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1. Introduction

A wireless sensor network (WSN) is a distributed system composed of many battery-powered

devices, which operate with no human intervention for long periods of time. These devices

are called sensor nodes or motes.

Motes present features of both embedded and general-purpose systems (Han et al., 2005).

Their tiny size, scarce resources, and their autonomous nature lead to strong restrictions of

computation, communication, power, and storage. Typically, they are deployed in an ad-hoc

fashion over a geographical area (e.g. a volcano, a glacier, an office), which is to be monitored.

This means that —depending on the environment where they are installed— it could result

very difficult to perform activities of maintenance such as the replacement of the node’s

batteries. Software built for the sensor nodes must be reliable and robust due to the difficulty

for accessing sensor nodes, and sensor nodes must operate in an autonomous way even in

presence of failures.

Motes are interconnected through wireless links and they execute a simple, small application,

which is developed using a sensor node-specific operating system. Typically, sensor network

applications consist of sensing the environment through different type of sensors (e.g.

temperature, humidity, GPS, imagers), transforming analogical data into digital data in the

node itself, and forwarding the data to the network. Data is forwarded through a multi-hop

protocol to a special node denominated gateway, which is intended to redirect all data from

the wireless network to a base station (e.g. PC, laptop), where the data will be permanently

stored in order to allow data post-processing and analysis. Figure 1 shows the three elements

previously described: sensor nodes, gateway, base station.

1.1 Data classification in a WSN

WSNs generate larger data sets as sampling frequency increase. Sensor nodes must manage

data proceeding from different sources: internal data produced by the sensor node itself

(e.g. sensor measurements, application data, logs), and external data transmitted by other

nodes in the network (e.g. protocol messages, data packets, commands). Since the data
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2 Will-be-set-by-IN-TECH

Fig. 1. A wireless sensor network: it is composed of a set of sensor nodes or motes, a
communication gateway, and a base station.

memory1 of a sensor node is a very scarce resource (typically 4 KB of RAM), nodes are forced

to use other available devices to save data (such as the flash memory chip located outside

the microcontroller) or to send data out of the node to prevent local storage. However, as

explained below, the radio is the main consumer of energy in the sensor node and for this

reason in many cases data are stored rather sent out. Subsequently, a tradeoff between the

flash and radio power consumption is currently an important line of research (Diao et al.,

2007) (Balani et al., 2005) (Shenker et al., 2003).

Other classification of data depends on the time when they were captured. In this sense,

data may be live or historical. The first one corresponds to data acquired within a window of

time and they are useful to detect meaningful events in quasi-real time (e.g. fire, earthquake).

Moreover, in general, users do not want to renounce to the knowledge provided by the whole

set of data, for example to identify trends or patterns and, therefore, historical data cannot be

discarded. In this sense, flash memories can provide support for such an amount of data.

1.2 Importance of the flash memory chip in a sensor node

Flash memories have been embedded into sensor nodes from their earlier designs to

nowadays. Along this time, these physical memories have suffered continuous updating,

in order to be adapted to the specific features of sensor nodes. Specifically, they must be

energy-efficient, since the energy is doubtless the most valuable and restricted resource. Many

WSN applications found in the flash memory chip the only device that allow them satisfying

their requirements, since it represents the device with the bigger capacity for permanent

storage of application data in the sensor node.

There exist an increasing number of applications requiring the usage of non-volatile storage.

Storing local and distributed data into sensor nodes has also promoted a set of high-level

applications, which manage the network as a large database. Flash memories not just

allow to store data when the RAM memory capabilities are near to be exceeded, but also

they have made possible several relevant applications for sensor networks such as remote

reprogramming of sensor nodes. Frequently, a WSN application could need both code

1 The microcontroller of motes employ the Harvard Architecture which separates data and program into
dedicated memories.
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updates —for modifying the value of some variable— and important changes —as replacing

the complete application’s image. However, the unattended nature of sensor nodes, their

ubiquity, and the inhospitable environments where they are deployed could difficult or even

make impossible a manual installation of nodes. As an example, consider the extreme scenario

where a sensor network has been affected by a virus disseminated from the base station.

Another example more realistic is the necessity of degrading the application behaviour

when the node’s batteries are near to deplete, in order to increase the network lifetime.

In both examples there is a necessity of reprogramming the network. Therefore, remote

programming of sensor nodes is a fundamental task for ensuring the consistency of sensor

network applications.

Consequently, flash memory chips, such as Atmel AT45DB, have become key devices that

make possible a set of applications that currently are considered critical for wireless sensor

networks.

This chapter presents a survey of the state-of-the-art in flash memories which are embedded

into sensor nodes as external devices of general purpose. Along the chapter, we refer ”flash

memories” specifically to the flash memories which are external to microcontroller. At the

beginning of the chapter we have presented a description of the technology of these flash

memories, highlighting the more relevant features in the context of WSN, and their integration

with other physical components hold into the sensor node. In the next section we describe the

abstractions provided by several WSN-specific operating systems in order to manage the flash

device. Then, we discuss the related work on flash-based sensor network applications, such

as sensor nodes reprogramming and file systems. To conclude this chapter we provide our

conclusions about this work.

2. Hardware technology

The hardware technology employed in sensor nodes manufacturing is an active research line

that is carried out by both universities and by private companies around the world. The

possibilities in this field are enormous because of the increasing need to look for new sensors

for potential applications, advances in miniaturization, and the appearance of components to

be integrated (e.g. GPS, scavengers). Since the sensor nodes are battery-powered devices,

it is the most importance the looking for strategies at the hardware level that make an

energy-efficient management of the devices.

The typical architecture of a mote presents the block diagram shown in Figure 2. It is composed

of a set of hardware components which are described as follows:

• A microcontroller of low capacity which usually operates at very low frequencies (e.g.

7 MHz) and has an architecture ranging from 4-bit to 32-bit. It also integrates RAM and

ROM memories, an Analogical-Digital Converter (ADC) and several clocks that enable local

synchronizing. Some examples of microcontrollers are Atmega128L (Atmel, 2011) from

ATMEL and MSP430 (Instrument, 2008) from Texas Instruments.

• The radio device provides wireless communication to the sensor node,

and supports the WSN specific communication properties such as low

energy, low data rate, and short distances. Some radio devices for motes

are CC1000 (CC1000 Single Chip Very Low Power RF Transceiver, 2002) and

CC2400 (CC2400 2.4GHz Low-Power RF Transceiver, 2003) from Chipcon, and
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Fig. 2. Block diagram of a sensor node. It includes several interconnected physical devices
such as the radio, the microcontroller and the flash memory chip.

nRF2401 (nRF2401 Radio Transceiver Data Sheet, 2003) radio transceiver from Nordic

Semiconductors.

• The battery provides energy to the sensor node (e.g. alkaline batteries). Motes usually

hold two conventional batteries as power supplier. Numerous research projects focus on

alternatives for energy harvesting, which are typically based on solar cells.

• Several LEDs (Light-Emitting Diode) are attached to the mote board with the main purpose

of helping to debug. Typically, there are three LEDs integrated into a sensor node (red,

green and yellow) although in some motes, an additional blue LED has been added.

• A sensor board usually contains several sensors and actuators, which are able to sense the

environment. When the sensor board is present, the expansion connector acts as a bridge

between the sensor board and the mote microcontroller.

• Several I/O buses transfer internal data between physical components (microcontroller,

radio, and memory) in accordance with a specific I/O protocol. Different interfaces coexist

in a sensor node (e.g. Serial Peripheral Interface (SPI), Inter Integrated Circuit (I2C) and

Universal Asynchronous Receiver/Transmitter (UART)).

• Finally, an external flash memory with longer capacities than the internal memories

(RAM and ROM), in order to temporally store data provided by different sources

(sensors, network, or logs). Some of the most popular flash memory chips integrated

into sensor nodes are Atmel AT45DB (Atmel AT45DB011 Serial DataFlash, 2001) and ST

M25P40 (M25P40 Serial Flash Memory, 2002).

In the next subsection we will focus on describing the hardware technology for these flash

memories embedded in sensor nodes.

2.1 Flash memory technology

Flash memory chips embedded within sensor nodes provide an additional and auxiliary

storage space for general purpose usages. Flash memory is a specific type of EEPROM

(Electrically Erasable Programmable Read-Only Memory) that enables the access to n-bytes
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blocks in a single operation —instead of one operation per byte like EEPROM memories—

thus increasing the speed of the operations. This memory is non-volatile, which means that

energy is not needed to maintain the information stored in the chip. For these reasons the

usage of such a type of memory has been extended to many others digital devices like cameras,

mobile phones, and MP3 players.

Physically, a flash memory chip consists of an array of memory cells which are manufactured

using transistors. Every one of these cells is able to store one single bit (0 or 1) —in traditional

chips— or a set of bits —in modern chips. Depending on the type of logical gate employed

two underlying technologies can be distinguished:

• NOR flash is manufactured using NOR gates. Every cell in its default state is logically

equivalent to the binary ”1” value. This is interpreted as presence of voltage in the cell.

NOR flash was first introduced by Intel in 1988.

• NAND flash uses NAND gates. In this case, every cell is in its default state set to the

equivalent binary ”0” value, which means that there is no voltage measured in that cell.

NAND flash was introduced by Toshiba in 1989.

There is also a third type of technology used in the manufacturing of flash memory chips:

the CMOS technology. CMOS enables to build logical gates in different way than NOR and

NAND flash through a specific type of transistors: p-type and n-type metaloxidesemiconductor

field-effect transistors.

Regardless of the underlying technology used, there exist two basic low-level operations that

operate on a cell-basis: 1) the programming operation, which consists of inverting the default

state of a cell; and 2) the erasing operation, which consists of resetting its default state. From

these two operations most of high-level operations over the flash memory can be constructed.

2.2 Flash memory architecture

NOR flash memory architecture is organized in segments also called blocks or sectors. The

operation of erasing is block-oriented since the minimum unit to be erased is a block. It

means that all cells in this block must be erased together. The operation of programming

can be generally performed on a per-byte basis, but it requires that the block to be modified

be previously erased before of writing on it. Another feature is that it enables the random

access for readings. Typical block sizes are 64, 128, or 256 KB. One example of NOR flash

memory chip is the ST M25P40 (M25P40 Serial Flash Memory, 2002) which is hold into TelosB

and Eyes sensor node platforms. This device has a capacity of 4 Mbit and it is organized into

8 sectors. Another example is Intel Strataflash (Intel Strataflash, 2002) which is integrated into

Intel Mote2 sensor node. It is the lowest cost-per-bit NOR memory chip, with a capacity of 32

megabytes, which are divided into 128 KB sectors.

On the other hand, NAND flash memory is organized in blocks and pages. Each block

is divided into a fixed number of pages and each page has n-bytes of extension where m

bytes (m < n) are usually reserved for storing the metadata related to the data in that page

(e.g. an error correcting code (ECC)). Typical page sizes are 512, 2048, or 4096 bytes, but in

devices such as motes this length is even smaller. The high-level operations in a NAND flash

—readings and writings— are typically performed on a per-page basis while the operation

of erasing is performed on the whole block. The access in NAND memories differs from the

random access in NOR memories. NAND memories enable direct access to the block level
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but only sequential access is allowed inside a block. A representative example is Samsung

K9K1G08R0B (SAMSUNG, 2003) with a capacity of 128 MB, a length of page of 528 bytes (for

programming) and a block size of 16 KB (for erasing).

The most notable example of flash chip using CMOS technology is the Atmel

AT45DB041 (Atmel AT45DB011 Serial DataFlash, 2001) chip, which is integrated into Mica

family and TelosA motes. The total capacity for this chip is 512 KB and it is divided into

four sectors of 128 KB. Every sector is also divided into pages, each page is 264 bytes long (256

bytes for data and 8 bytes for metadata). The pages can only be written or erased as a whole

and in order to maintain the consistency, pages should be erased before being written.

Unlike conventional flash memories, that enable random access to the data, this memory chip

uses a serial interface to enable sequential access. The memory uses two intermediate page

long RAM buffers to transfer data between the serial interface and main memory. Every buffer

is identified by a code which specifies what buffer is being used. These buffers perform a

read-modify-write operation to effectively change the contents of flash. Figure 3 shows the

block diagram for AT45DB041.

Fig. 3. Block diagram for AT45DB041 memory chip. It uses two page long RAM buffers to
perform the operations on the memory.

Table 1 summarizes the features of the three technologies described above.

Feature NOR flash AT45DB NAND flash
Erase Slow (seconds) Fast (ms) Fast (ms)
Erase unit Large (64KB-128KB) Small (256B) Medium (8KB-32KB)
Writes Slow (100s KB/s) Slow (60KB/s) Fast (MBs/s)
Write unit 1 bit 256B 100’s of bytes
Bit-errors Low Low High

(requires ECC, bad-block mapping)
Read Bus limited Slow+Bus limited Bus limited
Erase cycles 104 - 105 104 105

− 107

Intended use Code storage Data storage Data storage
Energy/byte 1uJ 1uJ .01uJ

Table 1. Features for different flash memory technologies: in the first column NOR
technology (e.g ST M25P40 and Intel PXA27x), in the second column the AT45DB041
memory chip (CMOS technology), and finally in third column NAND technology (e.g.
Samsung K9K1G08R0B).
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2.3 Limitations of flash memory

One of the main limitations of the flash memory is that there exists a limit on the number

of times a page can be written, typically around 10000 times. This feature makes necessary

a mechanism which ensures a uniform distribution of writes over all the pages of a flash.

This technique is called wear levelling. Wear levelling techniques should be implemented for

preventing the usage of a page for the maximum number of times. Subsequently, an efficient

management of the flash should have into account this feature.

Another aspect to be considered is the access time, which is comparable with the disk access

time (in the order of milliseconds). However, flash write operations consume more time and

energy than read operations, since they require to erase the page before being written. This

feature has forced to develop different high-level techniques intended to minimize the number

of times that one page goes to be written —which impacts also in those previously described

related to wear levelling—. For example, a simple technique consists of managing a page long

buffer with the data to be written and transfer it to the flash only when the buffer is complete.

SENFIS file system which is described later employes this approach. When the buffer contents

are downloaded to the flash memory, the buffer must be cleared in order to be used again.

2.4 Specific issues to sensor nodes

Since motes are battery-powered devices, an efficient power consumption policy is of critical

importance in order to increase their lifetime. The motes typically operate in cycles of

snoozing (low power mode), processing, and transmitting. Radio transmitting is the operation

that consumes most energy. In fact, transmitting one bit consumes about as much power

as executing 800-1000 instructions (Hill et al., 2000). The total energy consumption of a

node is computed as the addition of the energy spent by each physical component: radio,

sensors, leds, CPU, and flash memory. It is important to point out that, in order to perform

efficiently their tasks, every physical component in the sensor node might stay in different

states for a time, and each state has a specific current draw, which is generally supplied by

the manufacturer. Therefore, the consumption due to a physical component, for instance the

radio, is the sum of the current draws corresponding to each one of the states.

Flash memory chips distinguish several states for representing the activity to perform. For

example AT45DB041 presents the following four states: standby, read, write, and load. The

first one and the last one are the lowest consumption states —here the devices act as if

disconnected and no operation can be performed in these states— while the other two indicate

reading and writing respectively. The current draws for every state expressed in milliamperes

(mA) are 2 × 10−3, 4, 15, and 2 × 10−3 respectively. Subsequently, if the application access

pattern to flash memory is known, in particular the time spent in every flash state, it is possible

to compute easily the energy model for the node’s flash as:

E f lash = Estandby ∗ Tstandby + Eread ∗ Tread + Ewrite ∗ Twrite + Eload ∗ Tload

where Ti corresponds to the time spent in i state and Ei corresponds to the current draw in i

state.
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3. Operating system support

Operating systems (OSes) specifically designed to meet the WSN applications requirements

and the sensor nodes restrictions constitute the backbone of the software architecture. The

main challenge of the WSN operating systems is to manage the scarce hardware resources

of the sensor nodes in an efficient and energy-aware way. OSes use the low-level interface

(from HAL or hardware layer) to compose bigger grained operations, which are exported

to the upper levels through a well-defined interface. Thus, OS abstractions are intended

to mask the complexity of the hardware levels and facilitate the programming. High-level

applications will use these abstractions that the OS provides to access the hardware resources

in a transparent, simple way. Figure 4 depicts the software architecture of a sensor node.

Fig. 4. A multi-layer software architecture for sensor nodes.

WSN OSes are very heterogeneous. They present one of the two following execution models:

event- and thread-based. This is a relevant feature because it determines the programming

model used and, subsequently, the interface provided by every OS is strongly coupled to its

execution model. In this section we review the abstractions provided by a set of representative,

popular operating systems in order to enable the flash memory access.

3.1 TinyOS 1.x

TinyOS (Hill et al., 2000) is the de facto standard for WSN operating systems, multi-platform,

and open-source. Its execution model is event-based, but it presents some differences with

regard to the pure model; in particular it distinguishes two scheduling levels: events and

tasks. Events are preemptive and, therefore, they can be viewed as highest priority functions.

On the other hand, there exists a second scheduling level, the tasks that can be viewed

as non-preemptive functions (of lower priority) that run to completion. Tasks can only be

interrupted by events, but not by other tasks.

TinyOS is written in nesC (Gay et al., 2003), a component-based programming language

based on C that allows programming interfaces and components. The components in nesC

communicate between each other through bi-directional interfaces. A nesC application is built

through a configuration component, which declares the components and their connecting

interfaces. A TinyOS application can be viewed as a combination of configuration and
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implementation components, whose behaviour and state is distributed through several

interconnected components. Using this paradigm, TinyOS provides the implementation

of hardware- and OS-level components as well as flexible abstractions to be used by the

application level. Figure 5 shows an example of TinyOS application.

Fig. 5. A simple TinyOS application. It is composed of a set of components interconnected
through interfaces, where one component provides the interface’s implementation and the
other one uses it. Configuration components allow encapsulate several components within it
to build high-level components.

There exist two versions of TinyOS with substantial differences. We focus on describing the

specific differences related to the flash memory management that they do. The first version

of TinyOS provided three different interfaces to access data stored in the flash memory chip,

every one of them located at different abstraction levels, from the lowest to the highest level:

1. A low-level implementation, based on pages (PageEEPROM).

2. A high-level memory-like interface, based on bytes (ByteeEEPROM).

3. A simple, basic file system (Matchbox).

3.1.1 The low-level implementation

The lowest level abstraction provides flash memory access on a per-page basis and it gives

direct access to per-page read, write, and erase operations. The implementation is composed

of several files:

• An interface file that includes the prototype of a set of commands (or functions) and events.

Commands in TinyOS are functions that are implemented by the same or other component.

For example, read and write operations over the flash memory take in TinyOS the shape

of commands. On the other hand, in an event-based system events are signalled when an

occurrence of some action takes place. Specifically, for the operations with high hardware

latencies —which means that the operation response will be available only a time later—

TinyOS requires declaring the corresponding event in the interface. When the response is

obtained, the event is signalled from the hardware level to upper levels including also the
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Commands
result_t write(eeprompage_t page, eeprompageoffset_t offset, void *data, eeprompageoffset_t n)
result_t erase(eeprompage_t page, uint8_t eraseKind)
result_t sync(eeprompage_t page)
result_t syncAll(void)
result_t flush(eeprompage_t page)
result_t flushAll(void)
result_t read(eeprompage_t page, eeprompageoffset_t offset, void *data, eeprompageoffset_t n)
result_t computeCrc(eeprompage_t page, eeprompageoffset_t offset, eeprompageoffset_t n)
Events
result_t writeDone(result_t result)
result_t eraseDone(result_t result)
result_t syncDone(result_t result)
result_t flushDone(result_t result)
result_t readDone(result_t result)
result_t computeCrcDone(result_t result, uint16_t crc)

Table 2. Low-level interface for flash memory access provided by TinyOS 1.x.

operation result. Note that in this latter case, another high-level component should provide

one implementation for each event. Table 2 shows the API provided at this abstraction

level. It includes a very reduced set of basic operations for reading, writing, and erasing;

additionally it allows to compute the CRC for a memory page.

• A set of TinyOS components that provides the implementation for the API shown in

Table 2. This implementation must invoke the hardware-level drivers which carry out

the operations at the physical level. Several issues are left to the application level: firstly,

flash memory must be accessed with mutual exclusion and therefore two operations over

flash cannot be issued at the same time; secondly, the application must implement the

event handlers corresponding to the commands that it invokes; thirdly, the high-level

application must specify as arguments low-level details, such as the number of page to

be read or written as well as the offset within the page. For instance, if the memory has a

capacity of 512 KB —like AT45DB041 memory flash— there exists 2048 pages every one of

them with 264 bytes to be read or written; both data must be specified for each operation

on the flash.

3.1.2 High-level implementation

This interface provides read, write, and logging operations. The implementation operates on

a per-byte basis and thus the operations must specify what is the position or offset in bytes

from which data go to be read or written. This offset is expressed as an absolute value with

regard to the total capacity of the flash memory. For instance, if the memory has a capacity of

512 KB the offset should ranges between 0x000000 and 0x07FFFF. In this sense, the abstraction

level is still very low because it forces to the programmer to manage hardware details in order

to invoke the operations. Table 3 shows the interface provided for this approach.

3.1.3 Matchbox

The idea of providing the file abstraction to access the data stored is a very useful approach

typically performed at the operating system level. This approach is very attractive for users

because it prevents them of managing hardware-level information such as offsets or number

of pages. Matchbox (Gay, 2003) is the first file system developed for sensor nodes and it was

122 Flash Memories

www.intechopen.com



Survey of the State-of-the-Art

in Flash-based Sensor Nodes 11

Commands
command result_t read(uint32_t offset, uint8_t* buffer, uint32_t numBytesRead);
command result_t write(uint32_t offset, uint8_t *data, uint32_t numBytesWrite);
command result_t erase();
command result_t append(uint8_t* data, uint32_t numBytes);
command uint32_t currentOffset();
command result_t request(uint32_t numBytesReq);
command result_t sync();
command result_t requestAddr(uint32_t byteAddr, uint32_t numBytesReq);
Events
event result_t readDone(uint8_t* buffer, uint32_t numBytesRead, result_t success);
event result_t writeDone(uint8_t *data, uint32_t numBytesWrite, result_t success);
event result_t eraseDone(result_t success);
event result_t appendDone(uint8_t* data, uint32_t numBytes, result_t success);
event result_t syncDone(result_t success);
event result_t requestProcessed(result_t success);

Table 3. High-level interface for flash memory provided by TinyOS 1.x.

included into the first version of TinyOS. The major goals of Matchbox are reliability (detection

of data corruption) and low resource consumption. Matchbox offers operations for directories

and files. Files are unstructured and are represented simply as a sequence of bytes. Matchbox

allows the applications to open two files simultaneously, but it supports only sequential reads

and appending writes and it does not allow random access to files. It also provides a simple

wear levelling policy. The Matchbox code size is small, around 10 KB. The minimum footprint

is 362 bytes and it increases when the number of files grows. For each flash memory page an

8-byte CRC is used to verify the integrity of the file during recovery from a system crash.

Table 4 shows the complete interface provided by the Matchbox file system. As shown, it is

composed of a reduced number of primitives to manage the data stored in the flash using the

file abstraction. In this sense, a file is a stream flow that can be read and updated. Additional

operations on a file are renaming and deleting a file. Note that the writing operation only

enables adding data at the end of the file. The advantages of this approach is that the user

manages entities that are identified through file names in order to access data; subsequently,

users do not need to be conscious about low-level details such as the number of the page to

be read or written.

3.2 TinyOS 2.x

The second version of TinyOS focuses on designing high-level portable interfaces while

the implementation is leaved up to the manufacturers. This approach satisfies the design

principles of TinyOS 2.x (Handziski et al., 2005), where a layered design of the software

architecture is proposed with the final goal of achieving portability. Subsequently, the

abstractions provided by TinyOS 2.x are high-level and platform-independent interfaces,

while their low level implementation is platform-specific. This represents an important

difference with regard to the previous version of TinyOS, where both the interface and the

implementation are specific-device. TinyOS 2.x proposes four non-volatile storage entities,

every one of them is intended for store data with different nature and requirements:

• Volumes are fixed-size units in which the flash memory is organized for general purposes.
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Commands
command result_t delete(const char *filename);
command result_t start();
command result_t readNext();
command uint32_t freeBytes();
command result_t open(const char *filename);
command result_t close();
command result_t read(void *buffer, filesize_t n);
command result_t getRemaining();
command result_t rename(const char *oldName, const char *newName);
command result_t append(void *buffer, filesize_t n);
command result_t reserve(filesize_t newSize);
command result_t sync();
Events
event result_t deleted(fileresult_t result);
event result_t ready();
event result_t nextFile(const char *filename, fileresult_t result);
event result_t opened(fileresult_t result);
event result_t closed(fileresult_t result);
event result_t readDone(void *buffer, filesize_t nRead, fileresult_t result);
event result_t remaining(filesize_t n, fileresult_t result);
event result_t renamed(fileresult_t result);
event result_t appended(void *buffer, filesize_t nWritten, fileresult_t result);
event result_t reserved(filesize_t reservedSize, fileresult_t result);
event result_t synced(fileresult_t result);

Table 4. Matchbox interface provided by TinyOS 1.x.

• Large objects that may occupy an undetermined space and they are intended to store a

great amount of data, for instance a binary image that is received from the radio device.

• Loggers are intended to store records of fixed size, such as results and events.

• Small objects (of a few hundred bytes) with a transactional behaviour.

3.2.1 Volumes

Flash chip is divided in several volumes whose size must be specified at compilation

time. The properties of the volumes are specified using an XML file where three data are

specified per each volume: name, size, and base (optional). Note that such description is

platform-independent. As an example consider the next XML file where four volumes of

65536 bytes are defined:

<volume_table>
<volume name="DELUGE" size="65536" />
<volume name="CONFIGLOG" size="65536" />
<volume name="DATALOG" size="65536" />
<volume name="GOLDENIMAGE" size="65536" base="983040" />

</volume_table>

When the application that defines the volumes configuration is compiled, the chip-specific

implementation translates such configuration to the equivalent nesC code that must allocate

the space for every volume. There is no restriction about how this translation should be done.

Applications can simply use every one of the volumes previously defined instantiating the
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Commands

command error_t read(storage_addr_t addr, void* buf, storage_len_t len);

command error_t computeCrc(storage_addr_t addr, storage_len_t len, uint16_t crc);

command storage_len_t getSize();

command error_t write(storage_addr_t addr, void* buf, storage_len_t len);

command error_t erase();

command error_t sync();

Events

event void readDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);

event void computeCrcDone(storage_addr_t addr, storage_len_t len, uint16_t crc, error_t error);

event void writeDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);

event void eraseDone(error_t error);

event void syncDone(error_t error);

Table 5. Interface for volumes and large objects provided by TinyOS 2.x.

generic component BlockStorageC which receives as argument the name of the volume

to be used. Data stored in the volume can be read, written, and erased. Table 5 shows the

interface to be used in order to access volumes. Note that the application specifies the relative

address to the volume on which the operation is done.

3.2.2 Large objects

Large objects are a specific type of data with an interesting semantic: each byte in the object is

written at most once. These data are written once and rarely it goes to be overwritten. In the

WSN field, there are several examples of this type of data: considers for example binary files

for network reprogramming or reliable packet whose contents must keep invariable. TinyOS

2.x provides the same interface for large objects than for volumes (see Table 5). In the same

way, an instance of the generic component BlockStorageCmust be created in order to access

the large object.

3.2.3 Loggers

Storing the internal data generated in the sensor node itself is a common requirement for

many WSN applications. Consider for example the need of scientists to know with a certain

accuracy the value of the sensor readings in order to extract patterns that can help to predict

some event. Such a logging should be reliable since data should not be lost and they should

survive to a crash or reboot. Logs can be defined as linear —data are written sequentially

from the beginning at the end of the log— or circular —if the log is full the data overwritten

the beginning of the log—. Loggers access —both linear and circular— is always sequential.

Loggers work on a per-record basis, where one record is the logic data structure to be read

or written in every operation. The commit operation ensures that the data committed are

successfully stored in flash and that they can be therefore recovered. Data not committed do

not ensure this feature. Table 6 depicts the interface for loggers provided by TinyOS 2.x. In

order to access logs the application instantiates the LogStorageC component, which takes

two input arguments: a volume identifier and a boolean argument specifying whether the log

is circular or not.

125Survey of the State-of-the-Art in Flash-Based Sensor Nodes

www.intechopen.com



14 Will-be-set-by-IN-TECH

Commands
command error_t read(void* buf, storage_len_t len);
command storage_cookie_t currentOffset();
command error_t seek(storage_cookie_t offset);
command storage_len_t getSize();
command error_t append(void* buf, storage_len_t len);
command error_t erase();
command error_t sync();
Events
event void readDone(,void* buf, storage_len_t len, error_t error);
event void seekDone(error_t error);
event void appendDone(void* buf, storage_len_t len, bool recordsLost, error_t error);
event void eraseDone(error_t error);
event void syncDone(error_t error);

Table 6. Interface for loggers provided by TinyOS 2.x.

Commands
command error_t read(storage_addr_t addr, void* buf, storage_len_t len);
command error_t write(storage_addr_t addr, void* buf, storage_len_t len);
command error_t commit();
command storage_len_t getSize();
command bool valid();
command error_t mount();
Events
event void readDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void writeDone(storage_addr_t addr, void* buf, storage_len_t len, error_t error);
event void commitDone(error_t error);
event void mountDone(error_t error);

Table 7. Interface for small objects provided by TinyOS 2.x.

3.2.4 Small objects

Some sensor network applications need to store their configuration. This configuration

includes the initial data to be assigned to the application variables such as the mote identity,

sampling rates, or thresholds. These critical data must be stored in a non-volatile support in

order to be sure that on sensor failures —reboot or crash— the configuration can be recovered.

A characteristic of this type of data is its small size, frequently of a few hundred bytes. Another

interesting feature is the transactional behaviour of the operations performed on this type of

data: each read is a separate transaction, all writes up to a commit defines a single transaction.

Table 7 presents the interface provided by TinyOS 2.x for small objects. The application

must instantiate the generic component ConfigStorageC previously to the data access. As

shown, the operation must specify the address to be read or written.

3.3 Contiki

Contiki (Dunkels et al., 2004) is an operating system designed for networked and memory

constrained systems, developed in the Swedish Institute of Computer Science (SICS) by Adam

Dunkels as the leader of the project in 2003. Contiki is open source and it was written in the

C programming language. The typical size of Contiki applications is around kilobytes, which

means a bigger footprint than the applications developed in TinyOS. In spite of this, it could be

considered the second most extended operating system for programming sensor nodes. At the
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Functions Description
int cfs_open (const char *name, int flags); Open a file
void cfs_close (int fd); Close an open file
int cfs_read (int fd, void *buf, unsigned int len); Read data from an open file
int cfs_write (int fd, const void *buf, unsigned int len); Write data to an open file
cfs_offset_t cfs_seek (int fd, cfs_offset_t offset, int whence); Seek to a specified position in an open file
int cfs_remove (const char *name); Remove a file
int cfs_opendir (struct cfs_dir *dirp, const char *name); Open a directory for reading directory entries
int cfs_readdir (struct cfs_dir *dirp, struct cfs_dirent *dirent); Read a directory entry
void cfs_closedir (struct cfs_dir *dirp); Close a directory opened with cfs_opendir()

Table 8. Coffee file system interface.

operating system level Contiki provides an only way for accessing data: a file system. This file

system is called Coffee (Contiki’s Flash File System (Coffee)) (Tsiftes et al., 2009). Coffee is a

flash-based file system, designed as a combination of extents and micro log files. The concept of

micro log files is introduced to record file modifications without requiring a high consumption

of memory space. In fact, every open file uses a small and constant memory footprint. Coffee

provides POSIX-style primitives to manage both files and directories (see Table 8). Other

outstanding features of Coffee are garbage collection, wear levelling techniques in order to

avoid memory corruption, and fault recovery.

3.4 LiteOS

LiteOS (Cao et al., 2008) is a UNIX-like multi-threaded operating system with object-oriented

programming support for wireless sensor networks. It includes several features of the Unix

systems (e.g. a shell or the programming environment), which increase its footprint leaving

it too far from operating systems such as TinyOS. LiteOS includes a built-in hierarchical

file system called LiteFS (Cao & Abdelzaher, 2006). LiteFS supports both file and directory

operations, and opened files are kept in RAM. Directory information is stored in the EEPROM

while the serial flash stores file metadata. LiteFS implements two wear levelling techniques,

one for the EEPROM chip and the other one for the serial flash. LiteOS provides also

a UNIX-like shell that facilitates the interaction of the user with the file system by using

UNIX-based commands (e.g. ls, cd, cp, mv, rm). The complete set of LiteFS primitives is

presented in Table 9. As shown, there are basic primitives for managing files and directories

(e.g. open, close, read, and write) as well as for administrating the sensor node (e.g. checking

and formatting the EEPROM and flash memories).

3.5 Comparison

The three implementations provided by TinyOS 1.x are AT45DB-specific and subsequently

in this first approach the portability was sacrificed. In general, the abstraction level offered

by the OS is very low even when bigger grained entities such as files are managed.

The applications are forced to be worried about hardware details (number of the page,

offset), which makes programming complex and error-prone. Clearly the advantage of this

approach is that it prevents the overload imposed by the management at the OS level. In

TinyOS 2.x the major goal was increasing the portability though richer interfaces that are

platform-independent. TinyOS 2.x renounces to offer a general implementation at the OS

level due to the heterogeneity of the different flash devices. The interfaces provided are

recommended for a particular type of data: small objects, volumes, loggers and large object.
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Functions Description
FILE* fopen(const char *pathname, const char *mode); Open file
int fclose(FILE *fp); Close file
int fseek (FILE *fp, int offset, int position); Seek file
int fexist(char *pathname); Test file/directory
int fcreatedir(char *pathname); Create directory file
int fdelete(char *pathname); Delete file/directory
int fread(FILE *fp, void *buffer, int nBytes); Read from file
int fwrite(FILE *fp, void *buffer, int nBytes); Write to file
int fmove(char *source, char *target); Move file/directory
int fcopy(char *source, char *target); Copy file/directory
void formatSystem(); Format file system
void fchangedir(char *path); Change current directory
void fcurrentdir(char *buffer, int size); Get current directory
int fcheckEEPROM(); Check EEPROM Usage
int fcheckFlash(); Check Flash Usage
void fsearch(char *addrlist, int *size, char *string); Search by name
void finfonode(char *buffer, int addr); Get file/directory info

Table 9. LiteFS file system interface.

However, as deduced from their interfaces the abstraction level of the application is low since

they must specify again hardware details for accessing data.

TinyOS 1.x and other operating systems as Contiki and LiteOS provide abstractions in the

shape of file systems to data access. The advantages of this approach is that the user manages

entities that are identified through file names in order to access data; subsequently, users do

not need to be conscious about low-level details such as the number of the page to be read or

written. It definitively facilitates the programming and prevents errors. Table 10 shows a brief

comparison among the file systems studied in this section and in the following section.

ELF Matchbox LiteFS SENFIS
1 TinyOS TinyOS LiteOS TinyOS
2 Mica2 Mica Family Motes MicaZ Mica Family Motes
3 Dynamic Static Dynamic Dynamic
4 RAM, EEPROM, Flash Flash RAM, EEPROM, Flash RAM, EEPROM, Flash
5 14 bytes (per flash page) 8 bytes (per flash ge) 8 bytes (per flash page) 8 bytes (per flash page)

14 bytes 168 bytes RAM 1062 bytes flash
14 bytes per i-node (RAM) 2080 bytes ROM 208 bytes RAM/EEPROM

6 Unlimited 2 (Read/Write) 8 64
7 Sensor Data Data files Data Data stream

Configuration Data Binary applications Binary applications
Binary program Image Device Drivers

Table 10. Comparison among different file systems for sensor nodes. Features: 1:Operating
system; 2:Sensor platforms; 3:Memory allocation; 4:Memory chips used; 5:Metadata size;
6:Number of files opened; 7:Types of files.

4. Taxonomy of applications

Wireless sensor network applications are often multi-disciplinary and obey many types of

requirements. Several authors have classified WSN applications according to their application

domain (Akyildiz et al., 2002; Xu, 2002). In this section we will focus on those WSN

applications that use the flash memory chip to carry out their operations. Thus, we distinguish
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three main type of applications: 1) file systems to store both internal and external data;

2) data-centric middlewares that provide an abstraction of the sensors network as a long

database; and 3) applications for network reprogramming. These three types of applications

use the flash memory chip as data storing support. Note that in a four category should appear

the applications that use the flash for specific purposes. Figure 6 shows this classification. In

following subsections we review some relevant examples in each category.

Fig. 6. A classification of applications that use the flash memory chip.

4.1 File systems

In addition to the OS-specific file systems presented in the previous section, we review here

two file systems that were designed with no regard to be OS-independent: ELF and SENFIS.

The usage of file systems is justified: the continuous data production through a wide set of

versatile applications drives researchers to think about different methods of data storing and

recovering, which can provide an efficient abstraction to give persistent support to the data

generated into the sensor node.

4.1.1 ELF

ELF (Dai et al., 2004) is a file system for WSNs based on the log file system

paradigm (Kawaguchi et al., 1995). The major goals of ELF are memory efficiency, low power

operation, and support for common file operations (such as reading and appending data to

a file). The data to be stored in files are classified into three categories: data collected from

sensors, configuration data, and binary program images. The access patterns and reliability

requirements of these categories of data are different. Typically, the reliability of sensor data is

verified through the CRC checksum mechanism. For binary images a greater reliability may

be desirable, such as recovery after a crash. Typically, traditional log-structured file systems

group log entries for each write operation into a sequential log. ELF keeps each log entry in a

separate log page due to the fact that, if multiple log entries are stored on the same page, an

error on this page will destroy all the history saved until that moment. ELF also provides a

simple garbage collection mechanism and crash recovery support.

4.1.2 SENFIS

SENFIS (Escolar et al., 2008; 2010) is a file system designed for Mica family motes and

intended to be used in two scenarios: firstly, it can transparently be employed as a

permanent storage for distributed TinyDB queries (see next subsection), in order to increase

their reliability and scalability; secondly, it can be directly used by a WSN application for
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Primitive Prototype Description
int8_t open (char *filename, uint8_t mode) Open a file
result_t close (uint8_t fd) Close a file
int8_t write (uint8_t fd, char *buffer, int8_t length) Append data to a file
int8_t read (uint8_t fd, char *buffer, int8_t length) Read from a file
result_t rename(char *oldname, char *newname) Rename a file
result_t lseek (uint8_t fd, uint32_t ptr) Update the offset of a file
result_t stat(uint8_t fd, struct inode *inode) Obtain metadata of a file
result_t delete (uint8_t fd) Delete a file

Table 11. Basic high-level interface for SENFIS.

permanent storage of data on the motes. SENFIS uses the flash for persistent storage and

RAM as a volatile memory. The flash chip is divided into blocks called segments, whose

pages are accessed in a circular way, guaranteeing an optimal intra-segment wear levelling.

The global wear-levelling is a best-effort algorithm: a newly created file is always assigned

the lowest used segment.

In SENFIS, the flash is organized in segments. For instance, for AT45DB041 the flash may

consist of 64 segments of 32 pages each. Each segment may be assigned to at most one file

but a file can use an arbitrary number of segments. A segment is written always sequentially

in a circular way. For implementing this behaviour a pointer to the last written page is kept

in the segment metadata structure which is stored in a segment table. Every segment in this

table records a pointer to the first page of the segment, a pointer to the next segment as well

as a counter indicating the number of times the pages of this segment have been written. To

minimize the number of times that a page flash is accessed the reading and writing operations

use an intermediate cache such as shown in Figure 7. SENFIS provides a POSIX-style interface

which is shown in Table 11.

SENFIS uses a writing buffer to reduce the number of times that a page is accessed. Figure 7

shows graphically this behaviour.

4.2 Data-centric middlewares

The most common approach to bridge the gap between the applications and low-level

software, has been to develop a middleware layer mapping one level into the other. A

survey of middleware is given in (Marrón, 2005) where a taxonomy of middlewares is

discussed. In particular, authors identify data-centric middlewares as those ones that operate

the sensor network as a database abstraction. Most of them rely on some form of SQL-like

language in order to recover the data stored in different memories within the sensor node

(RAM, EEPROM, and external flash). There exist different data-centric middlewares such

as Cougar (Fung et al., 2002), TinyBD (Madden et al., 2005), DSWare (Li et al., 2003) and

SINA (Jaikaeo et al., 2000)); some of them are summarized in the following paragraphs.

4.2.1 TinyDB

TinyDB (Madden et al., 2005) focuses on acquisitional query processing techniques which

differ from other database query techniques for WSN in that it does not simply postulate

the a priori existence of data, but it focuses also on location and cost of acquiring data. The

acquisitional techniques have been shown to reduce the power consumption in several orders

of magnitude and to increase the accuracy of query results. A typical query of TinyDB is active
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Fig. 7. Writing and reading operations in SENFIS: 1) Above, the writing operation which
appends data to the end of a file. The modification is done in a small buffer cache in RAM
and it is committed to the flash either when a page is completely written or when the RAM is
full. The first case tries to avoid that a page is committed to flash several times for small
writes; 2) below, the reading operation which get the data from the flash to an application
buffer. If the data is already in the small buffer cache, it is copied to the application buffer
from there.

in a mote for a specified time frame and is data intensive. The results of a query may produce

communication or be temporarily stored in the RAM memory. In TinyDB the sampled values

of the various sensor attributes (e.g. temperature, light) are stored in a table called sensors.

The columns of the table represent the sensor attributes and the rows the instant of time

when the measure was taken. Projections and transformations of sensor table are stored in

materialization points. A materialization point is a type of temporal table that can be used in

subsequent select operations. Materialization points are declared by the users and correspond

to files in our system. TinyDB query syntax is similar to SQL SELECT-FROM-WHERE-GROUPBY

clause, supporting selection, join, projection and aggregation. In addition TinyDB provides

SAMPLE PERIOD clause defining the overall time of the sampling called epoch and the period

between consecutive samples. The materialization points are created by CREATE STORAGE

POINT clause, associated with a SELECT clause, which selects data either from the sensor

table or from a different materialization point.

4.2.2 Cougar

Cougar (Fung et al., 2002) is another data-centric middleware approach intended to address

the goals of scalability and flexibility in monitoring the physical world. In Cougar system

sensor nodes are organized in clusters and they can assume two roles: cluster leader or signal

processing nodes. The leaders receive the queries and plan how they must be executed within

of a cluster; in particular, they must decide what nodes the query should be sent to, and keep

waiting for the response. On the other hand, signal processing nodes generate data from
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their sensor readings. Signal processing functions are modelled by using Abstract Data Type

(ADT). Like TinyDB, Cougar uses a SQL-like language to implement queries.

4.3 Network reprogramming applications

Code dissemination for network reprogramming is nowadays one of the important issues

in the WSN field. WSN applications are conceived to execute for the maximum period of

time. However, during their lifetime is very probable that the application needs to be total or

partially updated. There are several reasons for it as to meet new requirements or to correct

errors detected at execution time. There exist in the literature a large set of applications that

enables this feature. Despite every particular implementation, a common characteristic of all

of them is the employment of the flash memory to store the updates that are received from

the network. In fact, there is no other choice due to the limited capacity of the node RAM

memory. According to (Munawar et al., 2010) applications for remote reprogramming can be

classified in four main categories:

• Full-image replacement: the first approach for network reprogramming operated

disseminating in the network a new image to replace the current application running in

the nodes. Examples of this type of reprogrammers are Deluge and XNP, which are both

TinyOS 1.x specific. In a first step, the image was received from the network and locally

stored in the node flash. Once the packet reception was completed, the sensor node reboots

which makes a copy of the binary stored in the flash into the microcontroller. The main

disadvantage of this approach is that even for small updates the transmission of the full

image should be done, which impacts negatively on the waste of energy in the sensor node.

• Virtual machines: with the goal of reducing the energy consumption in which the previous

approach incurs, there exist different works that propose disseminating virtual machine

code (byte-code) instead of native code, since the first is in general more compact than the

second one. The most relevant example is Mate (Levis & Culler, 2002). Maté disseminates

to the network packets denominated capsules which contain the binary to be installed.

In the sensor nodes the byte-code is interpreted and installed in the sensor node. The

advantage of this approach is that reduces significantly the program size that travels

through the network, which decreases the energy consumption due to the communication

as well as the storing cost.

• Dynamic operating systems: there exists WSN operating systems that include support for

the dynamic reprogramming of sensor nodes. For example, in Contiki applications can

be more easily updated, due to the fact that Contiki supports load dynamic of programs

on the top of the operating system kernel. In this way, code updates can be remotely

downloaded into the network. There are, however, certain restrictions to perform this since

only application components can be modified. LiteOS (Cao et al., 2008) is another example

of this type of OSes. LiteOS provides dynamic reprogramming at the application level

which means that the operating system image can not be updated. To do this it manages

the modified HEX files instead using ELF files —as Contiki— in order to store relocation

information.

• Partial-image replacement approach is based on disseminate only the changes between

the current executable installed in the network and the new version of the same

application. This is the most efficient solution since only is sent the piece of code that
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needs to be updated. There are in the literature several works using this approach.

Zephyr (Panta et al., 2009) compares the two binary images at the byte-level and send

only a small delta, reducing the size of data to be sent. FlexCup (Marrón et al., 2006)

is an efficient code update mechanism that allows the replacement of TinyOS binary

components. FlexCup is specific for TinyOS 1.x and does not include the new extensions of

nesC. Dynamic TinyOS (Munawar et al., 2010) preserves the modularity of TinyOS which

is lost during the compilation process and enables the composition of the application at

execution time.

5. Conclusions

Through this chapter we have analyzed the main features of the flash memory chip as well

as their main applications within the wireless sensor networks field. We have described

the different technologies employed in the manufacturing of flash memory given specific

examples used by the sensor nodes. The sensor node architecture has been presented while

the flash memory has been introduced as an important component that possibilities a great

amount of usages which would not be possible without its presence.

We have described some relevant WSN operating systems highlighting the different

abstractions that they provide at the application level in order to access the data stored in

the flash. As discussed, in general the portability has been sacrificed and the implementation

is typically device-specific. The abstraction level provided by the OSes is very low since the

application must manage hardware level details such as the number of the page to be read or

written and the offset within the page, which make complex the applications programming.

To alleviate this problem, the operating systems can supply a basic implementation of a file

system to facilitate the data access. Here, the users manipulate abstract entities called file

descriptors which allow to uncouple the data from its physical location. Subsequently, file

systems simplify the data access but in general they do not completely address the issues

regarding to the flash memory such as the implementation of wear levelling techniques to

prevent reaching the maximum number of times that a page can be written. For this reason,

the literature presents some other file systems that has been proposed in order to improve the

features or the performance of the existing files systems included into the operating systems.

Recently, the attention paid to the flash memory chip trends to grow due to the appearance

of new applications that will use the flash memory to perform their tasks. Since the flash

chip represents the device with the bigger capacity for permanent storage of application data

in the sensor node, there exist an increasing number of applications that require its usage to

be able to satisfy their requirements, for example, applications for dynamic reprogramming.

Finally in this chapter, we have identified a taxonomy of WSN applications that uses the flash

memory providing specific examples of applications in each category of the taxonomy. We

will envision that the number of emerging applications that will use the flash memory as

basis for their operations will continue increasing.
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