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1. Introduction 

Heavy metals (HMs) in soils primarily result from the weathering of parent materials and 
from human activities, which including mining, smelting, application of sludges, and 
discharge of wastewaters, etc. (Kabata-Pendias & Pendias, 2001). Soil contaminated with 
HMs has become a worldwide problem and pose a serious threat to the environment 
(Anwar et al., 2009), leading to losses in agricultural yield and hazardous health effects as 
they enter the food chain (Salt et al., 1995). Cropping lands contaminated by HMs were 
mostly resulted from the use of polluted irrigated water in the downstream of discharged 
water of industrial parks of Taiwan. In 2007, approximate 400 ha of rural soils in Taiwan 
were contaminated with single or combined HMs and they are fallow according to Soil and 
Groundwater Pollution Remediation Act (SGWPR Act) announced in 2000 by Taiwan 
Environmental Protection Administration (Taiwan EPA). There were many techniques been 
used to treat the HMs-contaminated soils which including isolation, mechanical separation, 
chemical treatment, electrokinetics, soil washing, and phytoremediation (Mulligan et al., 
2001). Various soil amendments were applied to the HMs-contaminated soils to reduce the 
mobility of HMs in the contaminated soils and thus to decrease their further uptake by 
crops (Chen & Lee, 1997; Kabata-Pendias and Pendias, 2001; Lee et al., 2004; Mench et al., 
1994).  
In Taiwan, most of these contaminated sites were restored with turnover/dilution and acid 
washing methods to reduce the total concentration of HM to conform the regulation 
announced. Besides the two techniques, phytoremediation was demonstrated to be a 
feasible method in treating these contaminated lands, which have large areas and low to 
medium level of HM concentration (Lai et al., 2005). It also accompanies with other 
environmental agenda, such as biomass energy, biodiversity, carbon sequestration, and soil 
quality (Dickinson et al., 2009). However, most hyperaccumulators used in removing these 
HMs have lower biomass and growing rate and thus extending the period needed in 
decontamination. The application of chemical agents has significant effect on increasing the 
phytoavailability and accumulation of HMs of plants (Chen & Cutright, 2001; Meers et al., 

www.intechopen.com



 
Soil Contamination 

 

108 

2004; Meers et al., 2005). However, results of most previous studies showed that chemical 
agents have negative effect on the growth of Indian mustard, sunflower, or corn and thus 
decreased the total removal of HMs by plants (Blaylock et al., 2007; Madrid et al., 2003; 
Turgut et al., 2004). After the application of chemical chelating agents, the risk of 
groundwater contamination may be increased because the mobility of HMs increased (Jiang 
et al., 2003; Lai & Chen, 2004; Lai et al., 2005). For those lands with sandy texture or high 
level of groundwater table, chemical agents should be carefully applied to decrease the 
health risk of groundwater quality (Lai & Chen, 2006; Wu et al., 2004).  
Rice dominates the daily intake of cereals in most Asian countries. In Taiwan, about half of 

arable land is used as rice-growing field and two rice varieties including Indica and Japonica 

varieties are cultivated, but the latter is the major one (90%) because of taste preferences. 

Cadmium (Cd), normally occurs in low concentrations in soils (Wagner, 1993), is a non-

essential element for plants and potentially toxic pollutant all over the world. The toxicity of 

Cd to plant growth, phytosynthesis, carbonhydrate metabolism, and enzyme activities is 

well documented (Javed & Greger, 2011; Sanita di Toppi & Gabrielli, 1999). Elevated levels 

of arsenic (As) in soils may potentially enter food chain (Meharg & Hartley-Whitaker, 2002) 

and increase the risk of cancer development (Anderson et al., 2011). According to the 

SGWPR Act, the cropping land with total soil Cd concentration (aqua regia soluble) 

exceeding 5 mg kg-1 will be announced as Soil Pollution Control Site (SPCS) and all farming 

activities are not allowed. However, many previous field surveys showed Cd-contaminated 

rice can still be produced from fields with total soil Cd levels lower than 5 mg kg-1. The 

Standard for the Tolerance of Cd in rice has been reduced from 0.5 mg kg-1 to 0.4 mg kg-1 in 

2007. Many studies were also subsidized by governments to assess the food safety of rice 

cultivated in Cd-contaminated soil. In this paper, we reviewed some previous researches 

regarding the accumulation of Cd and As of different rice varieties. Its safety after growing 

in As- or Cd-contaminated soils was also evaluated. For those contaminated lands not 

suitable for planting crops, the use of phytoremediation and planting non-edible plants may 

be a candidate for solving this problem. Experimental results of phytoremediation were also 

illustrated in this paper. 

2. Phytoremediation for potted Cd-contaminated soils 

The selection of suitable plants is the first and the critical step in conducting a successful 
phytoremediation. These plants should grow well and accumulate higher concentration of 
HMs in the harvestable parts when growing in HM-contaminated soils. There were 
approximately 420 species of plants that can be regarded as hyperaccumulators (Baker et al., 
2000). A pot experiment was conducted to test the accumulation capacity of five garden 
flower species, which was regard as a potential hyperaccumulator previously (Chen & Lee, 
1997). Seedlings of them were planted in the artificially Cd-contaminated loamy soils to 
assess their Cd accumulation when growing in control (Cd-CK) (0.43±0.15 mg kg-l), Cd-10 
(9.73±0.05 mg kg-l), and Cd-20 (17.6±0.8 mg kg-l) (Lin et al., 2010). One seedling of Star 
cluster (Pantas lanceolata Deflers.), French marigold (Tagetes patula L.), Impatiens (Impatiens 
walleriana Hook. f.), Garden verbena (Verbena bipinnatifida Nutt.), or Scarlet sage (Salvia 
splendens Ker-Gawl.) was planted in each pot contained three kilograms of artificially Cd-
contaminated soils. The pot experiment was conducted in a 30/25°C (day/night) phytotron 
in three replicates, controlled the soil moisture content at 50-70% water-holding capacity 
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(WHC) by adding deionized water, and harvested after growing for 35 days. After 
pretreatment, the Cd concentrations in the tissues were determined.  
The Cd concentrations in initial seedlings of five plants were not detectable (Cd < 0.38 mg 

kg-1). After growing in the artificially Cd-contaminated soils for 35 days, five tested plants 

can significantly accumulate much higher Cd concentrations in their shoots relative to Cd-

CK. Among the five plants, Impatiens grown in the Cd-20 treatment had the highest shoot 

Cd concentration near 100±11 mg kg-1, which was more than the threshold of a Cd 

hyperaccumulator (100 mg kg-l) reported (Baker et al., 2000). French marigold grown in Cd-

10 and Cd-20 treatments accumulated 44.9±0.7 and 66.3±6.5 mg kg-l in their shoots and no 

toxic symptoms were observed in the appearance during pot experiment. Chen & Lee (1997) 

reported that Star cluster, Scarlet sage, and Impatiens can accumulate 44, 12, and 42 mg kg-1, 

respectively, in their leaves when in-situ growing in a Cd-contaminated site (Tatan village) 

in northern Taiwan. For another in-situ experiment carried out in Chungfu village in 

northern Taiwan, the final Cd concentration in their leaves was 247 mg kg-1 in French 

marigold, 52 mg kg-1 in Garden verbena, 12 mg kg-1 in Impatiens, and 11 mg kg-1 in Scarlet 

sage, respectively. French marigold and Impatiens used in this study accumulated higher 

Cd concentration in their shoots compared with the result of previous study possibly 

resulted from the higher phytoavailability of Cd in artificially Cd-contaminated soils.  

Besides the accumulated concentration, bioconcentration factor (BCF = shoot HM 

concentration/soil HM concentration) and translocation factor (TF = shoot HM 

concentration/root HM concentration) were two indexes most used to evaluate the 

accumulating capacity of HMs by plants. For a Cd hyperaccumulator (Baker et al., 2000; 

Mattina et al., 2003), the BCF and TF should more than one besides the high concentration 

accumulated (100 mg kg-1) (Sun et al., 2009). Experimental result of this study showed that 

the BCF values of French marigold, Impatiens, Garden verbena, and Scarlet sage were all 

more than one and ranged from 1.75 to 5.68 (Table 1). However, Impatiens was the only one 

that its TF was in the levels of 1.01-1.66. According to the standards summarized by Sun et 

al. (2009) for a Cd hyperaccumulator, Impatiens was a potential Cd hyperaccumulator when 

growing in the artificially Cd-contaminated soils. The pot experimental result was against 

with the in-situ selection experiment, possible resulted from the special variation and 

interaction of HMs in the field. 

The total removal of Cd by plants determines the duration needed in decontamination. 

Although root of plants accumulated higher concentration of Cd in compartment with 

shoot, the total removal of Cd by shoot was larger because of its larger biomass (Fig. 1). 

Among the five tested plants, the shoots of French marigold and Impatiens removed 380-510 

and 790-820 g Cd plant-1 from Cd-10 and Cd-20. One can calculate the period needed for 

phytoremediation in an ideal situation, i.e. if the removal of plants of each harvest is a 

constant and the phytoavailability of Cd will not change with time, etc. It will take 

approximately 4.6-8.0 years for continuous planting (six times year-1) French marigold and 

Impatiens to decrease the current Cd concentration (Cd-10 and Cd-20) to below the SPCS for 

cropping lands (5 mg kg-1). The major drawback of phytoremediation is that it always 

consumes longer period compared with other techniques. Experimental results show that 

planting French marigold and Impatiens in Cd-contaminated soils seems to be a feasible 

method to remove Cd from contaminated soil and the period needed for decontamination is 

acceptable.  
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Plants Treatments* Shoot Root BCF TF 
  ------------ mg kg-1 ------------   

Star cluster Cd-CK ND b ND a ---- ---- 
 Cd-10 8.20±0.94 a# 22.7±2.02 a 0.84 0.36 
 Cd-20 10.7±2.8 a 18.9±17.2 a 0.61 0.57 

French marigold Cd-CK ND c ND c ---- ---- 
 Cd-10 44.9±0.7 b 65.0±17.8 b 4.61 0.69 
 Cd-20 66.3±6.5 a 113±21 a 3.77 0.59 

Impatiens Cd-CK ND c ND b ---- ---- 
 Cd-10 48.9±11.7 b 29.5±9.6 ab 5.02 1.66 
 Cd-20 100±11 a 99.0±8.4 a 5.68 1.01 

Garden verbena Cd-CK ND b ND b ---- ---- 
 Cd-10 21.5±5.5 a 39.3±13.5 a 2.21 0.55 
 Cd-20 7.63±1.75 b 49.5±11.2 a 0.43 0.15 

Scarlet sage Cd-CK ND b ND c ---- ---- 
 Cd-10 21.8±7.6 a 45.9±8.2 b 2.24 0.47 
 Cd-20 30.8±5.3 a 71.0±15.5 a 1.75 0.43 

* Total Cd concentration digested by aqua regia: Cd-CK = 0.43±0.15 mg Cd kg-1; Cd-10 = 9.73±0.05 mg 
Cd kg-1; Cd-20 = 17.6±0.8 mg Cd kg-1 

# means ± standard deviation (n = 3); ND: not detectable; The different small letters within same 
column of same plant tissue stand for statistical significance (p < 0.05) 

Table 1. The Cd concentration, bioconcentration factor (BCF), and translocation factor (TF) of 
Star cluster, French marigold, Impatiens, Garden verbena, and Scarlet sage grown in the 
different Cd-treated soil for 35 days (Lin et al., 2010). 

 

 

Fig. 1. The total removal of Cd concentration of Star cluster, French marigold, Impatiens, 
Garden verbena, and Scarlet sage grown in the different Cd-treated soil for 35 days (Lin et 
al., 2010). 
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3. Phytoremediation for Cr, Cu, Ni, and Zn-contaminated soils 

Eight blocks (11 m by 4 m) located in central Taiwan (Fig. 2), which were relatively higher in 
Cr (chromium), Cu (copper), Ni (nickel), and Zn (zinc) concentrations were used for in-situ 
selection experiment (Lai & Chen, 2009). After making a market survey, 33 plant species of 
garden flower species (Table 2) were selected for this in-situ experiment and two seedlings 
per plant species were planted in each of the eight blocks. The interval space between two 
plants was controlled at about 50-70 cm to avoid interference. The concentration of Cu, Cr, 
Ni, and Zn in the 33 plant species before planting was determined. We recorded the growth 
condition of plants, whether toxic symptom occurred or not, two weeks after planting in the 
site and they were harvested after planting for 33 days. After pretreatment, the Cu, Cr, Ni, 
and Zn concentration in the digest solution of initial and harvested plants were determined.  
After in-situ growing in the contaminated soils for two weeks, we observed withered and 
yellow color in the leaves of Bougainvillea and some of them fell off. The flowers of 
Cockscomb were damaged and their color changed from red (before planting) to yellow. 
Except for the two plants, there were no observed injures for the other 31 plants grown in 
the 8 blocks. Before planting, the initial concentration of HMs in the shoot were in the levels 
of ND (< 1.71 mg kg-1) to 37.2 mg Cu kg-1, ND (< 4.65 mg kg-1) to 21.7 mg Cr kg-1, and 8.07 to 
103 mg Zn kg-1. These 33 plant species have low Ni concentration (< 10.1 mg kg-1) in their 
tissues before planting, except for Bougainvillea, Common melastoma, and Garden Canna. 
Although Cockscomb showed yellow flowers at second week after planting, it accumulated 
the highest Cu, Cr, Ni, and Zn concentration in its shoots in relative to other plant species. 
Cockscomb and rainbow pink accumulated 317±117 and 231±73 mg Cr kg-1 in their shoots, 
respectively, after in-situ growing for 33 days in the site. Their BCF was 1.7 in cockscomb 
and 1.3 in rainbow pink.  
 

 

Fig. 2. Map of Taiwan and location where the phytoremediation experiments were 
conducted (Lai & Chen, 2009; Lai et al., 2010a). 
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No. Plant species Scientific name Property 

1 Bougainvillea Bougainvillea spp. woody 
2 Rainbow pink Dianthus chinensis herbaceous 
3 Serissa Serissa japonica woody 
4 French marigold Tagetes patula herbaceous 
5 Rose of Shoron Hibiscus syriacus L. woody 
6 Water willow Salix warburgu woody 
7 Chinese ixora Ixora chinensis Lam. woody 
8 Sunflower Helianthus annuus herbaceous 
9 Chinese hibiscus Hibiscus rosa-sinensis woody 

10 Gold dewdrop Duranta repens woody 
11 Kalanchoe Kalanchoe blossfeldiana herbaceous 
12 Creeping Trilobata Wedelia trilobata herbaceous 
13 Garden Canna Canna generalis spp. herbaceous 
14 Garden verbena Verbena hybrida herbaceous 
15 Malabar chestnut Pachira macrocarpa Walp woody 
16 Purslane Portulaca oloraua Linn herbaceous 
17 Common Lantana Lantana camara L. woody 
18 Fancy leaf caladium Caladium hortulanun Birdsey herbaceous 
19 Coleus Coleus blumei herbaceous 
20 Golden trumpet Allamanda cathartica Linn woody 
21 Common melastoma Melastoma candidum woody 
22 Carland flower Hedychium coronarium herbaceous 
23 Manaca raintree Brunfelsia uniflora woody 
24 Yellow Cosmos Cosmos sulphureus herbaceous 
25 Sliver apricot Ginkgo biloba L. woody 
26 Temple tree Plumeria acutifolia Poir. herbaceous 
27 Orchid tree Aglaia odorata Lour. woody 
28 Star cluster Pentas lanceolata herbaceous 
29 Blue daza Evolvulus nuttallianus herbaceous 
30 Cockscomb Celosia cristata herbaceous 
31 Scandent Schefflera Schefflera arboricola Hayata. woody 
32 Bojers spurge Euphorbia splendens woody 
33 Croton Codialum variegatum. woody 

Table 2. The 33 plant species planted in the central Taiwan used for in-situ selection 
experiment. 

For Cu, the accumulation capacity of various tested plants was in the order of Cockscomb 
(117±40 mg kg-1), Garden verbena (84.7±46.6 mg kg-1), and Star cluster (80.4±80.6 mg kg-1). 
The average Cu concentration of corn and food grains of China was 2.67 and 6.46 mg kg-1 
(Chen et al., 1994) and the Cu concentration for foodstuff crops was less than 10 mg kg-1 
(Kabata-Pendias & Pendias, 2001). The Cu concentration in the brown rice of Japan and 
Indonesia was 2.16-4.4, 2.9, and 3.41 mg kg-1, respectively (Iimura, 1981; Masironi, 1977; 
Suzuki et al., 1980). Although the accumulated Cu concentration of these 33 plants 
increased after 33 days, the BCF were less than 1.1 because the surface soil has low Cu 
concentration, ranged from 112 to 122 mg kg-1. Because of the low Ni concentration in the 
initial plants, the Ni concentration of shoot in the 33 plants increased after in-situ planting 
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in the contaminated site for 33 days. The Ni concentration of shoot was in the order of 
Cockscomb (145±38 mg kg-1), French marigold (90.9±42.4 mg kg-1), and Garden verbena 
(88.0±36.8 mg kg-1). Because of the high Ni concentration in the surface soil of the 8 blocks 
(ranged from 314 to 412 mg kg-1), the accumulated Ni concentration in the shoots of plants 
increased after in-situ planting for 33 days. After 33 days, the accumulated Zn 
concentration in the shoots of plants was in the order of Cockscomb (435±127 mg kg-1), 
Garden verbena (339±210 mg kg-1), and Yellow Cosmos (328±157 mg kg-1). However, the 
BCF of Zn of Cockscomb was only 0.7 which revealed that the accumulation capacity of 
these 33 plants was weak.  
Experimental results also show that the accumulation of HMs of woody and herbaceous 

plants after growing for 33 days was quite different (Table 2). Similar to the results of Chen 

& Lee (1997), herbaceous plants have accumulated higher concentration of HMs in 

comparison to woody plants. Except for the low Ni concentration in initial plants, the 

increase for HMs concentration in woody plants was about 3.1±2.9 fold for Cu, 2.5±1.5 fold 

for Cr, and 4.3±3.1 fold for Zn, respectively. Herbaceous plants have higher uptake of HMs 

in relative to woody plants and their increase on the concentration of HMs are 9.4±6.5 fold 

for Cu, 5.1±2.7 fold for Cr, and 8.9±6.1 fold for Zn.  

4. Large area phytoremediation experiments of 12 plant species in HMs-
contaminated site 

Twelve plants species (Table 3) were selected from 33 plant species testing in a site 
contaminated by combined HMs in central Taiwan (Fig. 2) to study the feasibility of in-
situ phytoremediation (Lai et al., 2010a). Soil samples of topsoil (0-15 cm) and subsoil (15-
30 cm) were collected and analyzed for the total concentration of eight HMs (As, Cd, Cr, 
Cu, Hg, Pb, Ni, and Zn). The studied site was mainly contaminated by Cr, Cu, Ni, and Zn 
and some of the concentrations were much higher than the SPMS (Soil Pollution 
Monitoring Standard) or SPCS. The total area for each plant species was approximately 
0.1 ha and their planting density was 10,000 seedlings ha-1. Plants were harvested after 
growing for one and two months and their concentration of Cu, Cr, Ni, and Zn in the 
shoot were determined.  
Results of two times of large area experiments after foregoing 12 plant species were growing 

for one month and two months showed that they can grow well in this combined HMs-

contaminated site. The concentrations of Cr, Cu, Ni, and Zn in the shoots increased after 

growing for 31 days compared with those of it before planting. The extension of their time of 

growth, from one month to two months in the contaminated site, has positive effects on 

increasing their accumulation of HMs. However, the 12 tested plant species could not 

accumulated higher concentrations of Cr, Cu, Ni, and Zn possibly resulted from the lower 

concentrations of foregoing HMs. None of the plant species can regard as a 

hyperaccumulator according to the definition of Baker et al. (2000). After in-situ growing in 

the contaminated situ for one month, the roots of most of the 12 plant species accumulated 

higher concentrations of HMs compared with the shoots. Among the four HMs, the TF of Zn 

was highest in comparison to others. The TF of some tested plant species were more than 

one from the result of in-situ experiment (Table 4). In an ideal situation, it will take about 4.3 

to 66 years by planting foregoing plant species to reduce the concentrations of HMs to 

conform the SPMSs.  
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No. Plant species Scientific name Property 

1 Chinese ixora Ixora chinensis Lam. woody 
2 Garden verbena Verbena hybrida herbaceous 
3 Rainbow pink Dianthus chinensis herbaceous 
4 Bojers spurge Euphorbia splendens woody 
7 Kalanchoe Kalanchoe blossfeldiana herbaceous 
5 Scandent Scheffera Schefflera arboricola Hayata. woody 
6 Purslane Portulaca oloraua Linn herbaceous 
7 Croton Codialum variegatum. woody 
8 Serissa Serissa japonica woody 
9 Garden Canna Canna generalis spp. herbaceous 

11 French marigold Tagetes patula herbaceous 
12 Sunflower Helianthus annuus herbaceous 

Table 3. The 12 plant species planted in the central Taiwan used for large area 
phytoremediation experiment. 

 

Plant species 
Translocation factor (TF)# 

Cr Cu Ni Zn 

Chinese ixora 0.41 1.28 0.22 1.40 
Garden verbena 0.35 0.64 0.33 2.13 
Rainbow pink 0.58 0.78 0.89 1.17 
Bojers spurge 0.84 1.44 0.75 1.98 

Kalanchoe 0.15 1.31 0.28 -- 
Scandent Scheffera 0.07 0.84 0.61 -- 

Purslane 5.06 0.84 0.68 0.72 
Croton 0.05 0.38 0.25 -- 
Serissa 0.40 0.90 0.57 -- 

Garden Canna 0.61 0.54 0.43 1.35 
French marigold 0.18 0.56 0.30 -- 

Sunflower 0.21 1.39 0.41 3.15 

# TF = The ratio of shoot HM concentration to root HM concentration  

Table 4. The translocation factor (TF) of 12 plant species after in-situ growing in a combined 
HMs-contaminated site for one month. 

The median and maximum concentrations of Cr, Cu, Ni, and Zn in the topsoil were used in 
this study to calculate the mean and maximum effect of contaminants. The exposure risk 
was resulting from the ingestion of contaminated soils (EXPing), inhalation of air containing 
contaminated soil particles (EXPinh), and absorption by skin (EXPabs). Different equations 
were used to calculate the carcinogenic and non-carcinogenic risks of contaminants to the 
health of humans (Lai et al., 2011). Where HQ is the hazard quotient and EXPtotal is the sum 
of total exposure. There are carcinogenic and non-carcinogenic risks when the values of HQ 
and TR are less than unitary and 10−6, respectively. The concentrations of Cr, Cu, Ni, and Zn 
in the topsoil after phytoremediation were estimated by considering the removal of plants. 
The results showed that although the study site was contaminated with combined HMs, 
there are no carcinogenic and non-carcinogenic risks (Tables 5 and 6) although some of the 
total concentrations of Cr, Cu, Ni, and Zn were higher than the SPMSs or SPCSs.  
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 Zn Cr Cu Ni 

 Med. Max. Med. Max. Med. Max. Med. Max. 

 Before phytoremediation 
EXPinh 5.9×10−6 1.1×10−5 1.4×10−6 3.5×10−6 1.5×10−6 2.1×10−6 3.7×10−6 7.0×10−6 

EXPing 2.7×10−4 5.2×10−4 6.5×10−5 1.6×10−4 7.1×10−5 9.6×10−5 1.7×10−4 3.2×10−4 
EXPabs 4.7×10−5 8.9×10−5 1.1×10−5 2.8×10−5 1.2×10−5 1.6×10−5 3.0×10−5 5.6×10−5 

HQ 1.0×10−3 2.0×10−3 2.5×10−2 6.2×10−2 3.0×10−3 4.1×10−3 9.8×10−3 1.9×10−2 
 After phytoremediation 

EXPinh 5.8×10-6 1.1×10-6 1.4×10-6 3.5×10-6 1.5×10-6 2.0×10-6 3.7×10-6 7.0×10-6 
EXPing 2.6×10-4 5.1×10-4 6.4×10-5 1.6×10-4 7.0×10-5 9.5×10-5 1.7×10-4 3.2×10-4 
EXPabs 4.5×10-5 8.8×10-5 1.1×10-5 2.8×10-5 1.2×10-5 1.6×10-5 2.9×10-5 5.5×10-5 

HQ 1.0×10-3 1.9×10-3 2.4×10-2 6.1×10-2 2.9×10-3 4.0×10-3 9.7×10-3 1.8×10-2 

Med.: median value; Max.: maximum value 

Table 5. The hazard quotient (HQ) and the exposure risk of the three pathways before and 
after phytoremediation. 

 

 Cr Ni 

 Med. Max. Med. Max. 

 Before phytoremediation 
EXPinh (mg kg-1 day-1) 2.1×10−8 5.1×10−8 5.3×10−8 1.0×10−7 

TR 7.0×10−7 1.8×10−6 3.7×10−8 7.0×10−8 

 After phytoremediation 
EXPinh (mg kg-1 day-1) 2.0×10-8 5.0×10-8 5.3×10-8 1.0×10-7 

TR 6.9×10-7 1.7×10-6 3.7×10-8 7.0×10-8 

Med.: median value; Max.: maximum value 

Table 6. The exposure and carcinogenic risk before and after phytoremediation if only the 
inhalation was considered. 

5. Uptake characteristics of different rice varieties growing in Cd-
contaminated soils 

In 2005 and 2006, field studies were conducted in Taiwan to investigate the uptake 

characteristics of rice varieties growing in 19 different paddy fields in three counties across 

the western plains in Taiwan (Römkens et al., 2009). The studied fields were located at the 

towns of Chang-hua (three fields), Ho-Mei (three fields), Lu-Kang (two fields), Hsin-Chu 

(three fields), and Pa-Deh (eight fields) (Fig. 3). Twelve rice cultivars of Indica or Japonica 

varieties were planted in each field with 5-9 replicates for each cultivar depends on the field 

size. Samples of topsoil (0-25 cm) and rice plants at full maturity were collected together at 

the same location in studied fields in May (harvest 1) and November (harvest 2) of the two 

years. Total numbers of soil and rice plant samples in this study were both 3,198. The total 

soil Cd concentration in studied fields ranged from 0.06 mg kg-1 to as high as 27.8 mg kg-1, 

the maximum level is about 6-fold higher than the SPCS (5 mg kg-1) enacted in Taiwan. 

Around 27% of the studied field area was defined as Cd-contaminated soil according to the 

SGWPR Act.  
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Fig. 3. Map of Taiwan and location of communities where the paddy fields are located 
(Römkens et al., 2009). 

Soil pH, CEC (Cation Exchange Capacity), and soil organic matter (SOM) varied widely in 
the 19 paddy fields (Table 7). Cadmium concentrations in rice grains were quite different 
among cultivars even though they were planted in soils with comparable soil properties and 
total soil Cd levels. Overall, median Cd concentrations in rice grains of Indica variety were 
2-3 times higher than that of Japonica variety no matter the rice is planted in low or high Cd-
contaminated fields or in different climates (Fig. 4). Higher variation was found in the 
concentration of Cd in Indica brown rice compared with that in Japonica brown rice. Some 
studies also found that Cd accumulation in brown rice of Indica was 1.54 times higher than 
that of Japonica. This uptake characteristic of rice varieties is important for selecting rice 
cultivars with low Cd accumulating ability in rice grain planted in slightly Cd-contaminated 
soil. 
 

 pH CEC (cmol+ kg-1) SOM (%) Total Cd (mg kg-1) 

Japonica 3.8-7.2 2.6-24.2 1.4-9.5 0.06-27.8 
Indica 4.1-7.0 2.6-25.1 1.3-10.2 0.08-25.9 

Table 7. The pH, CEC, and SOM of the soils growing for two rice varieties. 

Liu et al. (2007) reported that Cd was not evenly distributed in different parts of rice grain. 

The results of their pot experiments planting six rice cultivars (include Indica, Japonica, 

hybrid Indica, and New Plant type) in artificially Cd-contaminated soil showed that the 

average percentage of Cd quantity accumulated in chaff, cortex (embryo), and polished rice 

were about 15%, 40%, and 45%, respectively. The cortex occupied only 9% of the grain dry 

weight in average but the polished rice occupied 71%, so Cd concentration in cortex is 

significantly higher than that in polished rice. They suggested that polished rice produced 

www.intechopen.com



 
Heavy Metals Contaminated Soils and Phytoremediation Strategies in Taiwan 

 

117 

CaCl
2
 extractable Cd concentration in soil (mg kg

-1
)

0.0 0.5 1.0 1.5 2.0 2.5

C
d

 c
o

n
c
e
n
tr

a
ti
o
n
 i
n
 b

ro
w

n
 r

ic
e
 (

m
g
 k

g
-1

)

0

2

4

6

8

10
Harvested from seriously Cd-contaminated fields in May

from Cd-contaminated fields may be safer for consumers than brown rice. However, 

Moriyama et al. (2003) reported that Cd concentration in six Japonica rice cultivars reduced 

only 3% in average after milling process. A study using in-situ synchrotron X-ray 

fluorescence to identify Cd distribution in brown rice produced from Bangladesh, China, 

and U.S. also showed that Cd is evenly distributed in brown rice (Meharg et al., 2008). The 

inconsistent findings among these studies may be caused by errors from rice polishing 

process or inherent differences of Cd distribution in rice grain among rice cultivars. More 

careful studies are required to clarify the inconsistent results.   

 

 

Fig. 4. The relationship between CaCl2 extractable Cd concentration in soil and Cd 

concentration in brown rice (‧: Japonica species,    。: Indica species) harvested in May and 
November.  

6. Various Cd uptake models were used to efficiently predict their 
accumulation 

Total Cd concentration in soil is not a reliable index to determine whether rice grain is safe 
for consumers. Rice varieties and soil characteristics such as soil pH, Eh (redox potential), 
CEC, texture, and SOM are important factors affecting Cd concentration in rice grain. To 
determine whether a rice-growing field can produce safe rice grains with Cd levels lower 
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than FQS (food quality standard), it is necessary to develop a simple and reliable soil tests to 
predict available Cd concentration in rice grains. 
Previous studies indicated that 0.01M CaCl2, 0.1M HCl, 0.43M HNO3, and 0.05M EDTA 
(Na2-EDTA·2H2O) are ideal extractants to estimate soil available Cd concentration (Houba 
et al., 1997; Nelson et al., 1959; Tiwari & Kumar, 1982). This study compared these methods 
to assess which method is better for predicting Cd levels in rice grains. The best well-
performed regression equation to predict Cd levels in rice grain was presented here using 
soil available Cd and Zn concentrations determined by 0.01M CaCl2:  

log[Cd–grain] = 

0.94 + 0.78×log[Cd–CaCl2] – 0.30×log[Zn–CaCl2], r2 = 0.73…for Indica   (1) 

log[Cd–grain] = 

0.60 + 0.82×log[Cd–CaCl2] – 0.28×log[Zn–CaCl2], r2 = 0.86…for Japonica  (2) 

The CaCl2 extractable Zn is also included in the equation because it is able to compete with 

Cd for plant uptake and reduce toxic effects of Cd. The critical concentrations of CaCl2-

extractable Cd in soil under different levels of soil CaCl2-extractable Zn are constructed for 

farmers and authorities in Taiwan to prevent the production of Cd-contaminated rice by 

using above equations. 

The concentration of CaCl2-extractable Zn in soil ranged usually from 0.1 to 50 mg kg-1 

when the total soil Zn concentration is less than 600 mg kg-1, the SPCS for cropping lands 

enacted in Taiwan. According to the equations, less Cd will be accumulated in rice grain if 

the soil CaCl2-extractable Zn is getting higher, therefore, only the critical concentrations of 

CaCl2-extractable Cd in soil under the soil CaCl2-extractable Zn lower than 50 mg kg-1 are 

presented. If the measured soil CaCl2-extractable Cd is higher than the critical value, it is 

possible to produce rice grain with Cd concentration exceeding the Standard for the 

Tolerance of Cd in rice (0.4 mg kg-1) (Table 8). Further studies are required to validate the 

practicability of regression equations. 

 

 Rice variety   CaCl2-extractable Zn in soil (mg kg-1)   

 Indica 0.007 0.019 0.035 0.046 0.060 0.071 0.079 0.086 

 Japonica 0.027 0.060 0.105 0.133 0.168 0.193 0.213 0.230 

Table 8. Critical concentrations of CaCl2-extractable Cd (mg kg-1) in soil under different 
levels of soil CaCl2-extractable Zn (mg kg-1) for the two rice varieties. Cadmium 
concentration in rice grain will exceed 0.4 mg kg-1 if the measured soil CaCl2-extractable Cd 
is higher than the critical concentration. 

To predict Cd concentration in rice grain, Simmons et al. (2008) also developed a regression 
equation using soil pH (1:5) and CaCl2 extractable Cd determined on field-moist samples 
collected during the grain-filling period. The equation can predict Cd concentrations in 
unpolished rice grain with an r2 value of 0.638. If air-dried soil samples were used for Cd–
CaCl2 and pH determination, the regression equation cannot explain the variability of Cd 
levels in rice grain. Air-drying may affect soil sample conditions to an extent that CaCl2 
extractable Cd cannot represent Cd availability in soil compared to extracts collected from 
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field-moist soil. However, the soil samples used for developing regression equations in the 
study of Taiwan as mentioned above were air-dried and collected during rice harvest 
period, an easier pretreatment for soil samples and more suitable for routine monitoring.  
Brus et al. (2009) recently developed a multiple regression model using 0.43M HNO3 

extractable Cd, pH, clay, and SOM as predictors to predict Cd levels in rice grain harvested 

form the paddy fields in Fuyang, Zhejiang province, China. The model performed much 

better (r2adj = 0.661) than the linear model using only 0.01M CaCl2 extractable Cd as a 

predictor (r2adj = 0.281). The field study in Taiwan as mentioned above also developed a 

multiple regression model using 0.43M HNO3 extractable Cd, pH, and CEC to predict Cd 

levels in rice grain. Although the model using more predictors to reflect the effects of pH 

and CEC on the availability of Cd, it did not perform much better (r2 = 0.81 and 0.74 for 

Japonica and Indica, respectively) than the model using 0.01M CaCl2 extractable Cd and Zn 

as predictors (r2 = 0.86 and 0.73 for Japonica and Indica, respectively). Therefore, the latter 

simpler model is preferred to be validated and used in Taiwan. Since different 

environmental and soil factors affect the accumulation of Cd in rice grain in different ways 

and extents, the predicting models developed by using local data will be more reliable to be 

used for the specific area. 

7. As-contaminated soils in Guandu plain 

Arsenic is a contaminant of public concern since it is highly toxic and carcinogenic. It may 

be accumulated in plants and eventually be transferred to humans through the food chain. 

A regular monitoring for HM concentrations in soil conducted by Taipei government found 

that some soil samples in Guandu Plain were contaminated by As. Further comprehensive 

survey conducted in 2006 showed that more than 60 ha of rice-growing soils located in that 

area were contaminated by As. The maximum As concentration in topsoil (0-15 cm) reached 

535 mg kg-1 in this area, which was almost 9 times of the SPCS (60 mg kg-1) enacted in 

Taiwan. The contamination source of As in this area may come from the hot spring water of 

Thermal Valley. The hot spring water flowed out and mixed with the stream water which 

was used as irrigation water for the As-contaminated area of the Guandu Plain (Chang et 

al., 2007). Some studies indicated that the soil parent materials may also contribute to the 

high levels of As in soils of Guandu Plain (Su & Chen, 2008; Wu, 2007).  

Arsenic in soils occurs mainly as inorganic species (Huang, 1994). In well-aerated soils, 

arsenate (As(V)) is the predominate form, whereas in reduced environment such as paddy 

soils, arsenite (As(III)) species prevails. Previous studies showed that As(V) in aerated soils 

will be reduced to more mobile and toxic As(III) in paddy soils and transferred to rice 

(Huang, 1994; Masscheleyn et al., 1991). Since As(III) is much more toxic, more soluble, and 

more mobile than As(V), it is a big chance that arsenic in rice-growing soils in Guandu Plain 

may transfer to rice and reduce rice yield or even impairs food safety. Meharg & Rahman 

(2003) indicated that As levels of paddy soils in Bangladesh irrigated with As-contaminated 

groundwater reached only 46 mg kg-1 but the As concentration in rice grains were as high as 

1.7 mg kg-1 DW. Liao et al. (2005) also reported high levels of As in rice (0.5-7.5 mg kg-1 DW) 

grown on As-contaminated soils in China. Whether the rice produced in highly As-

contaminated soil in Guandu Plain is safe for human consumption or not is an emergent and 

important issue of local residents and government agency.  
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8. Uptake characteristics of two rice varieties growing in highly As-
contaminated soils 

In 2007, thirteen topsoil (0-15 cm) and rice (Oryza sativa L.) samples were collected together 
in 13 paddy fields (Fig. 5) with various levels of total As, ranging from 12 to 535 mg kg-1, in 
soil according to previous survey. Two Japonica rice cultivars, Taikeng No. 8 and Tainan 
No. 11, were planted in the 13 paddy fields. The 13 collected soil samples were acidic (pH 
4.6-5.9) and fine textured (clay content 38-58%).  
 

 

Fig. 5. Map of Taiwan and location where As-contaminated soil samples were collected (Su 
& Chen, 2008). 

Although total soil As concentrations varied widely from 12.4 to 535 mg kg-1, As 
concentrations in brown rice were all below 0.35 mg kg-1 DW and no adverse effects were 
shown on rice growth (Fig. 6). The Standards for the Tolerance of HMs in rice enacted in 
Taiwan does not include As. According to the statutory limits of As concentration in cereals 
or food crops constructed in different countries, the rice harvested from the As-
contaminated soils in Guandu Plain was still safe for consumers.  
Zavala & Duxbury (2007) suggested a global “normal” range of As concentration in rice as 
0.08-0.20 mg kg-1, according to the combination of data set (n = 411) from their study and 
literatures. They also found that As levels in rice produced from Asia were significantly 
lower than that from U.S. or EU (Table 9). The As concentration in the majority of rice 
samples from Asia were lower than 0.098 mg kg-1. Compared with their findings, the As 
levels in rice grain produced in Guandu Plain were higher than the suggested global normal 
range even though they did not exceed the statutory limits. However, a pot experiment 
conducted in Taiwan also showed that As concentrations in brown rice ranged from 0.1 mg 
kg-1 to as high as 0.4 mg kg-1, even the rice was cultivated in soils not seriously contaminated 
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by As (total As < 25 mg kg-1) (Simmons et al., 2008). In the study of Zavala & Duxbury 
(2007), the rice samples collected from many countries may not be representative of major 
rice consumption in those countries, it is necessary to conduct a comprehensive survey for 
As concentrations in different rice cultivars produced in Taiwan to estimate the normal 
levels of As in rice and compared with the data from Guandu Plain. 
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Fig. 6. The relationship between As concentration in soil and in brown rice collected 
together from 13 paddy fields in Guandu-Plain, north Taiwan. 

 

Country/Institute Regulation item Statutory limit Reference 

Australia cereals 1 mg kg-1 FW Brus et al., 2009 
Canada food crops 1 mg kg-1 FW Zandstra & Kryger, 2007 
China rice 0.15 mg kg-1 DW* URL, 2005  
New Zealand cereals 1 mg kg-1 FW Brus et al., 2009 
Switzerland food crops 4 mg kg-1 DW Gulz et al., 2005 
United Kingdom food in sale 1 mg kg-1 FW Warren et al., 2003 

FW: fresh weight; DW: dry weight; *: limit for inorganic As 

Table 9. The statutory limits of arsenic concentration in cereals or food corps announced by 
WHO or different countries. 

Many studies found that the arsenic concentration in rice grain harvested from As-
contaminated soil could reach above 0.7 mg kg-1. However, rice produced in Guandu Plain 
is not apparently affected by As-contaminated soil. The availability of As in soil may be very 
low. To investigate the distribution of As forms associated with soil solid phases, an As-
specific sequential extraction procedure proposed by Wenzel et al. (2001) was conducted for 
the collected 13 soil samples.  
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The results showed that relative portions of all As fractions were similar in 13 collected soil 
samples even the total soil As levels varied widely. The level of non-specifically-bound As 
in soil samples were all below 0.7% of total arsenic concentration in soils. Since the non-
specifically-bound As represented the bioavailable As in soils and correlated well with As 
concentrations in soil solution collected in fields, the extremely low concentration of this As 
fraction may explain the facts that arsenic concentration in brown rice cultivated in highly 
As-contaminated soils of Guandu Plain were all below 0.35 mg kg-1 (Fig. 6) and no adverse 
effects on rice growth.  
Abedin et al. (2002) conducted a pot experiment using As-contaminated irrigation water to 
grow rice and suggested that As can be readily transferred from root to shoot if As levels in 
root exceeded the As storage capacity. However, a possible protection mechanism may exist 
in rice straw and husk to inhibit As accumulation in rice grain because the ratio of As 
concentration in grain/husk/straw is around 1/10/100 at the highest arsenate treatment 
(As levels in irrigation water = 8 mg L-1). This suggested that the suppression of As transfer 
from rice husk to grain may play a key role in reducing As concentration in rice grain. Since 
the primary As forms in soil environments are As(III) and As(V), As uptake by rice in paddy 
fields may mostly accumulate in rice roots. These transferring characteristics of As in rice 
may also contribute to the fact that low As levels in rice grain was found in Guandu Plain. 
The amorphous hydrous Fe and Al oxide-bound As was the major fraction in soils (>50% of 
total As). This suggested that the amorphous materials in soils may play a central role in 
limiting the availability of arsenic in soils. However, the levels of specifically-bound As were 
around 10% of total arsenic in soils. Since the total arsenic concentration in some soils were 
very high and the application of lime materials or phosphorus fertilizer may potentially 
mobilize the specifically-bound As, further studies on these potential risks to 
agroecosystems were absolutely required. 
Each fraction of arsenic in soil had significant linear relationship with total arsenic 
concentration in soil. This suggested that a single source of As contamination in Guandu 
Plain and the soil properties affected As adsorption in this area were similar. A significant 
linear relationship was found between Alo + 1/2Feo (%) in soil and total soil As 
concentration (mg kg-1) (r2= 0.89, P < 0.001). This result indicated the source of As 
contamination may rich in amorphous Fe and Al. Since the Alo + 1/2Feo (%) was good 
indicator of andic soil properties (Soil Survey Staff, 2006) and andesite is the parent material 
of soils in Guandu Plain, this findings suggested that the parent material may also 
contribute to the high levels of As in soils of Guandu Plain. 

9. Conclusion 

According to pot experiments and in-situ field scale experimental results, many plants can 
accumulate high concentration of HMs in their tissues and phytoremediation is feasible in 
removing HMs using suitable plant species. The critical concentrations of CaCl2-extractable 
Cd in soil under different levels of soil CaCl2-extractable Zn are constructed for farmers and 
authorities in Taiwan to prevent the production of Cd-contaminated rice by using the two 
equations developed in this study for Indica and Japonica rice cultivars. A single source of 
As contamination in Guandu Plain and a significant linear relationship was found between 
Alo + 1/2Feo content in soil and total soil As concentration. Although total soil As 
concentrations varied widely from 12.4 to 535 mg kg-1, As concentrations in brown rice were 
all below 0.35 mg kg-1 (DW) even the As regulation for rice was not announced in Taiwan. 
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According to the statutory limits of As concentration in cereals or food crops constructed in 
different countries, the rice harvested from the As-contaminated soils in Guandu Plain was 
still safe for consumers. 
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