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1. Introduction 

Heat transfer from hot bodies such as steel, aluminum and other metals is vitally important 

for a wide range of industries such as chemical, nuclear and manufacturing (including steel 

hardening) industries. Hardening of steels (so-called martensitic- or bainitic-hardening) 

requires preheating (austenitizing) of the part to temperatures in the range of 750-1100 °C, 

from which the steel is quenched (i.e., rapidly cooled) in a defined way to obtain the desired 

mechanical properties such as hardness and yield strength. Most liquid quenchants used for 

this process exhibit boiling temperatures between 100 and 300 °C at atmospheric pressure. 

When parts are quenched in these fluids, wetting of the surface is usually time dependant, 

which influences the cooling process and the achievable hardness (Liscic et al., 2003). 
Heat transfer research related to cooling has been the source of fundamental studies since 
the early work by Fourier (Fourier, 1820). These early studies were typically performed by 
hot-wire anemometry (King, 1914; Russell, 1910). One of the first to report the results of 
fundamental heat transfer studies for the quenching of metals such as steel using cooling 
curve analysis (time vs. temperature curves) was Benedicks who utilized 4-12 mm diameter 
x 15-50 mm cylindrical carbon steel probes in his now-classic work (Benedicks, 1908). The 
advantage of using probes larger in diameter than thin platinum wire used for hot-wire 
anemometry tests is that it is possible to more easily measure thermal gradients through the 
cross-section upon cooling and to view surface cooling mechanisms. Benedicks work 
involved cooling hot steel (1000 ºC) in water at 4.5 – 16 ºC and in addition to cooling time 
from 700 ºC – 100 ºC, effects of the ratio of mass/surface area on cooling time were 
evaluated. 
In 1920, Pilling and Lynch measured the temperature at the center of 6.4 mm dia x 50 mm 
cylindrical carbon steel probes cooled (quenched) from 830 ºC into various vaporizable 
liquids (Pilling & Lynch, 1920). From this work, they identified three characteristic cooling 
mechanisms, so-called: A, B and C-stage cooling which are currently designated as film 
boiling, nucleate boiling and convective cooling, based on the cooling time-temperature and 
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cooling rate – temperature profiles. Scott subsequently developed graphical methodology 
for estimating heat transfer coefficients from the centerline cooling curves of steel probes 
(Scott, 1934). 
At approximately the same time, French reported cooling curve results measured at the 
surface and center of cylindrical and spherical probes (12.7 – 280 mm dia) quenched into a 
series of vaporizable liquids from 875 ºC (French, 1930). In addition to studying the effect of 
agitation, oxidation and surface roughness on cooling velocity, French performed 
photographic examination of the different cooling mechanisms occurring during the quench 
processes. These were among the very first pictorial studies illustrating surface wetting 
differences throughout the quenching process. Similar photographic studies were 
performed by Sato for examining the effect of facing materials on water quenching processes 
(Sato, 1933). 
Speith and Lange used 10-20 mm cylindrical and spherical copper probes and spherical 

silver probes to examine quenching processes (Speith & Lange, 1935). The cooling media 

included tap water, distilled water and rapeseed oil. In addition to cooling curve behavior, 

they also studied the boundary surface conditions and vapor film formation and breakage 

on the quenching process using schlieren photography. 

Using a 25.4 mm spherical silver probe with a center thermocouple and another exposed at 

the surface of the ball, T.F. Russell obtained time-temperature cooling curves after 

quenching in petroleum oil (Russell, 1939). In addition, photographs were taken throughout 

the quenching process and, like Speith and Lange, showed that that the vapor film which is 

formed initially on the surface breaks down at a characteristic point. However, Russell did 

show that the breakage of the vapor film did not occur uniformly on the entire surface. 

Instead, he observed that the bottom of the probe took longer to reach the characteristic 

transition temperature than did the sides of the ball indicating non-uniform film formation 

and rupture over the entire surface of the ball during the quenching process. 

Tagaya and Tamura were the first to perform a detailed correlation between surface cooling 

curves obtained with a 10 mm dia x 300 cylindrical silver probe with a surface thermocouple 

and movies of the quenching process (cinematographic methods) of the observed cooling 

mechanisms as they relate to surface wetting processes during quenching (Tagaya & 

Tamura, 1952). By using a silver probe with a surface thermocouple, they identified four 

stages of cooling which included the shock-film boiling process that preceeds formation of 

full-film boiling. Other workers in the field have subsequently used cinematography to 

study surface heat transfer mechanisms during quenching (Kobasko & Timchenko, 1986; 

Lainer & Tensi, 1996; Tensi & Lainer, 1999; Narazaki et al., 1999). 

Ben David et al. have described the rewetting process and the characteristic temperature 
where this occurs as:  “Rewetting of hot surfaces is a process in which a liquid wets a hot 
solid surface by displacing its own vapor that otherwise prevents contact between the solid 
and liquid phases. When a liquid contacts a sufficiently hot surface it comes to a boiling 
point, and a vapor film, which separates the liquid from the surface, is generated. As the 
surface cools off, the vapor film reaches a point where it can no longer be sustained. At this 
point, the vapor film collapses and surface liquid contact is reestablished. This phenomenon 
is called re-wetting or quenching” (Ben David et al., 1999). The temperature at the solid-
liquid-vapor contact line is designated as the rewetting temperature or Leidenfrost 
temperature (Frerichs & Luebben, 2009). Specific knowledge of the rewetting process is 
especially important because the highest heat transfer coefficient occurs during rewetting. 
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G. J. Leidenfrost described the wetting process about 250 years ago (Leidenfrost, 1966). 
Literature describes Leidenfrost temperature-values for water at atmospheric pressure 
between 150 and 300°C (Yamanouchi, 1968; Duffly & Porthouse, 1973; Kunzel, 1986; Hein, 
1980). The Leidenfrost Temperature is influenced by a variety of factors, some of which 
cannot be quantified precisely even today. 
For a nonsteady state cooling process, the surface temperature at all parts of the workpiece 
is not equal to the Leidenfrost Temperature at a given time. When the vapor blanket (or film 
boiling) collapses, wetting begins by nucleate boiling due to the influence of lateral heat 
conduction (relative to the surface) (Ladish, 1980). This is due to the simultaneous presence 
of various heat transfer conditions during vapor blanket cooling (or film boiling [FB]), 
nucleate boiling [NB], and convective heat transfer [CONV] with significantly varying heat 
transfer coefficients αFB (100 to 250 kW m-2 K-1); αNB (10 to 20 kW m-2 K-1), and αCONV (ca. 700 
W m-2 K-1). Figure 1 schematically illustrates the different cooling phases on a metal surface 
during an immersion cooling process with the so-called "wetting front," w, (separating the 
"film boiling phase" and the "nucleate boiling phase") and the change of the heat transfer 
coefficients, α, along the surface coordinate, z, (mantle line). In most cases during immersion 
cooling, the wetting front ascends along the cooling surface with a significant velocity, w, 
whereas during film cooling the wetting front descends in the fluid direction (Liscic et al., 
2003; Stitzelberger-Jacob, 1991). 
 

 

Fig. 1. Wetting behavior and change of heat transfer coefficient (α ) along the surface of a 

metallic probe: (a) immersion coling, (b) film cooling (Liscic et al., 2003; Stitzelberger-Jacob, 
1991). 
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A rewetting process for a heated cylindrical test specimen which was submerged in water is 

shown in Figure 2 (Tensi & Lainer, 1997; Tensi, 1991; Tensi et al., 1995). Because of the 

different wetting phases on the metal surface (and the enormous differences of their values 

of αFB, αNB, and αCONV) the time dependant temperature distribution within the metal 

specimens will also be influenced by the velocity and geometry of the wetting front (for 

example, circle or parabolic-like) as well as geometry of the quenched part. Tensi et al. 

(Tensi et al., 1988) and Canale and Totten (Canale & Totten, 2004) have reported that the 

degree of non-uniformity of this rewetting process may be sufficiently significant that it will 

lead to quenching defects such as non-uniform hardening, cracking and increased 

distortion. Therefore, the understanding and quantification of surface rewetting during 

quenching by immersion in vaporizable fluids is critically important. 
 

 

Fig. 2. Cooling process illustrating the transition of the three cooling mechanisms – film 

boiling (FB), nucleate boiling (NB), convective cooling (CONV) - during immersion cooling 

of a cylindrical 25 mm dia × 100 mm CrNi-steel test specimen quenched from 850°C into 

water at 30°C with an agitation rate of 0.3 m/s (Tensi, 1991). 

Various methods have been used to quantify the rewetting kinematics of different 

quenching processes. One of the earlier methods was to place surface, or near surface 

thermocouples at known positions on a probe surface (Tensi et al., 1995; Narazaki et al., 

1999). Although any probe shape could be employed, most typically a cylindrical probe is 

used. However, it is important to note that when cylindrical probes are used, probe shape of 

the bottom surface is important (Tensi & Totten, 1996). It has been shown by various 

workers that perfectly flat surfaces are often not preferred because of their potential impact 

on the stability of the film-boiling process and subsequent transition to nucleate boiling; the 

so-called edge effect (Narazaki et al., 1996). Recently, a preferred probe design has been 

proposed for use in studying rewetting kinematics of immersion quenching processes 

(Vergara-Hernández & Hernández-Morales, 2009). 

Tensi et al. have used electrical conductance measurements to quantify wetting kinematics 

for classification of the overall rewetting processes that may be encountered and for 

subsequent modeling work (Tensi et al., 1988). This is based on the fact that the electrical 

conductance increases significantly as the vapor blanket formed during film boiling 

ruptures, which is followed by the nucleate boiling process where there is fluid contact at 

the metal-quenchant interface. The electrical conductance increases as the coverage of the 

surface with boiling quenchant increases (Totten & Tensi, 2002). 
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Tkachuk et al. have shown the importance of surface wetting properties of both the 
basestocks used to formulate oil quenchants and the effects of a wide range of different 
additives on surface wetting, especially as it relates to cooling rates (Tkachuk et al., 1989; 
Tkachuk et al., 1986). Not unexpectedly, as the wetting properties improve, the heat 
extraction capability increases resulting in higher cooling rates. However, these 
measurements were limited to room temperature and they did not describe the rewetting 
process during quenching using these fluid formulations. More recent work by Jagannath 
and Prabhu has however addressed many of these shortcomings by utilizing dynamic 
measurements on the quenching surface (Jagannath & Prabhu, 2009). While they do provide 
a dynamic measure of overall wetability, such measurements do not provide any 
quantification of the movement of the wetting front during the immersion quench. 
The method of choice to study surface rewetting process involves quantitative 
cinematography. Various workers have discussed experimental approaches to examining 
surface rewetting using different probe designs and experimental processes to study 
immersion quenching in vaporizable fluids (Lainer & Tensi, 1996; Tensi & Lainer, 1999; 
Hernández-Morales et al., 2009; Lübben et al., 2009; Frerichs & Lübben, 2009). These 
measurements have been invaluable in providing more realistic assessments in the 
modeling of heat flux, thermal gradients and residual stresses during quenching such as the 
work reported by Loshkaroev et al. (Loshkaroev et al., 1994). 
Given the importance of carefully monitoring the advance of the wetting front and deriving 
quantitative information about heat extraction during forced convective quenching, in this 
chapter, we describe detailed computational and experimental work to asses the usability of 
probes of different geometries. Also, results of wetting front kinematics and heat extraction 
obtained with a conical-end cylindrical probe are presented. 

2. Experimental work 

The experimental apparatus is shown in Figure 3. The water in the main container is drawn 
with a ¼ HP pump and flows through a 90° elbow followed by a vertical plexiglass tube (44 
mm I.D.). The water flowrate is set with a rotameter which is placed before the 90° elbow. 
After impacting the probe, the water is discharged in a secondary container. The desired 
water temperature is achieved with electrical heaters placed within the main container; the 
water temperature control was manual. 
From PIV (Particle Image Velocimetry) measurements conducted at several distances from 
the elbow it was found that the velocity profile was not fully developed until a position of 
1.50 m along the vertical section of the plexiglass tube (Vergara-Hernández & Hernández-
Morales, 2009). Thus, the probe tip was always located at 1.70 m from the elbow. The probe 
was heated in an electric furnace (in stagnant air) up to a temperature of 915 °C such that the 
temperature at the start of the quench was close to 900 °C in all experiments. To ensure a 
quick and controlled descent of the probe into the quench bath, the probe was attached to a 
steel lance which in turns was fitted to a moving spreader. 
Three probe geometries were considered: 1) flat-end cylinder, 2) hemispherical-end cylinder 
and 3) conical-end cylinder. The probes were machined from AISI 304 stainless steel stock 
bar and instrumented with 1/16”, Inconel-sheathed, type K (see Figure 4). The 
thermocouples were press-fitted into position. To keep water to enter into the space between 
the thermocouple and the bore wall, the top surface of the probe was covered with high 
temperature cement (Omega, model Omega 600). 
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Fig. 3. Schematic representation of the experimental device: (a) plexiglass tube, (b) pump, (c) 

primary water container, (d) rotameter, (e) secondary water container, (f) electrical furnace, 

(g) moving spreader, (h) supports, (i) 90° elbow. 

The events occurring at the probe surface during the quench were recorded with a high-

velocity camera (Photron, model FASTCAM-PCI R2). The camera was placed in front of the 

tube at the probe quenching position, approximately 50 cm from the external wall of the 

tube; the videos were recorded at 125 fps with a resolution of 512 X 480 pixels. To avoid 

image distortion, a glass container (8 cm × 8 cm × 60 cm, with a 46 mm dia. hole at the center 

of its base) filled with water was placed surrounding the tube, vertically-centered at the 

probe quench position. To record the thermal response, the thermocouples were connected 

to a computer-controlled data acquisition system (IOTECH, model TempScan1000); the 

software package ChartView 1.02 was used to control the data acquisition operation. A data 

acquisition frequency of 10 Hz was used for all experiments. 

In addition to the quenching experiments, physical modeling (cold) tests were conducted to 

visualize the flow of water in the neighborhood of the probe. The experiments were carried 

out with the whole system at room temperature; cellophane ribbons were attached to the 

probe base (or the probe tip, in the case of the hemispherical-end and the conical-end 

cylindrical probes) to show the flow streamlines. The cold experiments were conducted for 

each one of the three water velocities of interest. 
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(a) (b) 
  

(c) (d) 

Fig. 4. Test probes: (a) conical-end cylindrical probe (lateral view); (b) hemispherical-end 

cylindrical probe (lateral view); (c) flat-end cylindrical probe (lateral view); (d) top view. All 

dimensions are in millimeters.  

3. Mathematical model 

In previous reports (Vergara-Hernández & Hernández-Morales, 2009; Vergara-Hernández et 

al., 2010; Hernández-Morales et al., 2011), mathematical models of fluid flow were used to 

explore the effect of the hydrodynamic characteristics within the water flowing past the 

probes on the heat extraction for the flat-end and the conical-end cylindrical probes. In this 

work, those computations are extended to include the hemispherical-end cylindrical probe 

in order to provide with a clear picture of the effect of the fluid-solid interactions and their 

impact on the heat extraction. 

Assuming that there is no angular component of the velocity within the plexiglass tube, the 

domain considered in the mathematical model was a 2D (r-z) axis-symmetric plane (see 
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Figure 5 (a)) where a Newtonian fluid is flowing under unsteady-state conditions; the whole 

system is treated as isothermal. To optimize computer resources, only half of the plane is 

simulated.The boundary conditions are indicated in Figure 5 (b). Similar computational 

domains and set of boundary conditions were used for the simulations corresponding to the 

hemispherical-end and the conical-end cylindrical probes. 
 

 

  

           (a)  (b) 

Fig. 5. (a) Computational domain (dimensions in mm) and (b) boundary conditions for the 
simulations corresponding to the flat-end cylindrical probe. 

The objective of the mathematical model was to relate the hydrodynamic conditions to the 

characteristics of the vapor film and the re-wetting process by computing the evolution of: 1) 

the streamlines and 2) the velocity field within the fluid. The simulations were carried out 

for a system at room temperature and an incompressible fluid. Therefore, the governing 

equations (continuity and momentum conservation) may be written as: 

 0v∇ ⋅ =  (1) 

 R
Dv

p g
Dt

ρ τ τ ρ
⎡ ⎤

⎡ ⎤ ⎡ ⎤= −∇ − ∇ ⋅ − ∇ ⋅ +⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

f
 (2) 

Where ρ  is the fluid density, v  is the fluid velocity vector,  p  is the dynamic pressure,  τ is 

the stress tensor related to viscous flow Rτ  is the Reynolds stress tensor and 
f
g  is the 

acceleration vector due to the gravitational force. The overbars indicate time-averaged 

values. The k ε− turbulence model (Launder and Spalding, 1974) was used to describe the 

turbulent characteristics of the flow: 

 
23

( )
2

avgk u I=  (3) 

 1/80.16(Re )
HDI −=  (4) 
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surface 
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Outlet pressure 
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3/2

3/4 k
Cµε =

l
 (5) 

 0.07 L=l  (6) 

where k and ε are the kinetic energy turbulence and its dissipation, respectively, I is the 

turbulent intensity, avgu is the average fluid velocity, Re
HD is the Reynolds number based 

on the hydraulic diameter, l  is the turbulent scale length, µC is a constant (0.09 ), and L  is 

the duct diameter. 
Using information obtained with previously reported PIV measurements (Vergara-
Hernández & Hernández-Morales, 2009), the following velocity profile at the bottom 
boundary of the computational domain (refer to Figure 5 (a)) was applied:  

 
(0.2389E-06+ r )

( ) = + 7.131 r  
(0.6791E-03+1.007 r )

avgu r u R r R
⎡ ⎤

⋅ − < <⎢ ⎥
⋅⎢ ⎥⎣ ⎦

 (7) 

Where ( )u r is the velocity profile at the inlet of the computational domain, r is the radial 

position measured from the symmetry plane and R is the tube radius. 
The governing equations and related boundary conditions are highly non-linear which 

forces a numerical solution. The commercial CFD (Computational Fluid Dynamics) code 

Fluent (Fluent, 2011), which is based on the Finite Volume Method (Versteeg & 

Malalasekera, 1995), was used. The computational domain was discretized as shown in 

Figure 6; a total of 42,000 cells (control volumes) were used. 
 

 

Fig. 6. Mesh used to discretize the computational domain. The image on the right 

corresponds to a detail showing the mesh near the probe surface. 

4. Results and discussion 

4.1 Thermal response 
The simultaneous occurrence of the three modes of heat extraction and the presence of the 

wetting front (the boundary between film and nucleate boiling) are evident in Figure 7, 

which corresponds to a quench in water at 60 °C, flowing at 0.2 m/s. From this image it is 

clear that the transition from one mode to another is not sharp: on the one hand, the bubble 
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density in the nucleate boiling region is not constant and, on the other, the probe surface 

above the wetting front shows areas with different tonalities which implies a surface 

thermal gradient along the probe length. 

 

 

Fig. 7. Heat transfer modes during quenching of a flat-end cylindrical probe quenched from 

900 °C in water at 60 °C, flowing at 0.2 m/s. The wetting front occurs at the boundary 

between the film and nucleate boiling regions.  

The thermal response measured at the position of T/C 3 during quenching of a flat-end 

cylindrical probe from 900 °C in water at 60 °C, flowing at 0.2 m/s and images extracted 

from the video-recording taken during that experiment are shown in Figures 8 (a) and (b), 

respectively. Initially, the thermal response follows a horizontal line indicating that the 

probe is still within the furnace; then a slight drop in temperature, starting at 4.1 s (point 

“1”), may be seen as the furnace is opened and the probe is transferred to the quench bath. 

The quench starts at 11.07 s (point “2”), immediately producing a vapor blanket that lasts for 

11.8 s and resulting in a temperature decrease that occurs at a constant rate. The local 

collapse of the vapor blanket at the probe base originates the wetting front, which moves 

upward. The wetting front is characterized by a high heat extraction associated with the 

nucleation and growth of the bubbles and reaches the vertical position of T/C 3 at 20 s; then, 

the local surface temperature drops significantly until it cannot sustain the phase change 

any longer, giving way to pure forced convection. This behavior is similar to that reported 

earlier (Stich et al., 1996). 

From the measured thermal response shown in Figure 8, the corresponding cooling rate 

history was obtained by numerical differentiation using a first order polynomial 

approximation (Carnahan et al., 1969) and is plotted in Figure 9. In accordance with the 

slope changes observed in Figure 8 (a), there are changes in cooling rate at times 

corresponding to transferring of the probe from the furnace (Point “1”) and immersing it in 

the quench medium (Point “2”). Once the probe is immersed in the quench medium the 

cooling rate increase until a steady value of - 23 °C/s is reached, which indicates the 

presence of the vapor blanket. The maximum cooling rate (- 184 °C/s) occurs at 

approximately 24.8 s. 

Following the same procedure, the cooling rate histories for an experiment conducted with 

water at 60 °C, flowing at 0.6 m/s, were estimated and are shown in Figure 10.  

Film boiling 

Nucleate boiling 

Forced convection without 

boiling 
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Fig. 8. (a) Thermal response at the position of T/C 3 measured during quenching of a flat-
end cylindrical probe quenched from 900 °C in water at 60 °C, flowing at 0.2 m/s; b) images 
taken from the video-recording. 
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Fig. 9. Cooling rate history at the position of T/C 3 during quenching of a flat-end 
cylindrical probe in water at 60 °C flowing at 0.2 m/s. 
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Fig. 10. Cooling rate histories during quenching of a flat-end cylindrical probe from 900 °C 
in water at 60 °C, flowing at 0.6 m/s.  
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Fig. 11. Cooling rate history during quenching from 900 °C in water at 60 °C for: a) 
hemispherical-end cylindrical probe in water flowing at 0.2 m/s; b) hemispherical-end 
cylindrical probe in water flowing at 0.6 m/s; c) conical-end cylindrical probe in water 
flowing at 0.2 m/s and d) conical-end cylindrical probe in water flowing at 0.6 m/s. 
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Characteristic parameters of the curves such as the cooling rate during the vapor blanket 
stage and the maximum cooling rate both increase with respect to the corresponding values 
observed in Figure 9, as a result of the higher water velocity; for the thermocouple closest to 
the probe base (T/C 4) there is no evidence of formation of a stable film blanket. 
Furthermore, during the vapor blanket stage different cooling rates are observed at each 
thermocouple location and fluctuations around a mean value were detected. These latter 
observations imply that the vapor blanket is not uniform along the probe length for this 
value of water velocity. 
Figure 11 shows the cooling rate histories when hemispherical-end and conical-end 
cylindrical probes were quenched in water at 60 °C, at two water velocities: 0.2 and 0.6 m/s.  
As can be seen in the figures, the cooling rate histories produced with the hemispherical-end 
probe show less oscillations than the corresponding curves for the flat-end probe (refer to 
Figure 10) but the time interval between each consecutive pair of maximum values of the 
cooling rate are not constant, which suggests that the wetting front velocity is not constant 
along the probe surface. In sharp contrast with the results obtained with the two other 
geometries, the cooling rate history curves corresponding to the conical-end cylindrical 
probe are very similar among themselves, for a given water velocity, which indicates that 
the very same phenomena are occurring at the probe surface. It could be inferred that the 
wetting front would advance at a constant velocity when this type of probe is used. 

4.2 Computational fluid dynamics 
From the previous section, it is clear that the probe geometry does have a significant effect 
on heat extraction during the quench. Assuming that this effect is strongly related to the 
hydrodynamics of the quench medium flowing past the probe, calculations of 
hydrodynamic-related fields for the three probe geometries studied were carried out. As a 
first approximation, the simulations were conducted for both the probe and the water at 
room temperature, i.e., considering an isothermal system. 
The first quantities computed with the model were the streamlines around the probes; these 
maps could be directly compared to the images obtained during the physical modeling tests, 
to validate the mathematical model. The results, for the three probe geometries studied and 
a free-stream water velocity of 0.6 m/s, are shown in Figure 12. In Figure 12 (a) the 
boundary layer separation is noticeable. This effect does not occur for the hemispherical-end 
cylindrical probe or the conical-end cylindrical probe. 

 

 

 

 

 

(a)                     (b)                      (c) 

Fig. 12. Computed streamlines, after 2 s of simulation, for water flowing at 0.6 m/s: (a) flat-
end cylindrical probe, (b) hemispherical-end cylindrical probe, and (c) conical-end 
cylindrical probe. 
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To produce data necessary to validate the CFD model, cold experiments were run with 
cellophane ribbons attached to the probe base and the system running at room temperature. 
From the video-recordings taken during experiments corresponding to the conditions of 
Figure 12, the three images shown in Figure 13 were extracted. Comparing Figures 12 and 
13 it is evident that the computed streamlines compare favorably with the experimental 
ones; thus, the mathematical model may be considered as validated and may be used for 
further analysis. 
 

 

 

 

 

 
 (a)  (b)    (c) 

Fig. 13. Observed streamlines in the neighborhood of (a) flat-end cylindrical probe, (b) 
hemispherical-end cylindrical probe, and (c) conical-end cylindrical probe, for water flowing 
at 0.6 m/s. 

The computed velocity field (m/s) in the neighborhood of a flat-end cylindrical probe, for 

two water velocities, is shown in Figure 14. The vertex of the probe produces a significant 

velocity “jump” even for the lower water velocity; for a water velocity of 0.6 m/s it is 

evident that backflow occurs, which is responsible of the streamline observed in Figure 13 

(a). Figure 15 shows the velocity field (m/s) computed with the CFD model for the 

hemispherical-end cylindrical probe. At the position of 90° the fluid is nearly stagnant while 

a noticeable velocity gradient was computed near the 0° position, where siginificant areas 

with values of nearly 0.33 and 1 m/s were obtained for average free-stream velocities of 0.2 

and 0.6 m/s, respectively. The computed velocity field (m/s) for water at room temperature 

flowing in the neighborhood of the conical-end cylindrical probe at two average free-stream 

velocities (0.2 m/s y 0.6 m/s) is shown in Figure 16. In contrast with Figure 15, there is a 

much smaller area where high velocities do exist. 

Images of the events occurring at the probe surface during the vapor blanket stage for the 

three geometries studied are shown in Figure 17. In all cases the quench medium was water 

at 60°C, flowing at 0.6 m/s. The vapor blanket produced when the flat-end cylindrical probe 

was used is markedly non-uniform; in particular, it is wider near the probe end, showing an 

abrupt change afterwards. The image corresponding to the hemispherical-end cylindrical 

probe shows a much more uniform vapor blanket; nonetheless, a couple of “cold” spots 

were observed (see the arrows in the figure). On the other hand, using the conical-end 

cylindrical probe resulted in a very uniform vapor blanket. These different behaviors may 

be correlated with the velocity fields shown in Figures 14 (b), 15 (b) and 16 (b): as the 

velocity gradient at the probe surface increases, the probability of the occurrence of a non-

uniform vapor blanket also increases. Also, recall that the simulations showed the 

occurrence of backflow for the flat-end cylindrical probe, over an area which is similar to the 

area where a thicker vapor blanket was observed. 
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Finally, in Figure 17 (c) it is observed that the vapor blanket has already initiated its 
collapse, i.e., re-wetting has started. This effect is due to the higher heat extraction rate 
promoted by the probe tip. 

 

 

 

(a)  (b) 

Fig. 14. Computed velocity field (m/s) for water at room temperature flowing in the 
neighborhood of the flat-end cylindrical probe at two free-stream velocities: a) 0.2 m/s and 
b) 0.6 m/s. Note that the scales are different. 

  

 

(a)  (b) 

Fig. 15. Computed velocity field (m/s) for water at room temperature flowing in the 
neighborhood of the hemispherical-end cylindrical probe at two free-stream velocities: a) 0.2 
m/s and b) 0.6 m/s. Note that the scales are different. 

90° 

0° 

90° 

  0° 
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(a)  (b) 

Fig. 16. Computed velocity field (m/s) for water at room temperature flowing in the 

neighborhood of the conical-end cylindrical probe at two free-stream velocities: a) 0.2 m/s 

and b) 0.6 m/s. Note that the scales are different. 

 

 

 

 

 

(a)  (b)  (c) 

Fig. 17. Images extracted from the videos during quenching in water at 60°C, flowing at 0.6 

m/s, for: a) flat-end cylindrical probe; b) hemispherical-end cylindrical probe and c) conical-

end cylindrical probe.  

4.3 Wetting front kinematics and heat extraction 
In the previous section it was established that the conical-end cylindrical probe is the best 

alternative for conducting quenching experiments to characterize wetting front kinematics 

and obtain heat extraction data. Thus, in this subsection results obtained with this probe 

geometry are presented. 

For a given quench medium, the heat extraction is influenced by the quench bath 
temperature and the degree of agitation. The latter has been characterized in the literature in 
a qualitative as well as in a quantitative fashion; in the former case, terms such as 
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“moderate”, “strong”, etc., have been used while in the latter, the quench medium velocity 
in a specially designed apparatus is used (Totten et al., 1993). In the following, the effect of 
the water velocity on wetting front kinematics and heat extraction (using the conical-end 
cylindrical probe) is presented. 
The temperature response at the position of T/C 1 in Figure 18 (a) and the corresponding 

cooling rate history for quenching in water at 60 °C, flowing at several velocities are plotted 

in Figure 18 (b). Regarding the thermal response, the curves shift to the left as the water 

velocity increases which implies that the total quenching time is reduced; also, the duration 

of the film boiling stage (the part of the curve where the temperature decreases at a constant 

rate) decreases as the water velocity increases. The cooling rate history curves show 

increasing maximum values as the water velocity increases. For the conical-end cylindrical 

probe, the re-wetting time is directly related to heat transfer in the neighbourhood of the 

probe tip, which acts as a heat sink. Thus, increasing water velocity favours an increase in 

the rate at which the probe tip cools, resulting in a lower re-wetting time (the time required 

to break down the vapor blanket) and, therefore, the probe is hotter at a given longitudinal 

position which, combined with the higher heat extraction capability of water flowing at a 

higher velocity, results in the behavior observed in Figure 18 (b). 
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Fig. 18. a) Thermal response and b) corresponding cooling rate history, as a function of 
water velocity, during quenching with water at 60 °C. 

The wetting front is defined as the loci of the boundary between the vapor film blanket and 

the nucleate boiling zone. Therefore, the wetting front velocity may be estimated by 

recording the times at which the wetting front passes at previously determined locations 

along the probe surface; this information was obtained from the video-recordings. As an 

example, Figure 19 shows a plot of the wetting front position as a function of time for a 

quench in water at 60 °C, flowing at 0.2 m/s. It is evident that the points follow a straight 

line which implies a constant wetting front velocity; therefore, a linear regression was 

applied and is also shown in the figure. The slope of the linear regression was 4.4 mm/s, 

which is the estimated value of the wetting front velocity in the cylindrical region of the 

probe for these experimental conditions. The fact that R2 is very close to 1.0 indicates an 

excellent agreement between the model and the experimental data. 
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Fig. 19. Wetting front location as a function of quenching time during quenching of a 
conical-end cylindrical probe with water at 60 °C, flowing at 0.2 m/s. The line represents the 
estimated values assuming a linear regression. 

This procedure was applied along with the video-recordings taken during experiments with 
water at 60 °C, flowing at 0.4 and 0.6 m/s. The results, expressed as wetting front velocity as 
a function of water velocity, are plotted in Figure 21. The wetting front velocity increases in 
a non-linear fashion as the water velocity is increased. 
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Fig. 20. Wetting front velocity as a function of water velocity for experiments with water at 
60 °C. 

The heat extraction at the probe/quench medium interface is usually characterized by either 
a heat transfer coefficient or a surface heat flux; given the several heat extraction modes 
present during the quench, both of these quantities vary as the quench progresses. Using the 
thermal responses shown in Figure 20 as input, the surface heat flux was estimated applying 
the sequential function specification technique (Beck et al., 1982) whose algorithm has been 
implemented in the in-house code WinProbe (Meekisho et al., 2005). The code considers 1D 
heat flow, which in the context of these experiments implies ignoring any heat transferred in 
the axial direction. The resulting surface heat flux histories for the three water velocities 
studied are plotted in Figure 21 (for thermocouple location T/C 1). As can be seen in the 
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figure, the surface heat flux remains constant during the vapor blanket stage; later on during 
each experiment heat extraction increases sharply as the vapor blanket collapses giving way 
to the nucleate boiling regime until a maximum value (also known in the literature as the 
critical heat flux – CHF) is reached. The heat flux then decreases as boiling ceases and heat is 
extracted by convection alone. 
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Fig. 21. Surface heat flux history for experiments with water at 60 °C, at the position of T/C 1. 

The maximum surface heat flux is plotted, as a function of water velocity, in Figure 22. From 
these values, a linear regression was applied resulting in a high value of R2. This is the first 
step towards building empirical models for the surface heat flux history curves. 
In Figure 23, images extracted from the video-recording of quenching of a conical-end 
cylindrical probe in water at 60 °C, flowing ar 0.2 m/s are shown. The original images were 
modified with the imaq Vision Builder (National Instruments) software to highlight details 
of the events at the probe surface. The images clearly show that the two heat transfer modes 
that combine boiling and forced convection (film boiling and nucleate boiling) may be 
subdivided. The nucleate boiling area is comprised by two zones: a) one close to the wetting 
front, where a high density of relatively small bubbles is evident and b) another, where 
fewer but larger bubbles are formed. Regarding the film boiling area, there is a zone (near 
the wetting front) where the probe surface is significantly cooler than the rest of the surface 
covered by the vapor blanket. 
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Fig. 22. Critical heat flux as a function of water velocity for experiments with water at 60 °C, 
at the position of T/C 1. 
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   (a)   (b)   (c)   (d) 

Fig. 23. Boiling events at the probe surface during a quench from 900 °C with water at 60 °C, 
flowing at 0.2 m/s; (a) 7.71 s, (b) 8.51 s, (c) 9.31 s, (d) 10.81 s after the start of the quench. 

5. Conclusion 

Hydrodynamic conditions near the probe surface control the sequence of events that occur 
during quenching of metallic probes. Through detailed computational and experimental 
work we have shown that conical-end cylindrical probes should be preferred over flat.end 
cylindrical ones, which are currently the common practice. Using the suggested probe we 
were able to form estable and symmetrical wetting fronts even for high water velocities 
which has made possible to establish the effect of water velocity on heat extraction and to 
distinguish two subzones in the nucleate boiling area. 
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