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1. Introduction

As the continuous development on the capacity and work frequency, Programmable

Logic Devices (PLD) especially Field-Programmable Gate Arrays (FPGA) are playing an

increasingly important role in embedded systems designs. The FPGA market has hit about

3 and 4 billion US dollars respectively in 2009 and 2010, and is expected by Xilinx CEO Moshe

Gavrielov to grow steadily to 4.5 billion by the end of 2012 and 6 billion by the end of 2015.

The application fields of FPGAs and other PLDs range from bulky industrial and military

facilities to portable computer devices or communication terminals. Figure 1 demonstrates

the market statistics of some most significant fields in the third quarter of 2009.

Fig. 1. PLD market by end applications in the third quarter of 2009 (Dillien, 2009)

FPGAs were originally used as programmable glue logic in the early period after its birth. Due

to the capacity and clock frequency constraints at that time, they typically worked to bridge

Application-Specific Integrated Circuit (ASIC) chips by adapting signal formats or conducting

simple logic calculation. However at present, modern FPGAs have obtained enormous

capacity and many advanced computation/communication features from the semiconductor

process development; they can accommodate complete computer systems consisting of

hardcore or softcore microprocessors, memory controllers, customized hardware accelerators,

7

www.intechopen.com



2 Will-be-set-by-IN-TECH

as well as peripherals, etc. Taking advantage of design IP cores and interconnection

architecture, it has become a reality to easily implement System-on-Programmable-Chip

(SoPC) or system-on-an-FPGA.

In spite of large advances, the chip area utilization efficiency as well as the clock speed of

FPGAs is still very low in comparison with ASICs. One of the reasons is that FPGA employs

Look-Up Table (LUT) to construct combinational logic, rather than primary gates as in ASICs.

In (Kuon & Rose, 2006), the authors have measured FPGAs to be 35X larger in area and 3X

slower in speed than a standard cell ASIC flow, both using 90-nm technology; In (Lu et al.,

2008), a 12 year old Pentium� design was ported on a Xilinx Virtex-4 FPGA. A 3X slower

system speed (25 MHz vs. 75 MHz) is still observed, although the FPGA uses a recent

90-nm technology while the original ASICs were 600-nm. The speed and area utilization gap

between FPGAs and ASICs has been additionally quantified in (Zuchowski et al., 2002) and

(Wilton et al., 2005) for various designs. Therefore we understand that FPGA programmable

resources are still comparatively expensive. Efficient resource management and utilization

remain to be a challenge especially for those applications with simultaneous high performance

and low cost requirements.

Flash memory is often used to store nonvolatile data in embedded systems. Due to its

intrinsic access mode, normally it does not feature as high speed read and write operations

as volatile memories such as Dynamic Random Access Memory (DRAM) or Static Random

Access Memory (SRAM). In many applications, flash memory is only used to hold data or

programs which are expected to be retrievable after each time power off. It is only addressed

very occasionally or even never during the system run-time, when those data or programs

have already been loaded in the main memory of the system. For example, an embedded

Operating System (OS) kernel may be loaded from the flash into DDR for fast execution in

case of system power-on. Afterwards, the flash memory will never be addressed in systems

operation unless the OS kernel is scheduled to be updated. Because of the occasionality of

flash accesses, it generates resource utilization inefficiency if the flash memory controller is

statically mapped on the FPGA design but does not operate frequently.

In the recent years, an advanced FPGA technology called Dynamic Partial Reconfiguration

(DPR or PR) has emerged and become gradually mature for practical designs. It offers

the capability to dynamically change part of the design without disturbing the remaining

system. Based on the FPGA PR technology, which enables more efficient run-time resource

management, we present a peripheral controller reconfigurable system design in this chapter:

A NOR flash memory controller can be multiplexed with other peripheral components (in

the case study an SRAM controller), time-sharing the same hardware resources with all

the required system functionalities realized. We will elaborate the design in the following

sections.

2. Conventional static design on FPGAs

2.1 Static design approach

A peripheral controller is the design component which interfaces to the peripheral device

and interprets or responds to access instructions from the CPU or other master devices. So a

flash memory controller is the design by which CPU addresses external flash chips. Figure 2

shows the top-level block diagram of a flash memory controller for the Processor Local Bus
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(PLB) (IBM, 2007) connection. It receives control commands from the PLB to read from and

write to external memory devices. The controller design provides basic read/write control

signals, as well as the ability to configure the access time for read, write, and recovery time

when switching between read and write operations. In addition, the memory data width and

the bus data width are parameterizable. They can be automatically matched by performing

multiple memory cycles when the memory data width is less than PLB. This design structure

is capable of realizing both synchronous and asynchronous device access. It may also support

other parallel memory accesses with small modification effort, such as SRAM.

Fig. 2. Top-level block diagram of the PLB flash memory controller (Xilinx, 2006)

Figure 3 demonstrates a typical system-on-an-FPGA design for embedded applications. As an

example, we adopt the Xilinx Virtex-4 FX FPGA for the implementation. We observe that all

components are interconnected by the PLB, including the microprocessor, memory controllers,

the application-specific algorithm accelerator as well as peripheral devices. In case of system

power-on, the FPGA firmware bitstream is firstly downloaded to configure the FPGA via a

special configuration interface (Dunlap & Fischaber, 2010). Afterwards an embedded Linux

OS kernel is loaded by a bootloader program into the main memory of DDR for fast execution.

In the design, a NOR flash memory stores nonvolatile data necessary for system startup in the

field, including both the bitstream file and the OS kernel.

Suppose we are constructing a system aiming at memory bandwidth hungry computation

for certain applications. Hence a Zero-Bus Turnaround (ZBT) SRAM is integrated in the

system in addition to the main DDR memory. The SRAM is utilized as a Look-Up Table

(LUT) component by the algorithm accelerator to carry out application-specific computation.

It features higher data bandwidth and more efficient data movement than DDR. With the
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Fig. 3. Static design on an FPGA. The system is bus-based and all components are connected
to the PLB. We may see that both the flash controller and the SRAM controller are
concurrently placed in the design with the conventional static approach.

conventional static design approach, both the flash and the SRAM controller are concurrently

placed on the FPGA in order to address the two types of memories.

2.2 Motivation

The flash memory is used to hold nonvolatile data for in-field system startup. It will be rarely

addressed during the system operation unless external management commands require the

bitstream or the OS kernel to be updated. On the other hand, application-specific computation

starts only after the FPGA firmware is configured and the OS is successfully booted.

Therefore on account of the occasionality of flash access as well as the operation exclusiveness

between flash and SRAM, it generates resource utilization inefficiency if the flash controller

is permanently mapped on the FPGA design but does not function frequently. Hence we

consider to make the flash memory controller dynamically changeable and time-share the

same on-chip resources with the SRAM controller.

3. FPGA partial reconfiguration technology

Modern FPGAs (e.g. Xilinx Virtex-4, 5, and 6, Altera Stratix 5 FPGAs) offer the partial

reconfiguration capability to dynamically change part of the design without disturbing the

remaining system. This feature enables alternate utilization of on-FPGA programmable

resources, therefore resulting in large benefits such as more efficient resource utilization

and less static power dissipation (Kao, 2005). Figure 4 illustrates a reconfigurable design

example on Xilinx FPGAs: In the design process, one Partially Reconfigurable Region

(PRR) A is reserved in the overall design layout mapped on the FPGA. On the early-stage

dynamically reconfigurable FPGAs (e.g. Xilinx Virtex-II and Virtex-II Pro), PRR reservation

must run through a complete slice column, because a slice column is the smallest load unit

of a configuration bitstream frame (Hubner et al., 2006; Xilinx, 2004). With respect to the
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latest FPGA generations (e.g. Xilinx Virtex-4, 5, and 6), PRRs can be the combination of

slice squares. Various functional Partially Reconfigurable Modules (PRM) are individually

implemented within the PR region in the implementation process, and their respective

partial bitstreams are generated and collectively initialized in a design database residing

in a memory device in the system. During the system run-time, various bitstreams can

be dynamically loaded into the FPGA configuration memory by its controller named

Internal Configuration Access Port (ICAP). With a new module bitstream overwriting the

original one in the FPGA configuration memory, the PRR is loaded with the new module

and the circuit functions according to its concrete design. In the dynamic reconfiguration

process, the PRR has to stop working for a short time (reconfiguration overhead) until the

new module is completely loaded. The static portion of the system will not be interfered at all.

Fig. 4. Partially reconfigurable design on Xilinx FPGAs

The ICAP primitive is the hardwired FPGA logic by which the bitstream can be downloaded

into the configuration memory. As shown in Figure 5, ICAP interfaces to the configuration

memory and provides parallel access ports to the circuit design based on programmable

resources. During the system run-time, a master device (typically an embedded

microprocessor or Direct Memory Access (DMA)) may transfer partial reconfiguration

bitstreams from the storage device to ICAP to accomplish dynamic reconfiguration. The

complete ICAP design, in which the ICAP primitive is instantiated, interfaces to the

system interconnection fabric to communicate with the processor and memories. In

(Liu, Kuehn, Lu & Jantsch, 2009), (Delorme et al., 2009) and (Liu, Pittman & Forin, 2009), the

authors explore the design space of ICAP IP module and present optimized designs. Through

using either DDR or SRAM memories to hold partial bitstreams, these designs may achieve

a run-time reconfiguration throughput of about 235 MB/s or close to 400 MB/s. The

reconfiguration time overhead is linearly proportional to the size of partial bitstreams. Thus,

a typical modular design of several tens or hundreds of KiloBytes in the partial bitstream

requires several tens up to hundreds of microseconds (µs) for run-time reconfiguration.

The PR technology is coupled very closely to the underlying framework of the FPGA chip

itself. We use the Xilinx FPGAs to explain the PR design flow as illustrated in Figure 6:

The design begins from partitioning the system between the static base design and the

reconfigurable part. Usually basic hardware infrastructures that expect continuous work
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Fig. 5. The ICAP primitive on Xilinx FPGAs

and do not want to be unloaded or replaced during the operation are classfied into the

static category, such as the system processor or the main memory controller. The partially

reconfigurable part delegates those modules with dynamically swapping needs in the PR

region. All the modular designs including PRMs are assembled to form an entire system.

After synthesis, netlist files are generated for all the modules as well as the top-level system.

The netlists serve as input files to the FPGA implementation. Before implementation, the Area

Group (AG) constraints must be defined to prevent the logics in PRMs from being merged

with the ones in the base design. Each PRR will be only restricted in the area defined by

the RANGE constraints. Then after the following independent implementation of the base

design and PR modules, the final step in the design flow is to merge them and create both the

complete bitstream (with default PR modules equipped) and partial bitstreams for respective

PR modules. Hence, the run-time reconfiguration process is initiated when one partial

bitstream is loaded into the FPGA configuration memory and overwrites the corresponding

segment.

Fig. 6. Xilinx PR design flow

4. Design framework of adaptively reconfigurable peripherals

The modular design concept popularly adopted in static systems applies also to run-time

reconfigurable designs on FPGAs. As we discussed in the previous section, the entire system
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is partitioned and different tasks are individually implemented as functional modules in

dynamically reconfigurable designs. Analogous to software processes running on top of OSes

and competing for the CPU time, each functional module can be regarded as a hardware

process which is to be loaded into reconfigurable slots (i.e. PRRs) on the FPGA rather

than General-Purpose microprocessors (GPCPU). Multiple hardware processes share the

programmable resources and are scheduled to work according to certain types of disciplines

on the awareness of computation requirements. Context switching happens when the current

hardware process in charge of one task is leaving the reconfigurable slot (being overwritten)

and another new task is to be loaded to start working. All these key issues in the adaptive

computing framework are classified into and addressed within certain layers in hardware or

software. Figure 7 demonstrates the layered hardware/software architecture and details in

different aspects will be presented in the following subsections respectively.

Fig. 7. Hardware/software layers of the adaptive reconfigurable system

4.1 Hardware structure

A dynamically reconfigurable platform may contain a general-purpose host computer system

and application-specific functional modules. Figure 8 shows a system on a Xilinx Virtex-4

FPGA. Existing commercial IP cores can be exploited to quickly construct the general

computer design, consisting of the processor core, the main DDR memory controller,

peripherals, and the interconnection infrastructure using the PLB bus. In addition to the

fundamental host computer system, run-time reconfigurable slots are reserved for being

dynamically equipped with different functional modules. In the figure we show only one PRR

to explain the principle. When incorporated in the PRR, PR modules communicate with the

static base design, specifically the PLB bus for receiving controls from the processor and I/O

buffers to external devices. Noting that the output signals of a PR module may unpredictably

toggle during active reconfiguration, “disconnect” logic (illustrated in the callout frame in

Figure 8) is required to be inserted to disable PRM outputs and isolate the unsteady signal

state for the base design from being interfered. Furthermore, a dedicated “reset” signal aims to

solely reset the newly loaded module after each partial reconfiguration. Both the “disconnect”
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and the separate “reset” signal can be driven by software-accessible General-Purpose I/Os

(GPIO).

Fig. 8. The hardware infrastructure of the PR system

In the previous Xilinx Partial Reconfiguration Early Access design flow (Xilinx, 2008), a

special type of component called Bus Macro (BM) must be instantiated to straddle the PR

region and the static design, in order to lock the implementation routing between them.

This is the particular treatment on the communication channels between the static and the

dynamically reconfigurable regions. The BM components have been removed in the new PR

design flow (Xilinx, 2010). They are no longer needed and the partition I/Os are automatically

managed by the development software tool.

One significant advantage of this hardware structure, is that it conforms to the modular

design appraoch: Different functional tasks are respectively implemented into IP cores. They

are wrapped by the PLB interface and integrated in the bus-based system design. Normal

static designs can be easily converted into a PR system by attentively treating the connection

interface and mapping various functional modules in the same time-shared PR region. Little

special consideration is needed to construct a PR system on the basis of conventional static

designs.

4.2 OS and device drivers

As in conventional static designs, all hardware modules sharing a same reconfigurable slot can

be managed by the host processor with or without OS support. In a standalone mode without

OS, the processor addresses device components with low-level register accesses in application

programs. While in OSes, device drivers are expected to be customized. In a Unix-like OS,

common file operations are programmed to access devices (Corbet et al., 2005), including

“open", “close", “read", “write", “ioctl", etc. Interrupt handlers should also be implemented if

the hardware provides interrupt services.

Different device components multiplexed in a same PR region are allowed to share the same

physical address space for system bus addressing, due to their operation exclusiveness on the
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time axis. In order to match software operations with the equipped hardware component, two

approaches can be adopted: Either a universal driver is customized for all the reconfigurable

modules sharing a same PR region. Respective device operations are regulated and collected

in the code. The ID number of PR modules is kept track of and passed to the driver, branching

to the correct instructions according to the currently activated hardware module; or the

drivers are separately compiled into software modules for different hardware components.

The old driver is to be removed and the new one inserted, along with the presence of a newly

loaded hardware device. Among these two approaches, the former one can avoid the driver

module removing/inserting time overhead in the OS, while the latter one is more convenient

for system upgrades when a new task is added to share a PR region.

Little special consideration or modification effort is required on the OS and device drivers

for run-time reconfigurable systems in comparison with static designs. The most important

thing to note, is to keep track of the presently activated module in the PRR and correctly

match the driver software with the hardware. Otherwise the device module may suffer from

misoperations.

4.3 Reconfiguration management

In dynamically reconfigurable designs, run-time module loading/unloading is managed by a

scheduler. Analogous to the scheduler in an OS kernel which determines the active process

for CPU execution, the scheduler in FPGA reconfigurable designs monitors trigger events and

decides which functional module is to be configured next to utilize the reconfigurable slot. All

hardware processes are preemptable and they must comply with the management from the

scheduler. The scheduling policy may be implemented in hardware with Finit State Machines

(FSM). However for more design convenience, it can be ported in the software application

program running on the host processor with or without OS support. Distinguished from

the kernel space scheduling in (So et al., 2006) and the management unit design in hardware

in (Ito et al., 2006), the user space software scheduling possesses significant advantages of

convenient portability to other platforms, avoidance of error-prone OS kernel modification,

and flexibility to optimize scheduling disciplines. Scheduling policies are very flexible. But

they have direct effect on the system performance and should be optimized according to

concrete application requireiments, such as throughput or reaction latency. One general

rule is to minimize the hardware context switching times, taking into account the dynamic

reconfiguration time overhead and extra power dissipation needed during the reconfiguration

process.

The scheduler program is only in charge of light-weight control work and usually does

not feature intensive computation. In addition, the host CPU only initiates run-time

reconfiguration by providing the bitstream storage address as well as the length, and

it is actually the master block or the DMA component in the ICAP designs that

transports the configuration data (Delorme et al., 2009; Liu, Kuehn, Lu & Jantsch, 2009;

Liu, Pittman & Forin, 2009). Therefore dynamic reconfiguration scheduling does not typically

take much CPU time, especially when the trigger events of module switching happen only

infrequently and the scheduler is informed by CPU interrupts.
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(a) x = a + b (b) y = c × d

Fig. 9. Contextless module switching in the reconfigurable design

4.4 Context switching

The context of hardware processes refers to the buffered incoming raw data, intermediate

calculation results and control parameters in registers or on-chip memory blocks residing in

the shared resources of PR regions or static interface blocks. In some applications, it becomes

contextless when the buffered raw data are completely consumed and no intermediate

state is needed to be recorded. Thus the scheduler may simply swap out an active PR

module. After some time when it resumes, a module reset will be adequate to restore its

operation. Otherwise, context saving and restoring must be accomplished. Figure 9 and 10

respectively demonstrate these two circumstances: In the design in Figure 9, two dynamically

reconfigurable functional modules (adder and multiplier) do not share the interface registers

and they both feature pure conbinational logic in using the PRR. Hence during each time

when the PRR is reconfigured with an arithmetic operator, the register values in the interface

block are not needed to be saved or restored in order to obtain correct results of x and y. By

contrast in the design of Figure 10, the operand registers in the static interface are shared and

the reconfigurable region also contains the context of one operand for the addition operation.

Therefore in case of module switching, the operands of the former operation must be saved in

the system memory, and the ones for the recently resumed operator are to be restored.

Generally speaking, two approaches can be employed to address the context saving and

restoring issue: In case of small amounts of parameters or intermediate results, register

accesses can efficiently read out the context into external memories and restore it when the

corresponding hardware module resumes (Huang & Hsiung, 2008). When there are large

quantities of data buffered in on-chip memory blocks, the ICAP interface can be utilized to

read out the bitstream and extract the storage values for context saving (Kalte & Porrmann,

2005). In order to avoid the design effort and large time overhead in the latter case, an

alternative solution is to intentionally generate some periodic “pause” states without any

context for the data processing module. Context switching can be then delayed by the

scheduler until meeting a pause state.

4.5 Inter-process communication

Reconfigurable modules (hardware processes) placed at run-time may need to exchange data

among each other. With respect to those modules that are located in different PR regions,
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(a) x = a + b (b) y = c × d

Fig. 10. Context saving and restoring in the reconfigurable design

(a) Direct connection (b) Shared memory (c) Reconfigurable multiple bus

(d) Crossbar

Fig. 11. Inter-process communication approaches among PRRs (Majer et al., 2007)

they can communicate through canonical approaches as in static designs. For example

Figure 11 demonstrates some general solutions for inter-PRR communications, including

direct connection, shared memory, Reconfigurable Multiple Bus (RMB) (Ahmadinia et al.,

2005; Elgindy et al., 1996), and crossbar. Detailed description on these approaches can be

found in (Majer et al., 2007) and (Fekete et al., 2006), in which inter-module communications

have been intensively investigated in dynamically reconfigurable designs.
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(a) Flash controller (b) SRAM controller

Fig. 12. Blackboxes of the flash controller and the SRAM controller

More generally, communications among PR modules that are time-multiplexed in the same

reconfigurable slot may also exist and be required in the hardware implementation. In this

circumstance, static buffer devices must be employed to hold the IPC information while the

PRR is being dynamically reconfigured (Liu et al., 2010). As the producer module is active to

work, the IPC information is injected into the buffer. Afterwards the consumer module may

take the place of the producer in the reconfigurable slot and digest the IPC data destined to it.

The buffer device can either directly interface to the PRR, or be located in the main memory

and accessed via interconnection architectures such as the system bus. The concrete IPC using

this approach for the reconfigurable controller design will be revisited in the next section.

5. Reconfigurable design of flash/SRAM controllers

5.1 Hardware/software design

Both the flash and the SRAM controllers are picked up from the Xilinx IP library. We do

not concern their in-depth design details, but simply regard them as blackboxes instead with

communication interfaces demonstrated in Figure 12. In the figure, the left side is the interface

to external memory devices (Flash or SRAM) and the right side is to the system bus.

Figure 13 shows the hardware structure: An off-chip asynchronous NOR flash memory and

a synchronous SRAM share the same data, address and control bus I/O pads of the FPGA.

These two chips are exclusively selected by the “CE” signal. The flash and the SRAM

controllers are both slave devices on the system bus. They are selectively activated in the

reserved PRR by run-time partial reconfiguration. In order to isolate the unsteady output

signals from the PRR during active reconfiguration, “disconnect” logic is inserted in both

interfaces between the controllers and the PLB bus or external devices. Moreover, a dedicated

“reset” signal takes charge of solely reseting the newly loaded module after each run-time

reconfiguration. Both the “disconnect" and the separate “reset" signals are driven by a GPIO

core under the control of the host processor.

An open-source Linux kernel runs on the host PowerPC 405 processor. To manage run-time

operations in Linux, device drivers for hardware IP cores have been brought up to provide

programming interfaces to application programs. We configure the open-source Memory

Technology Device (MTD) driver (Woodhouse, 2005) to support NOR flash accesses in

Linux. Other drivers are customized specifically for the LUT block in SRAM, PLB_GPIO and

MST_HWICAP. With drivers loaded, device nodes will show up in the “/dev” directory of

the Linux file system, and can be accessed by predefined file operations. The drivers are
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Fig. 13. Hardware structure of the flash/SRAM PR design

Fig. 14. Flow chart of multiplexing flash/SRAM in Linux

compiled into modules. They will be inserted into the OS kernel when the corresponding

device hardware is configured, or removed when not needed any longer.

The hardware process scheduler is implemented in a C program. It detects the memory access

requirements on flash or SRAM from either the system interior or external user commands,

and meanwhile manages the work sequence of both types of memories. Figure 14 shows a

flow chart, in which the scheduler alternately loads the flash and the SRAM controller with

context awareness. During the device module reconfiguration, the Linux OS as well as the

remaining hardware system keeps running without breaks. In this figure, steps labeled with

“a - g” are used to dynamically configure the SRAM controller, and the ones labeled with

149Adaptively Reconfigurable Controller for the Flash Memory
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“A - G” are to load the flash controller. Events marked by the symbol “≪” are detected

by the scheduler to trigger hardware context switching. Main switching steps before device

operations include:

1. To save the register context of the to-be-unloaded device in DDR variables if necessary.

2. To remove the driver module of the to-be-unloaded device from the OS.

3. To disconnect the PRR outputs for isolating its unsteady state during active reconfiguration

from the static design.

4. To dynamically load the partial bitstream of the expected controller by initiating the

MST_HWICAP core.

5. To solely reset the newly loaded device controller, and recover its register context if there

exists.

6. To re-enable the PRR outputs, restoring the communication links from the PRR to the static

design.

7. To insert the corresponding device driver in the OS, for the processor access with high-level

application software.

After these steps, the recently equipped controller module becomes ready for memory

accesses on the NOR flash or the SRAM.

In this design, IPC operations can be realized through the third-party shared memory such

as DDR. For example when the system is just powered on, the SRAM LUT initialization data

are retrieved from the nonvolatile flash and buffered in the system DDR memory. After the

flash controller is unloaded and the SRAM controller is activated in the PRR by dynamic

reconfiguration, the LUT data are then migrated into the SRAM chip for application-specific

computation. The IPC data flow is illustrated in Figure 15.

5.2 Results

Through enabling either the flash controller or the SRAM controller with system

self-awareness, multitasking has been accomplished within a single reconfigurable slot on

the FPGA. Figure 16 demonstrates the rectangular shape of the reserved PR region on a

Virtex-4 FX20 FPGA layout, as well as two controller implementations after place-and-route.

The reconfigurable design results in a more efficient utilization of hardware resources, as

listed in Table 1. We understand that both the flash memory controller and the SRAM

controller must be concurrently placed in the static system design, implying a total resource

consumption equivalent to the sum of both device modules. A PR region is reserved in the

reconfigurable design, sufficiently large to accommodate all kinds of needed resources of both

device modules. Moreover, a little more resource margin is added for the place-and-route

convenience of the software tool. In contrast to the conventional static approach, we observe

that the reconfigurable system saves 43.7% LUTs, 33.8% slice registers and 47.9% I/O pads,

with both flash and SRAM services realized. The reduced resource requirement not only

enables to fit a large system design on small FPGA chips for lower hardware cost, but also

makes the I/O pads shared and simplifys the Printed Circuit Board (PCB) routing.
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Fig. 15. Migrating LUT initialization data from the flash memory to the SRAM

(a) The flash implementation in
PRR

(b) The SRAM implementation
in PRR

Fig. 16. Implementation of the flash and the SRAM controller within the PRR on a Virtex-4
FX20 FPGA

6. Conclusion

Based on the FPGA run-time reconfigurability, we present a dynamically reconfigurable

NOR flash controller for embedded designs. This technique is motivated by the operation

occasionality of the flash memory and the resultant programmable resource waste on the

FPGA, when adopting the conventional static development approach. We discuss the
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Resources Static flash
controller

Static SRAM
controller

Total PRR Resource
saving

4-input
LUTs

923 954 1877 1056 43.7%

Slice
Flip-Flops

867 728 1595 1056 33.8%

I/O pads 56 61 117 61 47.9%

Table 1. Resource utilization of the static/reconfigurable flash/SRAM designs

design framework of adaptively reconfigurable peripherals in this chapter, concerning various

aspects in hardware and software. In the practical experiment, a reserved reconfigurable

slot is time-shared by the flash memory controller and an SRAM controller. Both system

requirements of accessing the flash memory and the SRAM are equally accomplished in the

reconfigurable design, with much less resource utilization of FPGA LUTs, slice registers as

well as I/O pads.

This design technique is not limited to memory controller modules, but can apply to all kinds

of modular devices operating exclusively. In addition, system functionalities can be later

extended by adding more functional modules to time-share a same reconfigurable slot. It not

only enhances the resource utilization efficiency on FPGAs, but also enables the possibility of

future firmware upgrade without hardware modification.
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