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1. Introduction  

Heat exchangers  are equipments   commonly found in industrial applications. Virtually  not  
exist  almost industrial  area   which has not   a heat exchanger. This is used to exchange heat 
between two fluids, cooling and heating processes, heat recovery. The most performant, in 
terms of heat transfer, are the plate heat exchangers. These types of heat exchangers have a 
lot of advantages, including a high heat exchange area per unit volume and good heat 
transfer performance. 
An important number of numerical studies applying finite element method have been made 
to research fluid flow and heat transfer into heat exchangers (Gut&Pinto,2003), 
(Saber&Mazaher Ashtiani,2010), (Awrejcewicz et al., 2007). 
The paper presents a theoretical and experimental study on plate heat exchanger. It is 
performed a numerical simulation of a counter flow plate heat exchanger using finite 
element method. A 3D model was developed to analyze thermal transfer and fluid flow 
along the plate heat exchanger, using COSMOS/Flow program. The results are presented 
graphically and numerically. In parallel, starting from the same input data, it makes thermal 
calculations for the studied plate heat exchanger. The basic equations are the equation of 
heat balance for thermal agents and plate heat transfer equation. The calculation is iterative 
and has certain features related to channel geometry.  
Validation of the models presented is made by comparing the measured values obtained on 
experimental study. 

2. Presentation of studied plate heat exchangers - experimental results. 

The studied heat exchanger is a pack of 8 stainless steel thermal plates with gaskets. These 
plates are assembled together in cast iron frames and there are chevron type plates.  The hot 
water flows are in one direction in alternating chambers while the cold water flows are in 
counter flow in the other alternating chambers like in figure1. The number of passes is 1 and 
the thermal agents are directed into their proper chambers either by a suitable gasket made 
from ethylene propylene rubber (EPDM). The width of channel between plates is Ho= 
0,003m and the number of channels is Nc =4. Overall heat transfer surface is S=0,218m2.The 
geometric dimensions of the thermal plate are represented in table 1. 
Such a heat exchanger can be used to warm the cold water, considered a secondary thermal 
agent, with hot water, a primary thermal agent. Figure 1 shows the simplified presentation 
of a plate heat exchanger with eight plates in counter flow arrangements.  
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Dimension Notation Value Unit 

Diameter of the inlet tube d 0,003 m 

Effective plate length, measured 
between ports 

L 0,386 m 

Effective plate width, measured 
between ports 

l 0,088 m 

Stainless steel plate thickness ǅp 0,0006 m 

Table 1. Geometric dimensions of the plate  

 

 

Fig. 1. Schematic presentation of counter flow plate heat exchanger with eight thermal plates  

The plate heat exchanger is equipped with instrumentation for measuring pressure and 
temperature at the entrance and exit of thermal agents. Also  it is measured the volume of 
hot water and cold water volume in  adequate testing  stand. The measured values are 
presented in table 2. 
 

Description Notation M.U. Value 

Inlet temperature of hot water T1,in oC 55 

Outlet temperature of hot water T1,out oC 21 

Inlet temperature of cold water T2,in oC 11 

Outlet temperature of cold water T2,out oC 19 

Hot water volume ΔV1 m3 0,0044 

Cold water volume ΔV2 m3 0,017 

Measured time Ǖ s 60 

Table 2. Measured values  

The volume flow rate of hot water and the volume flow rate of cold water are calculated 
with the next formula: 

 i
i

V
V




 , [m3/s] (1) 

Where i=1 for hot water and i=2 for cold water. 
The heat transfer rate from hot water is calculated with the next equation, for steady state 
conditions: 

inlet hot water 

outlet cold water 

inlet cold water

outlet hot water 
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 1 1 1 1 1 1, ,( )p in outQ V c T T     , [W] (2) 

Where ρ1 ,[kg/m3]- density, cp1, [J/kg*oC] – heat capacity at constant pressure, determinate 

at average temperature of hot water T1,m = (T1,in+T1,out)/2.  

The thermal flux received by cold water is given by equation (3), for steady state 
conditions: 

 2 2 2 2 2 2, ,( )p in outQ V c T T     ,[W] (3) 

Where ρ2 ,[kg/m3]- density, cp2, [J/kg*oC] – heat capacity at constant pressure, determinate 

at average temperature of hot water T2,m = (T2,in+T2,out)/2.  

The coefficient of heat retention for studied counter flow plate heat exchanger is defined 

with next relation: 

 2

1

t

Q

Q
  , (4) 

The determinate values are presented in table 3.  

 

Description M.U. Value

1V m3/s 7,33*10-5 

2V m3/s 2,833*10-4 

Q1 W 10347

Q2 W 9486

ɳt - 0,917

Table 3. Determinate values from experimental results 

3. Numerical simulation of the counter flow plate heat exchanger using finite 
element method  

3D geometric model of the heat exchangers is created using SolidWorks program. Figure 2 

shows the model of plate heat exchanger with eight thermal plates.  

Mathematical modelling includes assignation of governing equations. The partial 

differential equations (pdes) governing fluid flow and heat transfer include the continuity 

equation, the Navier-Stokes equations and the energy equation. These equations are 

intimately coupled and non-linear making a general analytic solution almost impossible. 

The governing equations for fluid flow and heat can be written as (Grigore&Popa, 2009): 

Continuity equation: 

 0
ρ ρu ρv ρw
t x y z

   
   

   
, (5) 

x-, y-, z- momentum equations: 
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Fig. 2. 3D model of counterflow plate heat exchanger with 8 thermal plates 

 

2 DR

u u u u
u v w

t x y z

p u u v u w
g S Sx x x x y y x z z x

   

    

   
   

   

                                           

, (6) 

 

2

v v v v
u v w

t x y z

p v u v v w
g S Sy DRy y y x y x z z y

   

    

   
   

   

                
                                  

, (7) 

 

2

w w w w
u v w

t x y z

p w u w v w
g S Sz DRz z z x z x y z y

   

    

   
   

   

                                           

.  (8) 

The two source terms in the momentum equations, Sω and SDR, are for rotating coordinates 
and distributed resistances, respectively.  
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The distributed resistance term can be written in general as: 

 
2

2

i
DR i i

f V
S K C V

d

      
 

, (9) 

Where i refer to the global coordinate direction (u, v, w momentum equation), f- friction 
factor, d- hydraulic diameter, C – permeability and the other factors are descript in table 4. 
Note that the K-factor term can operate on a single momentum equation at a time because 
each direction has its own unique K-factor. The other two resistance types operate equally 
on each momentum equation (Grigore&Popa, 2009), (Cosmos/Flow,2001). 
The other source term is for rotating flow. This term can be written in general as: 

 2S V ri i i i i         ,             (10) 

Where i refer to the global coordinate direction, ω is the rotational speed and r is the 
distance from the axis of rotation. 
For incompressible and subsonic compressible flow, the energy equation is written in terms 
of static temperature (Grigore et al., 2010): 

T T T T T T T
c c u c v c w U U U qp p p p Vt x y z x x y y z z

   
    
        

               
         

 ,(11) 

The volumetric heat source term from equation (10) is considered zero for this model.  
Table 4 presents the variable of the equations: 

 

Variable Description 

cp specific heat at constant pressure 

k thermal conductivity 

p pressure 

qV volumetric heat source 

T temperature 

t time 

u 
velocity component in x-

direction 

v 
velocity component in y-

direction 

w 
velocity component in z-

direction 

ρ density 

η dynamic viscosity 

Table 4. Variables of the governing equations 

The equations describe the fluid flow and heat transfer under steady-state conditions for 
Cartesian geometries. For the turbulent flow, the solution of these equations would require a 
great deal of finite elements (on the order of 106÷108) even for a simple geometry as well as 
near infinitesimal time steps. In this paper is used COSMOS/Flow program which solves 
the time-averaged governing equations. 
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The time-averaged equations are obtained by assuming that the dependent variables can be 

represented as a superposition of a mean value and a fluctuating value, where the 

fluctuation is about the mean value and a fluctuating value, where the fluctuation is about 

the mean. For example, the velocity component in y-direction can be written (Cosmos/Flow, 

2001), (Grigore et al., 2010): 

 V = V + v’, [m/s] (12) 

where V, [m/s] – the mean velocity, v’, [m/s] – the fluctuation about the mean. This 

representation is introduced into the governing equations and the equations themselves are 

averaged over time. If it uses the notation that the uppercase letters represent the mean 

values and lowercase letters represents fluctuating values, it can be written the governing 

equations (Cosmos/Flow, 2001), (Grigore et al., 2010): 

Continuity equation:  

 0
u v w

t x y z

      
   

   
,               (13) 

Momentum equations: 

2x DR

U U U U P U U V U W
U V W g uu uv uv S S

t x y z x x x y y x z z x
          

                                                          
, (14)

 

2y DR

V V V V P V U V V W
U V W g vv uv vw S S

t x y z y y y x y x z z y
          

                    
                                            

 (15) 

2z DR

W W W W P W U W V W
U V W g ww uw vw S S

t x y z z z z x z x y z y
          

                                                         
 (16) 

Energy equation: 

' ' '
p p p p P p p V

T T T T T T T
c c U c V c W k c uT k c uT k c wT q

t x y z x x y y z z
      

                                       
 (17)

 

 

The averaging process has produced extra terms in the momentum and energy equations. 

For turbulent flow, equations of continuity, of momentum  and energy is a system of 5 

equations with 14 unknowns (Cosmos/Flow,2001). To solve, it is used Boussinesq 

approximation which defines an eddy viscosity and eddy conductivity: 

 
2

...t

uu uv vw

U U V V W

x y x z y

     
   

    
 

    

,                (18) 

 
p p p

t

c ut c vt c wt
k

T T T

x y z

    
  

  
  

. (19) 

These terms imply that the effect of turbulence is isotropic. With these approximations the 

governing equations become: 
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 0
u v w

t x y z

      
   

   
  (20) 

 

2( ) ( ) ( )x t t t DR

U U U U P U U V U W
U V W g S S

t x y z x x x y y x z z x
          

                                                          
 (21) 

 

2( ) ( ) ( )y t t t DR

V V V V P V U V V W
U V W g S S

t x y z y y y x y x z z y
          

                    
                                            

 (22)
 

 

2( ) ( ) ( )z t t t DR

W W W W P W U W V W
U V W g S S

t x y z z z z x z x y z y
          

                                                         
 (23)

 

 

( ) ( ) ( )p p p p t t t V

T T T T T T T
c c U c V c W k k k k k k q

t x y z x x y y z z
   

                                        
 (24) 

In these conditions should be determined in addition to the 5 unknowns only kt and  ηt. The 
program  COSMOS Flow uses a model with two equations for their determination 
(Cosmos/Flow,2001). 

 
2

t

C K


 , (25) 

 

 
Pr

t p
t

t

c
k


 , (26) 

Where Prt - turbulent Prandtl number and Cη – empirical constant. The transport equations 
for K and ǆ are derived using momentum equations: 

2 22 2 2

2 2 2

( )

( )

T T

k k

T
T

k

K K K K K K
U V W

t x y z z z x x

K U V W U V U W V W

y y x y z y x z x z y

      
 

  


                                     

                                                                

2    
   

 (27) 

22 2

2

2 1 2 2

2 2 2

( )

( )

T T

T
t

U V W
t x y z z z x x

U V W

x y z
C C

y y K K U V U W

y x z x

 



            
 

     


                                     

                           
                      

2
V W

z y

 
 
 
 
   

  
    

 (28) 
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Where  ǔK and ǔǆ – turbulent Schmidt numbers, C1, C2 – empirical constants. With these 2 
equations, there are 9 equations in 9 unknowns: U,V,W, P,T, μt, kt, K,ǆ.   Table 5 presents the 
constants associated to model (Cosmos/Flow,2001). 
 

Constant Value 

Cη 0.09 

C1 1.44 

C2 1.92 

ǔk 1.0 

ǔǆ 1.3 

Table 5. Used constants in model 

Finite element method  is used to discretize the flow domain, thereby transforming the 
governing partial differential equations into a set of algebraic equations whose solution 
represents an approximation to the exact analytical solution (Awrejcewicz &Krysko, 2003), 
(Grigore et al., 2010), (Andrianov et al., 2004). A set of simplified hypothesis are introduced: 

 Hot water and cold water are Newtonian fluids; 

 No phase change occurs, the fluids are unmixed; 

 Turbulent flow is fully developed; 

 Working fluids are incompressible, 

 Steady state conditions; 

 Coefficient of heat retention equal with 1. 
It is applied the Streamline Upwind Petrov Galerkin (SUPG) method. The method is used 

directly on the diffusion and source terms and for the advection terms, the streamline 

upwind method is used with the weighted integral method. These terms are transformed to 

stream-wise coordinates, like in next expression: 

 SU V W U
x y z S

   
  

   
       , (29) 

Where s – stream-wise coordinate, Us – the velocity component in the stream-wise 

coordinate direction, Φ- transported quantity.  

In figure 3 is shown the used analysis scheme. 

The disparagement mode (mesh) , is very important for the final results. The models are 

divided in a multitude of little parts with simple geometrical forms, defined as finite parts, 

and connected in common points called nods, like in figure 4.  

The quality of mesh is high (10-node tetrahedral), mesh type is solid mesh, element size – 

5,3588 mm, 365377 nodes  and 244363 elements.  

Boundary conditions from table 6 are proposed. 

For incompressible flows, the most robust condition for the pressure equation is to specify a 

value at the outlet. Since only relative pressures are calculated by COSMOS/Flow, a value 

of 0 is recommended (Cosmos/Flow,2001). The numerical simulation of turbulent flow is 

modeled by k- ε turbulence model.  ε  represents the turbulent energy dissipation. To 

www.intechopen.com



 
Study Regarding Numerical Simulation of Counter Flow Plate Heat Exchanger 

 

365 

 

Fig. 3. Analysis scheme 

calculate the boundary layer, either “wall functions” are used, overriding the calculation of k 

and ε in the wall adjacent nodes, or integration is performed to the surface, using a “low 

turbulent Reynolds (low-Re) k-ε” model (Grigore et. al., 2010). 

After the analysis was processed it can be visualized the results, under graphical form or 

numerical value. Because the governing equations are non-linear, they must be solved 

iteratively. A Picard or successive substitution is used. In this method estimates of the 

solution variables are substituted in the governing equations. The equations are solved for 

new values which are the used as the estimates for the next pass. The convergence criterion 
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Fig. 4. Mesh 

 

No. Fluid Description unit Value 

1 
Hot Water inlet 

Temperature – T1,in oC 55 

2 Volume flow rate - 1V m3/s 7,33*10-5 

4 
Cold Water inlet 

Temperature – T2,in oC 11 

5 Volume flow rate – 2V m3/s 2,833*10-4 

6 Hot water outlet Static pressure N/m2 0 

7 Cold water outlet Static pressure N/m2 0 

Table 6. Boundary conditions 

is the level at which the specified variable’s residual norm must reach.  With each pass, the 

residuals should become smaller if the solution is converging. The global iterations is shown 

below: 

1. Solve x momentum equation; 
2. Solve y momentum equation; 
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3. Solve z momentum equation; 
4. Solve pressure equation and velocities; 
5. Solve energy equation; 
6.  Solve turbulent kinetic energy equation; 
7. Solve turbulent energy  dissipation equation; 
8. Check convergenge (GOTO1) 
Analysis runs for 100 iterations, in turbulence conditions, for all eight cases. Profiles are 
obtained for the following parameters: u, v, w, T, k, ε. In figure 5 is shown the distribution of 
the nodal temperature, after 50 iterations. 
The hot water temperature and the cold water temperature vary along their flow path, even 
in the case of constant thermal resistance, because of the flow distribution and temperature 
gradient variations across the plates. 
Convergence control of a solution variable is accomplished by reduction the solution 
progression rate so that the change of divergence is minimized. COSMOS/Flow has the 
Graphical Convergence Monitor, where are presented the numerical data like the average, 
the average, minimum, maximum values for each degree of freedom over the completed 
range of iterations(Grigore et al.,2010). 
 

 

Fig. 5. Distribution of nodal temperature 

 

No. Fluid Description M.U. Value 

1 Hot water outlet 
Temperature 

T1,OUT

oC 22,32 

2 Cold water outlet 
Temperature  

T2,out

oC 17,90 

Table 7. Obtained values for average  temperatures at the outlet 
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The convergence of the nodal temperature is shown in figure 6.  
The values obtained for average temperature at the outlet of hot water and outlet of cold 
water are presented in table 7. 
 

 

Fig. 6. Convergence of the nodal temperature after 90 iterations 

4. Theoretical analysis of studied plate heat exchanger 

The theoretic analysis is based on the equation of heat balance for thermal agents  and plate 
heat transfer equation. The total rate of heat transfer between the hot and cold fluids passing 
through a plate heat exchanger may be expressed as:  

 Q U S LMTD   , [W]                             (30) 

Where U, [W/m2K] - the overall heat transfer coefficient, LMTD, [K] - the log mean 
temperature difference in K. U is dependent upon the heat transfer coefficients in the hot 
and cold streams. LMTD  is computed under assumption of counter flow condition with 
next relation (Badea et al., 2003): 

 max min

max

min

ln

T T
LMTD

T

T

  


 
  

,[K]                (31) 

Where ΔTmax = max(ΔT1, ΔT2), ΔTmin =min (ΔT1, ΔT2); ΔT1, ΔT2 from figure 7. Figure 7 
shows the hot and cold fluid temperature distributions in the counter flow heat exchanger. 
The heat transfer surface aria S is represented along the x-axis and the fluid stream 
temperature along the y-axis. 
The boundary conditions are the same like  in experimental case and analyze with finite 
element method. The following simplifications were considered: 
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 steady-state conditions; 

 no leakage flow; 

 no phase change; 

 physical proprieties  are constant in the plate heat exchanger; 

 uniform temperature and uniform fluid distribution; 

 no heat losses to the surrounding; 

 efficiency of counter flow plate heat exchanger is considered 1. 
The calculation is iterative and has certain features related to channel geometry and in the 
same time depends on the flow regimes and criterial relations for convection heat transfer 
coefficients. Next are presented the principal steps: 
1. Approximation of the average temperatures of the thermal agents Tm1 and Tm2  and 

approximation of plates temperatures Tp =(Tm1 +Tm2/2. 
 

 

Fig. 7. The hot and cold fluid temperature distributions in the counter flow heat exchanger 

2. Determination of hydraulic diameter characteristic for studied plate heat exchanger 
configuration, with next formula: 

 
4

2 ( )
o

h
o

l H
d

l H

 


 
, (32) 

3. Determination of average velocity under channels for both thermal agents:  

 i
i

c o

V
w

N H l


 


,[m/s] (33) 

Where i=1 for hot water and i=2 for cold water. 

4. Calculation of Reynolds numbers. 

 Re i h
i

i

w d




 , (34) 

Where i=1 for hot water and i=2 for cold water, ǖi  [ m/s2] – cinematic viscosity.   
5. For turbulent regimes, with next formula is calculated convection heat transfer coefficient, 

for each thermal agents( hot water and cold water)(Facultatea de Energetica, 2010): 
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0 14

0 61 0 463

,

, ,Re Pr i
i i i i

p


 



 
     
 
 

 (35) 

Where i=1 for hot water and i=2 for cold water, ɳi  [ m/s2] – dynamic viscosity, λi [W/mK] – 

thermal conductivity, Pr- Prandtl number. 

6. It  calculates temperature of the plates: 

 1 1 2 2

1 2

i

Tm Tm
Tp

 
 

  



, [oC] (36) 

And the error 100iTp Tp

Tp



  . 

 

If ǆ >2%, it goes to point 1 and the calculus begin again. If ǆ <2% is still calculating.  
7. The overall heat transfer coefficient is determinated: 

 

1 2

1

1 1p

p

U 
  


 

, [W/m2K] (37) 

8. The maximum number of transfer units: 

 max
min

U S
NTU

W


 , (38) 

Where Wmin = min(W1, W2) ,[W/K] – minimum heat capacity rate.  

 1 1 1 1,pW V c    , [W/K] (39) 

 2 2 2 2,pW V c    , [W/K] (40) 

9. Heat transfer effectiveness is definite like actual heat transfer divided by the maximum 

possible heat transfer.  

 

1

1

1

1

min
max

max

min
max

maxmin

max

W
NTU

W

W
NTU

W

e

W
e

W



 
    

 

 
    

 




 

, (41) 

 

Where Wmax =max(Wmin,Wmin). 
10. The heat exchanger duty is: 

 1 2min , ,( )in inQ W T T     (42) 

11. The outlet temperature of the hot water and the outlet temperature of the cold water: 
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 1 1

1

,, in

Q
T out T

W
  ,[oC] (43) 

 2 2

2

,, in

Q
T out T

W
  ,[oC]                (44) 

Obtained results are: T1,out = 22,36 oC and  T2,out = 19,38 oC. 

4. Conclusions 

The paper presents a simplified model for a plate heat exchanger in a counter flow 
arrangement. It is realized a numerical simulation and it is observed that the model is in 
concordance with the experimental results and with the results from theoretical analysis. 
Numerical simulation of plate heat exchanger using finite element method is very 
representative, although it is very laborious and consume more resources from a computer 
(the geometrical  model is much complex, the simulation is more difficult), the results are 
well presented visual, graphic and numerical.  
 

Value M.U. Experimental results Theoretical analysis Numerical simulation 

T1,out oC 21 22,36 22,32 

T2,out oC 19 19,38 17,9 

Table 7. Results for outlet temperatures 

There are small differences between results. The differences appear due to the simplifying 
assumptions considered and due to presence of fouling  on the surface of the plates. Also a 
relative degree of uncertainty is introduced by the criterial relations  used to calculate 
convection  heat transfer coefficients. In the same time, the plate heat exchanger has 
corrugated plates patern. Numerical simulation cannot reflect the influence of the 
corrugation angle and corrugation height, but it offers a good understanding of the 
temperature distribution and fluid flow under turbulent motion. 
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