmission in the noradrenaline-depleted hippocampus (Bengzon et al., 1991).  In this 

particular study, they measured noradrenaline-release using microdialysis after electrical 

stimulation of the hippocampus, and observed that noradrenaline release from intrinsic and 

grafted LC neurons occurred concurrently with their seizure suppressing action; thus LC 

grafts in the hippocampus appeared to be functionally integrated into the host brain, at least 

during generalized kindled seizures (Bengzon et al., 1991).  

Fetal GABAergic cells have also been used with varying degrees of success in other epilepsy 

models.  Fine et al. (1990) used the pilocarpine model in rats with ibotenic acid striatal 

lesions. Fetal GABAergic cells from the ganglionic eminence (E16) were transplanted into 

the substantia nigra pars reticulata (SNr), and suppressed the motor seizures; however, 

similar effects were observed after sciatic nerve transplants, suggesting a non-specific effect. 

Almost a decade later, Löscher et al., (1998) implanted fetal striatal GABAergic neurons into 

the substantia nigra in fully kindled animals, and evaluated the threshold for focal 

discharges (ADT), afterdischarge duration and severity, and duration of seizures during 

ADT.  They found a significant increase in ADT and marked reduction in seizure severity 

compared with pre-transplantation values; however, the seizure-suppressing effect of 

GABAergic grafts was not permanent but slowly disappeared over the weeks after 

transplantation (Löscher et al., 1998). 

Another decade later, better results were obtained by Rao et al., (2007) and Hattiangady et 
al., (2008) when these groups evaluated the effects of transplants of hippocampal cells 
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(E19), and lateral ganglionic eminence (E15) into the hippocampus in a model of 
spontaneous recurrent motor seizures (SRMS), respectively. Rao et al., (2007) pretreated 
the cells with brain derived neurotrophic factor, and neurotrophin-3, plus a caspase 
inhibitor, or with fibroblast growth factor (FGF-2). They observed that hippocampal cells 
not treated with trophic factors failed to reduce the SMRS, in contrast to those treated 
with the trophic factors and the caspase inhibitor; greater survival was observed with 
FGF-2. Hattiangady et al., (2008) pretreated precursor cells with FGF-2 and a caspase 
inhibitor, and found an important reduction in SRMS induced by kainic acid.  In addition 
they found that 69% of surviving transplanted neurons differentiated into GABAergic 
cells suggesting that the reduction in seizures is related with increased inhibitory control 
in the hippocampus.  
Stem cells with their properties of self-renewal and multipotentiality (Wang et al., 2007) 

represent another source for transplantation into the nervous system.  Pluripotent stem cells 

(PSC) can generate cells from all three embryonic germ layers, mesoderm, endoderm and 

ectoderm.  Two types of mammalian PSC have been identified, the embryonic stem (ES) cells 

derived from the inner cell mass of the blastocyst, and embryonic germ (EG) cells obtained 

from post-implantation embryos (Yu & Thomson, 2008).  Recent studies have identified 

different means of obtaining desired lineages from these human ES, for example neural stem 

cells (NSC) (Carpenter et al., 2001; Reubinoff et al., 2001; Zhang et al., 2001), further 

differentiated into midbrain dopaminergic neurons (e.g. Perrier et al., 2004), neural crest 

lineages (Lee et al., 2010), and neural progenitor cells from human EG cells (Pan et al., 2005).  

Various groups have also described differentiation of mouse stem cells into neural precursors, 

(e.g. Westmoreland et al., 2001; Kim et al., 2002; Barberi et al., 2003; Lang et al., 2004), and 

found positive functional effects after transplantation (Rodriguez-Gomez et al., 2007). 

In terms of their potential use in epilepsy models, it has been shown that NSC derived from 

the medial ganglionic eminence and transplanted in the hippocampus of adult rats showing 

spontaneous recurrent motor seizures, reduced motor seizures, but did not restore cognitive 

impairments (Waldau et al., 2010).  The NSC differentiated mostly into astrocytes, neurons, 

and oligodendrocyte progenitors.  About 50% or the cells expressed GDNF and 10% 

expressed GABA.  NSC grafts restored GDNF expression in hippocampal astrocytes.  The 

authors of the study suggest that the addition of new GABA neurons plus GDNF positive 

cells may underlie the therapeutic effects they observed.   

A different group has developed adenosine-releasing ES cells, by disruption of both 

alleles of adenosine kinase (Adk) which phosphorylates adenosine in eukaryotes and 

catalyzes the reaction: Adenosine + ATP= ADP + AMP. The cells were encapsulated in 

semipermeable polymer membranes and implanted into the lateral ventricles of kindled 

rats (Güttinger et al., 2005). The authors observed transient protection from convulsive 

seizures and a profound reduction of afterdischarge activity in EEG recordings. However, 

they suggest that long-term seizure suppression was precluded by limited viability of the 

encapsulated cells (Güttinger et al., 2005).   In a more recent study with male Sprague-

Dawley rats (Li et al, 2007) the same group derived NSC from Adk-/- or Adk+/+ ES cells.  

They implanted them into the hippocampus before kindling, and compared Adk-/- cells to 

adenosine releasing baby hamster kidney cells Adk-/- (BHK-AK2), and to wild type NSC.  

They observed that wild type NSC delayed the development of seizures; BHK-AK2 

exerted a moderate protection, whereas Adk-/-NSC retarded epileptogenesis during 
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kindling development and prevented the occurrence of generalized seizures.  The effect 

was sustained for 3 weeks; 26 days after grafting, histological analysis revealed dense 

cellular transplants in the vicinity of the injection tract, with 56% expressing mature 

neuronal markers (NeuN). 

NSC engineered to express enhanced green fluorescent protein under the control of the 

tau promoter were transplanted one month after pilocarpine treatment in the 

hippocampus of   Wistar male rats (Rüschenschmidt et al., 2005).  Electrophysiological 

recordings 13-34 days after transplantation showed that the NSC developed characteristic 

intrinsic and synaptic neuronal properties, and received excitatory and inhibitory 

synaptic inputs; there was no evidence of tumor formation.  Jing et al. (2009) described the 

transplantation into the hippocampus one-week after kainic acid-induced status 

epilepticus (SE) of NSC obtained from the subventricular zone of green fluorescent 

protein-expressing Sprague Dawley rats.  In this study an infusion of erythropoietin was 

delivered by means of an osmotic pump into the right lateral ventricle.  Erythropoietin 

(EPO) is a glycoprotein produced primary in the kidney but also produced locally in 

neural tissues, according to the authors it has shown neuroprotective effects in nervous 

system disorders including during the process of SE.  The results of this study indicated 

that NSC transplants were able to prevent the development of SRMS through the 

suppression of aberrant mossy fiber sprouting and by increasing the number of inhibitory 

neurons. EPO infusion increased survival but not differentiation or migration of NSC; in 

terms of effects on EEG, no differences were observed between NSC + EPO, and NSC + 

vehicle groups.   

Human NSC have also been used in models of SE.  Chu et al (2004) obtained human NSC 

from the ventricular zone of embryonic brain (15-weeks gestation); one of the clones 

obtained was infected with a retroviral vector encoding β-galactosidase (β-gal) and 

puromycin-resistant genes.  These cells were injected intravenously in a tail vein of male 

Sprague-Dawley rats, 24-h after pilocarpine-induced SE; the control group received only 

vehicle.  Six weeks later histological analysis or electrophysiological recordings of 

hippocampal slices took place. In the transplanted group the authors observed a reduction 

of convulsive seizures; β-gal+ cells were found in the hippocampal area (CA1, subiculum, 

hilus of the dentate gyrus, CA3), amygdala, and piriform cortex; in kidney, lungs, and 

spleen, without evidence of tumor formation.    In rats without SE, no cells were found in 

the brain. Cells were mostly GABA+ and parvalbumin+; field excitatory postsynaptic 

potentials in CA1 induced by stimulation of Schaffer collaterals were smaller in 

transplanted animals.  The authors concluded that intravenously transplanted human 

NSC suppress spontaneous recurrent seizures.  Using the same model Costa-Ferro et al. 

(2010) evaluated the therapeutic potential of bone marrow mononuclear cells (BMC) 

obtained from transgenic mice. BMC cells have been reported to stimulate endogenous 

glial or neural stem cells, reduce neuronal apoptosis and neurodegeneration, modulate 

inflammatory responses, release trophic factors and cytokines involved in tissue repair 

and regeneration, and promote self-repair mechanisms in the brain (Costa-Ferro et al., 

2010). Ninety-min after pilorcarpine-induced SE the animals received BMC or saline only 

via the tail-vain.  By 15 days after transplantation, none of the BMC transplanted animals 

showed SRMS, while all saline-treated animals did; 120 days later only 25% of 

transplanted animals showed SRMS with a lower frequency and duration than control 
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animals.  Transplants attenuated cell loss in the hippocampus and BMC were found 

distributed in the brain of pilocarpine-treated recipient animals.  In addition, long-term 

potentiation was preserved in the transplanted animals compared to pilocarpine-treated 

non-transplanted animals. The authors suggested that BMC could prevent the 

development of chronic seizures, reduce neuronal loss, and influence the reorganization 

of the hippocampal network. 

Maisano et al., (2009) have also used ES-derived NSC in animal models of epilepsy, and 

have transplanted the YC5 mouse ES line into the CA3 region of the hippocampus one week 

after kainic acid or pilocarpine administration.  The NSC expressed immature stem cell 

markers shortly after transplantation; with longer survival time (4-8 weeks) cells in the 

kainic acid model some cells expressed an early marker of granule neurons (Prox1). Eight 

weeks after transplantation many grafted neurons received synaptophysin-positive synaptic 

terminals, suggesting their integration into the host hippocampus.  The same group used 

human NSC and observed similar results after transplantation into the kainate-lesioned 

brain (In: Maisano, et al., 2009).  The cells migrated to the upper blade of the dentate gyrus 

only in mice that had experienced seizures, and expressed neuroblast markers 

(doubleclecortin, PSA-NCAM).  Mouse but not human NSC formed tetrocarcinomas when 

transplanted into the mouse hippocampus.  More recently, the same group has made 

electrophysiological recordings one month after transplantation into the dentate gyrus in 

kainate-treated mice.  Their results showed that the cells have normal electrophysiological 

properties, receive syaptic inputs, and have the ability to fire spontaneous potentials.  In 

their 2009 paper, Maisano et al. suggest the use of protocols to enrich for GABAergic 

precursors, based on the expression of glutamic-acid decarboxylase-67 (GAD67); they 

suggest the use of conditioned media, gene transfection of transcriptional factors, or 

sequential treatment with growth factors and molecules to guide progenitor cells toward 

GABAergic lineages.  

In a recent critical review (Shetty & Hattiangady, 2007) the authors state that there is no 

evidence in support of using stem cells in the treatment of temporal lobe epilepsy yet, 

although they acknowledge that the field is still in its initial stage of development.  This 

conclusion is still valid at present.  Among the strategies that Shetty and Hattiangady (2007) 

suggest for further advance in the field, two of them are particularly relevant for theme of 

the present review.  First, is the need for rigorous analyses of the efficacy of grafts of ES cells 

or NSC placed into the hippocampus after the onset of chronic epilepsy for suppressing 

seizures as well as learning and memory deficits. In particular, the question of the duration 

of the suppressive effects is particularly relevant, because as can be gathered from the 

evidence presented above, the grafts of either fetal tissue or NSC have been evaluated for 

relatively short periods. These analyses should include evidence for the long-term survival 

of the grafts, and the differentiation of the cells in these grafts into functional principal 

hippocampal neurons, or GABA-ergic interneurons.  Second, is the need for evaluating 

combination therapy, i.e., NSC or ES cells transplants and delivery of anticonvulsant 

compounds into the hippocampus during chronic epilepsy.  As these authors suggest, this 

strategy might result in significant seizure suppressing effects.  Finally, it should be 

emphasized that studies using fetal tissue and NSC transplants must include adequate 

control groups so that the effects of the grafts can be unequivocally attributed to the 

particular cell type or compound being tested. 
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Cell type 
 

Model 
Site of 
transplant 

Behavioral effects
Histological 
findings 

Reference 

Noradrenergic 
(locus coeruleus, 
E13-14) 

NA-depleted 
rats; kindling 6-
11 months after 
transplant. 

Hippocampus Delayed onset and 
retarded 
progression of 
kindling; 
correlated with 
neuron survival 

Barry et al., 1987 

Noradrenergic 
(locus coeruleus, 
E13-14) 

NA-depleted 
rats; kindling 2-3 
months after 
transplant. 

Amygdala-
pririform  
cortex 

Delayed onset and 
retarded 
progression of 
kindling. 

Barry et al., 1989 

Noradrenergic 
(locus coeruleus, 
E13-14) 

NA-depleted 
rats; kindling 3 
months after 
transplant, then 
midrodialysis. 

Hippocampus Retarded 
progression of 
kindling; restored 
basal and seizure-
induced 
extracellular 
noradrenaline 
levels in 
hippocampus, 
cells 
immunopositive 
for tyrosine 
hydroxylase. 

Bengzon et al., 
1991 

GABAergic 
(ganglionic 
eminence, E16) 

Ibotenic acid 
lesioned 
animals; 
pilocarpine 
administration 1 
month after 
transplant. 

Substantia  
nigra reticulata

Reduced 
occurrence of 
motor limbic 
seizures, and 
intensity score; 
grafts localized in 
the substantia 
nigra. 

Fine et al., 1990 

GABAergic 
(ganglionic 
eminence E14) 

Transplanted 
after fully 
kindled. 

Substantia  
nigra reticulata

Increased 
afterdischarge 
threshold, 
decreased 
severity; short-
lasting effects. 

Löscher et al., 
1998 

GABAergic 
(lateral 
ganglionic 
eminence, E15) 

KA-induced SE; 
transplanted 4 
days after SE ; 
evaluated 9-12 
months after SE.

Hippocampus Reduced number 
of SRMS; 
differentiated into 
GABAergic cells. 

Hattiangady et 
al., 2008 

Table 1. Studies using transplants of fetal tissue and neural stem cells into the brain in 
animal epilepsy models. 
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Cell type 
 

Model 
Site of 
transplant 

Behavioral effects 
Histological 
findings 

Reference 

Hipocampal 
cells (E19) 

KA-induced SE; 
transplanted after 
showing 
spontaneous motor 
seizures; evaluated 
2 monts after 
grafting. 

Hippocampus Reduced number of 
SRMS; greater 
survival of neurons 
and GABA 
interneurons in 
hippocampi if 
pretreated with 
neurotrophic 
factors and caspase 
inhibitor. 

Rao et al., 2007 

Neural stem 
cells (medial 
ganglionic 
eminence, 
E14) 

KA-induced SE; 
transplanted after 
showing 
spontaneous motor 
seizures; evaluated 
3 months after 
grafting. 
Evaluation of 
seizures and 
learning and 
memory. 

Hippocampus Reduced frequency 
and duration of 
SRMS; no 
improvement in 
cognitive function; 
differentiation into 
neurons (some 
GABA+), astrocytes 
and 
oligodendrocyte 
progenitors, 
restored GDNF in 
hippocampus. 

Waldau et al., 
2010 

Adenosine-
releasing ES 
cells 
encapsulated 
in polymer 
membranes 

Kindling model, 
evaluated 3 days 
after grafting until 
7 days. 

Lateral 
ventricle 

Transient 
protection from 
convulsive seizures 
and reduction of 
afterdischarge 
activity in EEG 
recordings. 

Güttinger et al., 
2005 

NSC from 
Adk-/- or 
Adk+/+ 

Kindling model, 
grafted before 
kindling; evaluated 
for 3 weeks. 

Hippocampus NSC from Adk-/- 
retarded 
epileptogenesis, 
prevented 
occurrence of 
generalized 
seizures. Dense 
cellular transplants, 
some cells NeuN+. 

Li et al., 2007 

Table 1. Studies using transplants of fetal tissue and neural stem cells into the brain in 
animal epilepsy models. (continuation) 
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Cell type 
 

Model 
Site of 
transplant 

Behavioral effects 
Histological 
findings 

Reference 

NSC  Pilocarpine 
treatment, 
transplanted one 
month later, 
evaluated 13-34 
days after 
transplantation. 

Hippocampus NSC showed 
intrinsic and 
synaptic neuronal 
properties, receive 
excitatory and 
inhibitory inputs. 

Rüschenschmidt 
et al., 2005 

NSC KA-induced SE, 
transplanted one 
week later, EEG 
recorded 3 weeks 
after 
transplantation. 

Hippocampus, 
with or 
without EPO 
(icv) 

Reduced frequency 
of abnormal spikes; 
attenuates aberrant 
mossy fiber 
sprouting; 
differentiated into 
GFAP+ astrocytes;  
EPO enhanced 
survival. 

Jing et al., 2009 

hNSC Pilocarpine-
induced SE, 24h 
later cells injected; 6 
weeks later, 
histology or 
electrophysiological 
recordings of 
hippocampal slices.

Intravenous 
administration, 
tail vein 

Reduction in 
convulsive seizures; 
smaller fEPSP in 
CA1; labelled cells 
found in 
hippocampus and 
other brain areas, no 
tumor formation. 

Chu et al., 2004 

BMC Pilocarpine-
induced SE, 90 min 
later cells injected; 
evaluated 15 and 
120 days later. 

Intravenous 
administration, 
tail vein 

Short-term 
suppressed SRMS; 
long-term only 25% 
animals with BMC 
showed SRMS of 
lower frequency and 
duration than 
controls; attenuated 
cell loss in the 
hippocampus; long-
term potentiation 
preserved. 

Costa-Ferro  
et al., 2010 

Table 1. Studies using transplants of fetal tissue and neural stem cells into the brain in 
animal epilepsy models.(continuation) 
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Cell type 
 

Model 
Site of 
transplant 

Behavioral effects 
Histological 
findings 

Reference 

NSC and 
hNSC 

KA or pilocarpine 
administration, 
transplanted one 
week later. 

Hippocampus 
CA3 

Expression of 
immature cell 
makers, and of 
granule cells after 
longer survival 
times. Inputs of 
synaptohpysin+ 
synaptic terminals. 
Mouse NSC formed 
teratomas. hNSC 
migrated to dentate 
gyrus. Neuronal 
electrophysiological 
characteristics. 

Maisano et al., 
2009 

Table 1. Studies using transplants of fetal tissue and neural stem cells into the brain in 
animal epilepsy models. (continuation) 

Adk: adenosine kinase, enzyme that phosphorylates adenosine in eukaryotes; BMC: bone 
marrow mononuclear cells; CA: Cornu Ammonis; EEG: electroencephalogram; EPO: 
erythropoietin; ES: embryonic stem cells; fEPSP: field excitatory postsynaptic potentials; 
GABA: gamma-aminobutyric acid; GDNF: glial–derived neurotrophic factor; GFAP: glial 
fibrillary acidic protein; hNSC: human neural stem cells; icv: intracerebroventricular 
administration; KA: kainic acid; NA: noradrenaline; NeuN: a mature neuronal marker; NSC: 
neural stem cells; SE: status epilepticus; SRMS: spontaneous recurrent motor seizures. 

3. Preclinical studies using cell transplants of cell lines in animal models of 
epilepsy 

The use of fetal tissue for transplantation involves ethical and technical issues that can be 
circumvented by using cell lines.  The advances in molecular biology techniques provided 
the means to immortalize and genetically modifiy cells to produce specific growth factors, 
and enzymes.  One example of a cell line with intrinsic GABAergic properties is the clone 
M213-20, derived from the ganglionic eminence of E14-15 Sprague-Dawley rats.  This cell 
line was obtained by immortalizing neuroblasts using the temperature sensitive allele (A58) 
of the SV40 large T antigen, and was found to have some GABAergic characteristics 
(Giordano et al., 1993; 1996).  This cell line was further modified by transfection with the 
hGAD67 cDNA by means of a plasmid based on the Epstein-Barr virus.  From the clones 
obtained, one was selected, the M213-2O CL-4 that synthesizes and releases significantly 
more GABA than the parent cell line (Conejero-Goldberg et al., 2000), reuptakes GABA, 
responds to glutamate, presents calcium transients, and releases the neurotransmitter in a 
calcium-dependent manner (Mejia-Toiber et al., 2010).  This cell line when transplanted into 
the inferior colliculus increases the latency for audiogenic seizures (Ross, et al., 2002); it 
increases the latency for tonic-clonic seizures induced by kainic acid, and decreases their 
severity when transplanted into the SNr (Castillo et al., 2006) (Table 2). In a more recent 
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Cell type Model Site of 
transplant 

Behavioral effects 
Histological findings 

Reference 

M213-2O CL-4 Audiogenic 
seizures. 

Inferior 
colliculus 

Inccreases latency to 
audiogenic seizures. 

Ross  
et al., 2002 

M213-2O CL-4 KA-induced SE; 
transplanted 8 
weeks before. 

Substantia 
nigra 
reticulata 

Increases latency for 
tonic-clonic seizures, 
reduces their intensity. 

Castillo  
et al., 2006 

M213-2O CL-4 KA-induced 
SRMS; evaluated 
at 4 and 12 weeks 
after 
transplantation. 

Substantia 
nigra 
reticulata 

Reduces the percentage 
of animals showing 
SRMS; longer survival 
times for transplanted 
rats, GABA content 
increased in area of graft.

Castillo  
et al., 2008 

M213-2O CL-4 Kindling model; 
evaluated for 8 
weeks. 

Substantia 
nigra 
reticulata 

No improvement; strong 
tissue reaction in 
kindled animals. 

Nolte  
et al.,  2008 

M213-2O CL-4 Genetic model of 
absence seizures 
(GAERS) 

Substantia 
nigra 
reticulata 

No reduction in seizures. Castillo  
et al., 2010 

Cortical cell 
line CN1.4 
with 
GAD65cDNA  

Transplanted, 
then kindled in 
amygdala 

Piriform 
cortex 

Increases in pre-kindling 
partial seizure threshold, 
and increased latency to 
the first generalized 
seizure during kindling. 
GAD65 long-term 
expression. 

Gernert  
et al., 2002 

Cortical cell 
line CN1.4 
with 
GAD65cDNA  

Pilocarpine-
induced SE, then 
transplanted, 
evaluated 3 days 
and 7-8 days after 
surgery 

Substantia 
nigra 
reticulata 

Fewer SRMS, integration 
into the host, effect 
diminished if transgene 
is suppressed. 

Thompson & 
Suchomelova, 
2004 

Cortical cell 
line CN1.4 
with 
GAD65cDNA  

Transplanted, 
then hippocampal 
stimulation; 
transplanted, then 
kindling in 
entorhinal cortex 

Dentate 
gyrus 

Increased after discharge 
threshold; longer latency 
to first generalized 
seizure. 

Thompson, 
2005 

GDNF cells 
encapsulated 
in semi-
permeable 
membrane 

Kindling, then 
implanted, then 
rekindled 4 weeks 
later. 

Ventral 
hippcampus

Lower levels of GDNF 
reduced duration of 
afterdischarges, and 
seizure severity. 

Kanter-
Schlifke  
et al., 2009 

GAD: glutamate decarboxylase, the synthetic enzyme for the neurotransmitter GABA; GAERS: Genetic 
Absence Epilepsy Rat from Strasbourg; GDNF: glial derived neurotrophic factor; KA: kainic acid; 
SRMS: spontaneous recurrent motor seizures. 

Table 2. Studies using cell lines in animal models of epilepsy. 
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study, it was found that intranigral transplants of this GABAergic cell line decrease the 
percentage of rats showing spontaneous seizures induced by kainic acid, at 4 and 12 weeks 
after transplantation into the SNr (Castillo et al., 2008) (Table 2).  Beneficial effects are not 
observed in all animal models using nigral transplants of cell line M213-2O CL-4.  In Wistar 
rats in a model of kindling a strong immune reaction was observed (Nolte et al., 2008). This 
strong immune reaction was only observed in kindled animals transplanted with cell line 
M213-CL-4.  In another study, transplants of this cell line did not reduce absence seizures in 
the genetic epilepsy model of the Strasbourg rats (GAERS) (Castillo et al., 2010).   
A different cell line, CN 1.4, contains GAD65 cDNA the other enzyme involved in the 
synthesis of GABA.  The vector used to generate this cell line, produces two gene products, 
a tetracycline-responsive transactivator (tTA) and neomycin phosphotransferase (Thompson 
et al., 2000), thus, when doxycycline is present tTA cannot bind to the promoter, and cannot 
direct transcription (Thompson 2005).  Transplants of this cell line into the SNr reduce 
susceptibility to crisis in the model of kindling and reduce the number of epileptiform 
spikes in lithium pilocarpine-induced seizures (Gernert et al., 2002; Thompson & 
Suchomelova, 2004) (Table 1). In the entorhinal cortex-kindling model Thomspon (2005) 
observed increased GABA levels in the hippocampus 3 and 10 days after transplantation of 
this cell line. They found that behavioral seizures and afterdischarges were reduced only in 
the animals with transplants of the GABA cells. GABA levels in vivo and in vitro decreased 
when the cells were treated with doxycycline, and so did the behavioral effects.  
In a recent study a genetically modified cell line that synthesizes and releases the glial 
derived neurotrophic factor (GDNF) was encapsulated in a semipermeable membrane and 
transplanted into the hippocampus.  Those animals transplanted with capsules that released 
a moderate amount of GDNF showed a decrease in the severity of the seizures and in the 
duration of the afterdischarge (Kanter-Schlifke, et al., 2009). 
 At present, there are no other cell lines that have been tested in animal models of epilepsy.  
These studies taken together, have demonstrated that increasing levels of the inhibitory 
transmitter GABA into the SNr, hippocampus, amygdala, piriform cortex, or inferior 
colliculus, does reduce seizures in a variety of animal models.  The challenge is to take this 
knowledge and transform it into a therapeutic strategy that may be successful in the clinical 
setting. 

4. Clinical studies using cell transplants: lessons from Parkinson’s disease 

Preclinical proof-of-concept studies are necessary to show that transplanted cells can 
survive, differentiate, integrate, and exert functional effects in the animal model of choice.  
They are also necessary to find the shortcomings and undesirable side effects of these 
procedures.  However, animal models can only go so far in providing information about the 
use of neural transplants in the clinical setting.  These experimental models have evident 
shortcomings because they cannot reproduce the particular environment of the diseased 
brain, the progression of the illness, or the survival time of the host, among others.  In this 
sense, only clinical studies can definitively answer the question of whether or not 
transplants can reduce the symptoms or slow the progression of the disease, and for how 
long they may give the patient an overall better quality of life. 
The clinical studies using neural and adrenal transplants in Parkinson’s disease (PD), can 
provide with a wealth of information regarding the potential of this procedure, its 
shortcomings, and the factors that still need to be resolved.  PD is a progressive neurological 
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disorder characterized by tremor, rigidity, and slowness of movements, associated with cell 
loss in the substantia nigra, pars compacta, and other brain structures (Tolosa et al., 2006).  
Substantia nigra pars compacta cells (SNc) produce and release dopamine (DA) in the 
caudate nucleus and putamen, a neurotransmitter involved in motor behavior.  In addition 
to loss of DA cells in the nigra, other histopahtological signs include the presence of 
dystrophic neurites, and Lewy body inclusions in the surviving DA cells.  Lewy bodies are 

α-synuclein and ubiquitin-containing intracytoplasmic inclusions (Kövari et al., 2009).  PD 
was the first neurological disorder in which neural transplants were used.  The source of 
tissue for transplantation initially were adrenal medulla chromaffin cells, since they produce 
and release substantial quantities of catecholamines (Drucker-Colin & Verdugo-Diaz, 2004).  
In 1990, Freed et al., wrote a thorough review about the status of intracerebral adrenal 

medulla grafts, they reviewed the results of about ten of the early studies of adrenal grafts 

for the treatment of Parkinson’s disease. Two primary methods of autotransplantation were 

used then, the first involved transplantation of adrenal medulla into the striatum by 

stereotaxic injection; the other involved transplantation of the adrenal tissue to cavities in 

the wall of the lateral ventricle.  The conclusions of this review indicated that intrastriatal 

adrenal medulla grafts caused only a transient improvement, whereas intraventricular 

grafts appeared to have a more lasting effect.  The degree of improvement, though, differed 

among studies, and ranged from substantial to modest.  The major improvements had to do 

with increases in duration of “on” times, that is the time when the medication is having an 

effect, and the patient can move.  In Parkinson’s disease there are fluctuations in the 

response to the medication, this periods are known as “on”, and “off”.  Great variability was 

observed from patient to patient, the majority   improved only slightly and a few had 

greater effects. The evidence also suggested that the creation of a cavity on the wall of the 

ventricle could enhance the trophic effects of the grafts. In this review, the authors 

advocated the use of quantitative objective measures of motor function, in addition to rating 

scales only; the inclusion of control trials involving comparisons between patients receiving 

grafts and controls, non-treated groups, or groups receiving other treatments. They 

concluded that when adrenal medulla grafts survive the functional effects could be the 

result of release of dopamine, and possibly other substances. When they do not survive, the 

functional effects must be attributed to the host brain reaction to injury or to the release of 

chemical substances with trophic effects outlasting their production, or the production of 

substances by surviving non-chromaffin cells.  At that time, postmortem studies in human 

patients showed lack of tyrosine hydroxylase (TH) positive cells (tyrosine hydroxylase is the 

rate-limiting enzyme in the synthesis of dopamine and norepinephrine) but there was not 

enough data to correlate the clinical outcome to the presence or absence of TH positive cells. 

In a later review of the field, Freed (1993) addressed the results of fetal mesencephalic 

transplants in human patients with Parkinson’s disease.  These studies reported clinical 

improvement over the course of several months after transplantation.  Early changes were, 

according to the author, qualitatively similar to those observed after adrenal grafts. Positron 

emission tomography (PET) studies indicated increased 6-[18F]-fluoro-L-dopa (FD) uptake in 

the region of the graft.  FD is a marker that allows monitoring of the uptake and 

decarboxylation of FD to fluorodopamine (FDA), and the subsequent storage of FDA in 

synaptic vesicles, thus giving an indication of pre-synaptic DA function (Au et al., 2005). At 

that time, no controlled studies on mesencephalic grafts had taken place.   A decade later, 

Roitberg et al. (2000) reviewed the clinical studies using neural grafting for Parkinson’s and 
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Huntington’s disease. At that time more than 150 procedures for fetal transplantation in 

Parkinson’s disease had been reported over the world.  The range of clinical benefits was 

variable, some patients showed improvement in terms of reductions in “off” periods, 

reduction of medication, increase in FD uptake in the grafted areas, improvement in 

activities of daily living scores, while others showed no improvement, and some patients 

developed dyskinesia contralateral to the implanted side. Some degree of clinical 

improvement had been observed even 60 months after transplantation. In terms of 

anatomical characteristics, the authors indicated that TH positive neurons were identified in 

the graft of a patient that died 18 months postoperatively from an event unrelated to the 

surgery. Electron microscopic studies indicated synapses between transplanted TH cells and 

host cells in the putamen.   

Several technical improvements were made in the decade between 1990 and 2000 that could 

account for better outcome of grafting procedures. Among them were a more favorable 

donor age, considered to be when dopaminergic cells first appear in the subventricular zone 

just prior to neuritic process extension.  Grafts of fetal tissue older than 9 weeks gestational 

age did not show significant clinical effects or survival of TH positive cells.  Another issue 

was time between obtaining the tissue and grafting, studies showing clinical benefits used 

tissue within 24-48 h of tissue acquisition (Roitberg et al., 2000). An advantage of solid 

versus suspension grafts was suggested, and the number of transplanted cells was also 

important.  Apparently the greater the number of replacement cells, the better the clinical 

effect.  Another factor was the location of the transplant, whether caudate nucleus or 

putamen, Roitberg et al., (2000) suggested that the putamen was a better site for 

implantation, and that greater improvement could be achieved by bilateral transplants.  

Importantly, transplants of TH+ cells had been shown to extend neuritic processes up to 5-7 

mm from the grafted site, although complete reversal of symptoms had not been achieved in 

spite of this innervation pattern. The need for immunosuppression had not been firmly 

established. 
In the first decade of this century, the results of two double-blind controlled trials were 
published. The first in 2001 by Freed et al., reported on the results of operations on 40 
patients that began in 1995 and ended in 1998, and included a sham group, that later had the 
option of receiving the graft.  The results of the study were rather sobering, motor aspects 
improved 18% in the transplanted group as a whole, and 34%, if only patients 60 years of 
age or younger were considered.  Rigidity and bradykinesia were reduced in the younger 
groups, but no improvement on tremor was observed. FD indicated an increase in 
radionuclide uptake in the putamen of the transplanted group, without changes in the sham 
group.  One 66-year-old patient died of causes unrelated to the surgical procedure seven 
months after transplantation, and the postmortem analysis of the brain indicated the 
presence of TH+ cells with outgrowth of 2-3 mm, without Lewy bodies. Postmortem 
analysis of the brain of another patient (a 68-year-old man who died three years after the 
transplantation procedure, also from causes unrelated to the surgery) showed surviving 
dopamine cells in the tissue, with outgrowth that extended the full width of the putamen. 
PET-FD had shown 100% improvement in uptake over baseline measures. On a three-year 
follow-up, there was a 38% improvement in the younger group of patients and 14% of older 
patients, five patients developed dystonia and dyskinesia.  The authors concluded that their 
results were similar to those of open studies.  In 2003 the results of another double-blind 
controlled study were reported (Olanow et al., 2003) with similar results. Comparisons 
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between placebo and transplanted groups were not significant even though striatal FD 
uptake was significantly increased in the transplanted groups, and survival of dopamine 
neurons was observed at postmortem examination of five patients who died during the 
study from causes unrelated to the transplant.  Number of surviving TH+ cells ranged from 
30,000-120,000 per side depending if the patient had received a one-donor or a four-donor 
graft.  Activated microglia and immune reactivity was observed in the transplanted group 
in and around the region of the graft.  In addition 56% of transplanted patients developed 
dyskinesia.  The authors concluded that fetal nigral transplantation was not recommended 
at that time.  Goetz et al. (2005) reached a similar conclusion after an evidence-based medical 
review update on the various treatments for PD from 2001-2004.  On the basis of their 
analyses, the authors concluded that fetal mesencephalic grafts were non-efficacious 
meaning that evidence showed that the intervention did not have a positive side effect on 
studied outcomes.   
In 2005 Piccini et al., addressed some of the issues pertaining to the clinical outcome after 

neural transplantation in PD. On the basis of their results with nine patients from a full 

series of fourteen grafted PD patients, they suggested that clinical outcome is best when 

more than 100,000 DA neurons are grafted and at least 1/3 to 1/2 of the putamen is 

reinnervated. This degree of innervation corresponds to 50% of normal FD uptake, although 

as indicated in the previous studies it does not always match with the level of clinical 

improvement.  This study contributed importantly to the discussion of the mechanisms that 

underlie the development of dyskinesia, they found no association between graft-induced 

dyskinesia and DA release under basal or methamphetamine administration.  They also 

concluded that grafts in the putamen do not protect intrinsic DA neurons in the nigra from 

degenerating, that a better outcome can be found in patients in whom the degeneration of 

the intrinsic DA system was confined to areas reached by the graft, and that 

immunosuppression could be stopped without compromising the survival of the grafts or 

the clinical improvement.  From these studies it became clear that the response to the grafts 

varies between individuals, that factors such as tissue handling and storage, 

immunosupressive treatment, and patient selection needs to be improved, thus this type of 

therapy requires that it be tailored individually to each patient (Winkler et al., 2008). 

In a follow-up to the study published by Freed et al. in 2001, Ma et al. (2009) reported the 

results obtained two and four years after transplantation.  Interestingly the motor scores of 

the transplanted patients improved 25% in the 4-year evaluation in the group as a whole. In 

addition, differences found previously between younger and older patients, and men and 

women did not persist over time.  Increased FD uptake was found in both hemispheres, and 

it was correlated to clinical outcome.  They also observed that better outcome was associated 

with the degree of FD uptake present preoperatively in the ventrorostral putamen.  In the 

same region they detected progressive loss over the 4-year period, suggesting ongoing 

neurodegeneration.  

Recently, various studies have addressed the issue of the presence of Lewy bodies, and 

activated microglia in the grafts of patients that received transplants a decade or more 

before (Li et al., 2008; Kordower et al., 2008a, 2008b).  In these studies it was suggested 

that the presence of Lewy bodies could indicate that the microenvironment of the host 

brain may affect DA neurons, or that somehow the pathological process can spread to the 

grafted cells, although the presence of Lewy bodies may not affect the functional effects of 

the grafts.  Importantly, these studies also found survival of TH+ cells in the transplants.  
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In contrast, Mendez et al. (2008) after evaluating the histopathological characteristics of 3-

4, and 9-14 year-old transplants did not find Lewy bodies in the grafts.  In this study, they 

reported that serotonin cells were present, and they suggested that the presence of this 

type of cell could be involved in the development of dyskinesia. Cooper et al., (2009) 

evaluated the histological evidence of the studies dealing with post-mortem cases of 

patients with neural transplants, and concluded that the presence of Lewy bodies could 

be related to the type of graft, solid tissue versus cell suspension, the former having 

resulted in greater microglial activation indicating an increased host inflammatory 

response that could have contributed to the development of PD-like pathology, and to 

accelerated aging in some transplants in PD patients.  In the view of Cooper et al. (2009) 

the vast majority of transplanted neurons in the studies reviewed, remained healthy and 

continued to provide substantial clinical benefits for over a decade. They suggest that 

future studies should look into the use of pluripotent stem (iPS) cells as a source for donor 

cells.  This technology could improve transplant quality and content, by providing sorted 

pure DA populations.  A similar proposal has been expressed in other reviews on the 

future of cell and gene therapies for PD (Isacson & Kordower, 2008; Wang et al., 2007; Li 

et al., 2007; Winkler et al., 2005).   

In conclusion, the review of the studies of neural transplants in PD shows that this therapy 

has to be tailored to each patient, that issues such as the transplantation procedure, i.e., solid 

tissue grafts versus cell suspension grafts, location of the grafts, tissue handling and storage, 

age of donor, immunosuppression therapy, and patient selection in terms of age, gender, 

and degree of degeneration as evaluated by PET-FD uptake have to be taken into 

consideration.  They have also shown that fetal grafts can survive for extended periods, and 

can improve the clinical status of some of the patients for a considerable length of time.  

However, it does not appear to be a therapeutic alternative suited for the majority of PD 

patients. The experience obtained in this regard, needs to be taken into consideration before 

proceeding to the use of cell transplants in epilepsy. Animal studies using models of 

epilepsy have provided valuable information about the functional effects of transplants 

however, a drawback of these studies is the duration of the effects; therefore alternatives 

such as the use of gene therapy are now being considered (Löscher et al., 2008).  

5. Closing remarks 

Advances in molecular and cell biology have now made it possible to immortalize neural 

cells, including stem cells, to replace lost cells or replenish the supply of selected molecules 

(Mejia-Toiber, in press) and have thus provided a new source for neural transplantation, one 

that could possibly be tailored to each patient.  Although unquestionably promising and 

exciting, there are still some issues to be solved before these cells can be used routinely in 

the clinic.  Several authors have voiced concerns similar to those expressed for transplants 

using fetal tissue (e.g., Allan et al., 2010; Kim et al., 2004; Li et al., 2008; Lindvall et al., 2004; 

Muller et al., 2006; Snyder et al., 2004; Storch et al., 2004).  We have classified these concerns 

in two categories. The first one includes the negative effects of transplantation of stem cells 

into the brain.  These include the immune rejection of the transplant, and the effects of 

prolonged immunosuppression. Other negative effects are the potential for tumor formation 

after differentiated ES are transplanted resulting either from residual proliferating ES cells 

or precursors, or by the epigenetic changes resulting from their manipulation and the 
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presence of retroviral vectors. In the case of cell transplantation in PD there is also the 

concern for graft-induced dyskinesia (Allan et al., 2010).  

The second category of concerns includes the need to tailor cell therapy to the pathology of 
interest.  It must be considered if it would be preferable to transplant a homogeneous 
population, for example, neural cells, versus transplanting a mixed population including 
cells of glial lineage in order to favor their integration into the host’s nervous system to 
promote functional recovery.  Stem cells can provide the host environment with trophic and 
neuroprotective support to promote the recovery of endogenous cells, to mobilize host 
progenitors, and to favor inherent neurogenetic programs within the host, in addition to 
replacing host cells (Snyder et al., 2004). Furthermore, the reciprocal stem cell-host 
interaction needs to be taken into consideration, because the host environment may affect 
stem cell behavior by exposing these cells to factors related to the brain pathology of the 
host that may confer an invasive phenotype (Muller et al., 2006).  Indeed, NSC and BMC 
have been shown to migrate to localized and also widespread lesions after transplantation 
(e.g., Costa-Ferro, 2010; Chu et al., 2004); at least three processes seem to influence this 
migratory behavior: inflammation, reactive astrocytosis, and angiogenesis (Muller et al., 
2006).   
Undoubtedly, all these developments from adrenal to fetal grafts, to the generation of NSC 
with specific characteristics have increased our knowledge about the neurologic disorders 
themselves, about the potential for regeneration and restoration of function that the brain 
has, about the effects of neurotrophic factors, and about brain development.  New technical 
alternatives have been found, the use of stem cells, the possibility of induced PSC, and gene 
therapy. One should bear in mind that restoring lost functions by replacing damaged cells is 
not a trivial process if one considers the intricate relationships that exist among nerve cells, 
and that complex neural circuits underlie sensory, motor, and cognitive functions. After 
more than two decades of basic and clinical work in neural transplantation, it has become 
evident that in order to ensure long-term effects neural transplants need to do more than 
just supply the molecule of interest.  However, the positive results obtained in the past 
together with the recent technical advances indicate that in the future we can expect that 
therapeutic alternatives will be available in the clinical setting to improve the quality of life 
of human patients. 
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