
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

4

Block Cleaning Process in Flash Memory

Amir Rizaan Rahiman and Putra Sumari
Multimedia Research Group, School of Computer Sciences, University Sains Malaysia,

Malaysia

1. Introduction

Flash memory is a non-volatile storage device that can retain its contents when the power is
switched off. Generally, it is a form of an electrically erasable programmable read-only
memory (EEPROM) that offers several excellent features such as less noise, solid-state
reliability, lower power consumption, smaller size, light weight, and higher shock resistant [1 –
5]. Flash memory acts as a slim and compact storage device. It’s main applications are such as
compact flash (CF), secured digital (SD), and personal computer memory card international
association (PCMCIA) cards, for storage and data transfer in most portable electronic gadgets
such as mobile phones, digital cameras, personal digital assistants (PDAs), portable media
players (PMPs), gobal positioning system receivers (GPS), just to name a few.

Fig. 1. Diverse applications of flash memory as embedded systems.

www.intechopen.com

Flash Memories

84

The demand for flash memory has reformed its usage to wide areas. For instance, as
illustrated in Figure 1, flash memory is extensively used as embedded systems in several
intelligent and novelty applications such as household appliances, telecommunication
devices, computer applications, automotives and high technology machinery.

2. Flash memory architecture

As shown in Figure 2, flash memory is a block and page based storage device. The page unit

is used to store data where a group of pages is referred to as a block. The page unit is

partitioned into two areas, namely, 1) Data and 2) Spare. The data area is used to store the

actual data while the spare area is used to store the supporting information for the data area

(such as bad block identification, page and block data structures, error correction code

(ECC), etc.). According to present production practices, the page size is fixed from 512 B to 4

KB, while the block size is between 4 KB and 128 KB [18]. Figure 3 shows the attributes of a 4

GB flash memory.

Fig. 2. Block and page layout in flash memory.

There are two different types of flash memory in the current market, namely, 1) NOR-flash,

and 2) NAND-flash [2, 6]. The main distinction between both types is the I/O interface

connection mechanism to the host system. The NOR-flash employs a memory mapped

random access interface with a dedicated address and data lines that are similar to random

access memory (RAM). Besides that, it is a byte-addressable data accessing device that

permits random I/O access with higher performance in reading functionality. On the

contrary, data access in NAND-flash is controlled and managed through two indirect I/O

interface logic methods. They are the emulating block accessing method referred to as the

flash translation layer (FTL) and native file system. The FTL allows physical accessing units

www.intechopen.com

Block Cleaning Process in Flash Memory

85

Fig. 3. Flash memory attributes and specifications.

(block and page) to be addressed as a set of different accessing units (such as 512 B, 2 KB, 4

KB, depending on the manufacturers). In the native file system, the device accessing unit

can directly be accessed without the translation layer. An example of the native file system

employed in NAND-flash is the journaling flash file system (JFFS) [7] and yet another flash

filing system (YAFFS) [23]. For application purposes, the NOR-flash is used for small

amounts of code storage while the NAND-flash is mostly used in data storage applications

since its characteristic are more similar to disk storage.

3. Flash memory characteristics

The characteristics of the flash memory can be summarized as follows [8, 9]:

i. Free accessing time penalties: The flash memory is a semiconductor device which

eliminates the use of mechanical components. This allows the time required to access

data to be uniform, regardless of the data’s location. For instance, let’s say both data a

and data b, which are 4 KB in size each, are randomly located in block i and k (see

Figure 4). The total time required to retrieve data a is 0.088 ms and data b is retrieved

directly after retrieving data a.

Data accessing (retrieving and storing) in flash memory is carried out in three phases, 1)

Setup, 2) Busy, and 3) Data transfer [24]. The accessing command is initialized in the

setup phase. In the busy phase, the required data is temporarily loaded into the flash

memory I/O buffer within a fixed accessing time. Then, the stored data in the I/O

buffer is transferred sequentially to the host system at every fixed serial access time

during the data transfer phase. Similarly, the storing/writing process also requires

constant access time, wherever the location might be.

www.intechopen.com

Flash Memories

86

Fig. 4. Data accessing in flash memory array.

ii. Out-place updating scheme: Data updating in the flash memory is performed via an
out-place scheme rather than an in-place scheme. Due to its EEPROM characteristic, if
the in-place scheme is employed, the block where the updated data is located needs to
be erased first before the data can be restored into the similar location. Furthermore,
block erasure in flash memory is time consuming that can degrade I/O performance.
Thus, the out-place scheme is employed where the updated data is stored into a new
location while its original copy is set as garbage and will not be used any further [10 –
11] (see Figure 5). The main purpose of the out-place scheme is to avoid block erasure
during every update process.

Fig. 5. The out-place updating scheme in the flash memory.

www.intechopen.com

Block Cleaning Process in Flash Memory

87

Due to the out-place scheme, the page in flash memory falls into three states, namely, 1)
Free, 2) Valid, and 3) Invalid. The free state is when a page contains no data and is ready
for storing/writing a new or updated data. The valid state is a page that contains the
current version of the data while the invalid state refers to a page that contains garbage.
In addition, the block status can either be active or inactive [12 – 13] due to the page
states.

iii. Asymmetric accessing time and unit: There are three types of access functions in
flash memory. They are 1) Read, 2) Write/program, and 3) Erase. Each function is
realized in an asymmetric accessing unit and time (see Figure 3). The write function
takes an order of magnitude longer than the read function and both are carried out in
page unit, while the erase function requires the longest access time which is
performed in block unit. The read function fetches a valid data from a valid target
page, while the write function stores data (either new or updated) into a free target
page. On the contrary, the erase function is used to erase an active or an inactive
block with free or invalid pages.

iv. Bulk cleaning with limited block life cycle: The cleaning process is essential in flash

memory due to the employed out-place updating scheme. The cleaning process is

carried out on block unit rather than page unit. The block may contain valid data, thus,

before initiating the process, all valid data residing in the block must be copied out into

available free spaces in other free blocks. However, each block could be tolerant with a

limited number of erasure cycles, for example one million (106) cycles. Exceeding the

erasure cycles will cause the block to become unreliable and spoiled, permanently. For

example, a multi-level cell (MLC) block type typically supports 10,000 erasure cycles. If

the same block is erased and then re-programmed every second, the block would

exceed the 10,000 cycle limit in just three hours. Thus, wear-leveling policy that wears

down all memory blocks as evenly as possible is necessary [14, 15].

4. Cleaning process in flash memory

The cleaning process in flash memory refers to the process of collecting the garbage

scattered throughout the memory array and then reclaiming them back into free space due

to the out-place updating scheme. It is an essential process to guarantee free space

availability on the memory array to ensure new data can be continually stored. However,

the cleaning process is carried out by the erase function and involves bulk size of data rather

than specific locations. The valid data in the block must be copied into the other blocks (free

cells) first, before the cleaning can be initiated. Besides, each flash memory block could

tolerate with an individual erasure lifetime. Frequently erasing blocks causes the blocks to

become unreliable and thus, reduces physical device capacity.

The effectiveness of the cleaning process is heavily dependent on the efficient cleaning

algorithm as well as the data allocation scheme employed by the flash memory system.

Moreover, the cleaning process and the block utilization level are key to the cleaning process

performance and have substantial impact on the access performance, energy consumption

and block endurance [1, 10, 14]. Block utilization is the ratio between valid cells and total

cells and it is represented in percentage. Two categories of cleaning processes in flash

memory are 1) Automatic, and 2) Semi-automatic [16]. Both processes are initiated routinely

by the flash memory controller.

www.intechopen.com

Flash Memories

88

4.1 Automatic cleaning

The automatic cleaning process is automatically commenced when a particular block’s state
in the memory array turns from an active to an inactive (all pages in the block have turned
into invalid state or mixing with several number of free pages). Since there is no valid data
copying process required, the block can be erased in the background during execution of the
current I/O operations (such as read or write) from/into the memory array. Accordingly,
this process requires a constant erase accessing time (Et) where the target block ID is given
to the memory controller to erase. Moreover, only a single inactive block (also known as
victim block) can be erased each time the automatic cleaning process is commenced. In
addition, the automatic cleaning process is influence by an efficient data allocation scheme
engaged by the flash memory. There are several data allocation schemes in flash memory
that share identical queuing techniques with a CPU scheduling policy such as first come
first serve (FCFS), first re-arrival first serve (FRFS), online first re-arrival first serve (OFRFS),
and Best Matching (BestM) [12 – 13]. Unlike CPU scheduling policies, the main objective of
the data allocation scheme in the flash memory is to minimize the amount of active blocks
required. The scheme requires the lowest amount of active blocks to minimize the amount
of blocks to be erased when the actual cleaning process is initiated due to the limitation of
the out-place updating scheme.
For example, let’s say file A has been partitioned evenly into five parts (denoted by a, b, c, d,
and e). Assume the accessing pattern of the file is a, b, c, d, a, b, b, a, c, d, a, b, c, d, a, b, d, a, c, c,
d, a, b, c. The snapshot of storing each of the accessed data into the flash memory consisting
of 10 blocks with 4 pages (each, sequentially) is shown in Figure 6. Firstly, the first four
accessed data are stored sequentially in block b1. When storing the second accessed data d
(the 10th appearance data in the access pattern) into the second free page in block b3, block b1

Fig. 6. Automatic cleaning process in sequential data allocation scheme.

www.intechopen.com

Block Cleaning Process in Flash Memory

89

turns into an inactive state and can be erased automatically. Then, block b2 is erased when
storing the last free page in block b3 with data b. Block b3 is erased when finish storing the 5th
appearance of data b into the last free page of b4. At the end of the access pattern, only block
b6 is in the active state. When the inactive block is erased, all of its pages are changed into
the free state and the block is ready for storing new or updated data.

4.2 Semi-automatic cleaning

Semi-automatic cleaning is commenced when the memory array free spaces reach a certain
threshold, for instance, when the available free space is fewer than 20% – 35% of the total
memory space. Two primary goals of the semi-automatic cleaning process are: 1) Minimizing
cleaning cost, and 2) Wearing blocks evenly. Unlike the automatic cleaning process, single or
multiple active block(s) can be cleaned simultaneously when the semi-automatic process has
been initiated. Therefore, since the blocks to be cleaned contain valid data, the data needs to
be migrated first before the cleaning process can be initiated and the current memory
operations are temporarily halted. It is resumed when the process has ended. Besides, the
cleaning cost required is inconsistent and it solely depends on the block utilization (ui) level
and the number of active blocks involved in the cleaning process. The cleaning cost is the
total access time required to erase the victim blocks which includes several reads and writes
accessing time (depending on the block utilization levels) plus the erasure time. In short, it
can be simplified as in Equation 1 [17]. Block utilization is the ratio between valid pages and
total pages.

    10 75i t t tT b R W E     (1)

In Equation 1, the write function is assumed to be 10 times slower than the read function
while the erase function is 75 times slower than the read function. Figure 7 presents the
cleaning cost required for cleaning a single victim block in the memory array. To illustrate
this, assume a block containing 64 pages, and the block utilization level is between 0 and 100
%. The actual time for read, write and erase access functions were taken from Figure 3.

Fig. 7. The cleaning cost for single block.

www.intechopen.com

Flash Memories

90

As illustrated in Figure 8, the semi-automatic cleaning is undertaken in three stages. First, a
victim block (b1) to be cleaned is selected. Second, all valid pages residing in block b1 are
identified (e.g., a, b, c, and d) and copied/migrated into free pages in block b3 (initially, b3 is
in an inactive state). In the last stage, block b1 is erased when all the valid pages have been
copied. Since multiple victim blocks can be erased simultaneously, the process could affect
the current I/O operational functions. Therefore, the numbers of victim blocks becomes a
crucial factor in the semi-automatic cleaning process. Unlike the automatic cleaning process,
there are several important issues that need to be considered in semi-automatic cleaning.
The four main issues in the semi-automatic cleaning process are 1) Execution time, 2) Victim
block selection procedure, 3) Victim block amount, and 4) Valid data re-organization [18].

Fig. 8. Three stages in the semi-automatic cleaning process.

The execution time issue refers to the time to initiate the cleaning process, either periodically
or according to memory free space availability. The victim block selection procedure refers
to the method used to select the block to be erased and the straight forward approach is
selecting a victim block that contains the largest amount of garbage. Other parameters
include cost to erase, block lifespan, erasure count, and age of data [1, 10, 21, 22]. Again, the
victim block amount issue in the semi-automatic cleaning enables single or multiple victim
blocks to be erased simultaneously. On the other hand, both approaches have their own
pros and cons. Cleaning a single block requires smaller access time but it also requires many
erase operations. In contrast, erasing multiple blocks can distract the execution of normal

www.intechopen.com

Block Cleaning Process in Flash Memory

91

I/O operational system execution [18], but multiple victim blocks cleaning helps in
reorganizing many valid data and can also help in reducing the number of blocks to be
further erased. Then, the valid data re-organization issue refers to the process of copying the
valid data in the victim block into a new free location in the available active blocks. The
common approach is the valid data clustering technique, where valid data will be grouped
into the similar block according to the data feature (such as regularly modified, irregularly
modified, data time-stamp, and related data file). Thus, in order to improve the semi-
automatic cleaning process performance, a number of studies that focuses on determining
victim blocks have been proposed. The accompanying table shows the summary of the
studies. In addition, the cleaning cost in the semi-automatic process depends on two
important parameters, namely, 1) Number of victim blocks and 2) Amount of valid data. The
cleaning cost will be extremely boosted when both parameters increase. However, the
number of active blocks is not fixed and it is a controllable parameter. Due to this, by
employing a proper allocation scheme, the amount could be minimized since the inactive
block can be erased at the background.

Cleaning scheme Victim block selection procedure/equation Wear-leveling

Greedy (GR) [19]
1

cos () i
i

i

u
t B

u



 No

Cost-benefit (CB)
[20]

Block with maximum value from equation

 1

2

i

i

u
a

u




No

Cost age time (CAT)
& Dynamic dAta
clustering (DAC)
[21]

Block with minimum value from equation

1

1

i

i

u
e

u a

 
  

 

Yes

Cost Age Time with
Age Sort (CATA)
[18]

Blocks those maximize equation

1 1

1

i

i

u
a

u e

 
  

 
 Yes

S-Greedy (S-GR)
[22]

Based on GR algorithm and focus on valid data
distribution

Yes

ui: block i utilization level. a: the last invalidation time in the block. e: block erasure count.

Table 1. A summary of previously proposed victim block selection algorithm.

5. Summary

Flash memory offers several superior features as a secondary storage and has recently been
employed in many consumer electronic gadgets. However, due to the hardware operational
characteristics, especially the out-place updating scheme, several challenges have emerged
in terms of data management in designing and implementing an efficient data storage
system. There are existing issues that influence flash memory performance, which are
related to the cleaning process in order to allow data storage continuity. Both the automatic
and the semi-automatic cleaning processes are two important issues in guaranteeing
cleaning process performance in the flash memory. The automatic cleaning is directly

www.intechopen.com

Flash Memories

92

related with the efficient data allocation schemes where the cleaning can be initiated without
having to disturb the current operations in the flash memory. Although only single inactive
blocks can be cleaned every time the process is initiated, when the amount of active-to-
inactive state conversion increases, the cleaning performance of the flash memory is
guaranteed since the inactive block can be erased automatically without having to disturb
current I/O operations. Conversely, the semi-automatic cleaning process is initiated
according to a memory array free space threshold or it can be initiated periodically. There
are several parameters employed in establishing the victim block to be erased such as
cleaning cost, erasure count, age of data, block utilization, etc. Although the cleaning can be
initiated on multiple victim blocks, the process can impose a blocking time that would
distract the normal I/O operation execution on the memory. On the other hand, the
efficiency of re-organizing the valid data in the victim blocks could influence the cleaning
process performance further. The well-organized valid data in the new active block will
group the regular and irregular accessed data into different blocks and could further
increase the amount of inactive blocks. The increase of inactive blocks in the memory array
would increase the automatic cleaning process and guarantee flash memory performance.
Thus, both cleaning processes are important in order to improve the cleaning process
performance in flash memory as well as its endurance.

6. References

[1] Douglis, F., Kaashoek, F., Marsh, B., Caceres, R., Li, K. and Tauber, J. (1994) Storage
alternatives for mobile computers. In: Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation (OSDI’94), Nov. 14-17, Monterey,
California: ACM/IEEE. pp. 25 – 37.

[2] Chang, L.P. and Kuo, T.W. (2004) An efficient management scheme for large-scale
flash memory storage systems. In: Proceedings of the 2004 ACM Symposium of
Applied Computing (SAC’04), March 14-17, Nicosia, Cyprus: ACM. pp. 862 –
868.

[3] Lawton, G. (2006) Improved flash memory grows in popularity. IEEE Computer, 39(1), p.
16 – 18.

[4] Lim, S.H. and Park, K.H. (2006) An efficient NAND flash file system for flash memory
storage. IEEE Transactions on Computers, 55(7), p. 906 – 912.

[5] Breeuwsma, M., Jongh, M.d., Klaver, C., Knijff, R.v.d. and Roeloffs, M. (2007) Forensic
data recovery from flash memory. Small Scale Digital Device Forensic Journal, 1(1),
p. 1 – 17.

[6] Hsieh, J.W., Tsai, Y.L., Kuo, T.W. and Lee, T.L. (2008) Configurable flash-memory
management: Performance versus overheads. IEEE Transactions on Computer,
57(11), p. 1571 – 1583.

[7] Woodhouse, D. (2001) JFFS: The journaling flash file system. In: Proceedings of the 2001
Ottawa Linux Symposium, July 13-16, Ottawa, Canada.

[8] Barre, A.G. (1993) Flash memory magnetic disk replacement? IEEE Transactions on
Magnetics, 29(6), p. 4104 – 4107.

[9] Sharma, A.K. (2003) Advanced semiconductor memories: Architecture, designs, and
applications. Canada: WILEY-IEEE Press. P.4

www.intechopen.com

Block Cleaning Process in Flash Memory

93

[10] Kawaguchi, A., Nishioka, S. and Motada, H. (1995) Flash memory based file system. In:
Proceedings of USENIX 95 Technical Conference, Jan. 16-20, New Orleans,
Louisiana: USENIX. pp. 155 – 164.

[11] Wu, M. and Zwanepoel, W. (1994) eNVy: a non-volatile, main memory storage system.
In: Proceedings of the 6th International Conference on Architectural Support for
Programming language and Operating Systems (ASPLOS), Oct. 5-7, San Jose,
California: ACM. pp. 86 – 97.

[12] Chou, L.F. and Liu, P. (2005) Efficient allocation algorithms for flash file systems. In:
Proceedings of 11th International Conference on Parallel and Distribution Systems
(ICPADS’05), July 20-22, Fukuoka, Japan: IEEE. pp. 634 – 641.

[13] Liu, P., Chuang, C.H. and Wu, J.J. (2007) Block-based allocation algorithms for flash
memory in embedded systems. In: Proceedings of 9th International Conference on
Parallel Computing Technologies (PaCT 2007), Sept. 3-7, Pereslavl-Zalessky,
Russia: Springer. pp. 569 – 578.

[14] Kim, H. and Lee, S.G. (2002) An effective flash memory manager for reliable flash
memory space management. IEICE Trans. Information and System, E85-D(6), p. 950
– 964.

[15] Chang, Y.H., Hsieh, J.W. and Kuo, T.W. (2007) Endurance enhancement of flash-
memory storage systems: An efficient static wear leveling design. In: Proceedings
of 44th ACM/IEEE Design Automation Conference (DAC 2007), June 4-8, San
Diego, California: ACM. pp. 212 – 217.

[16] Rahiman, A.R. and Sumari, P. (2009). Probability based page data allocation scheme in
flash memory. In: Proceedings of IEEE Pacific-Rim Conference on Multimedia
(PCM 2009), Dec. 15-18, Bangkok, Thailand: IEEE. pp. 300 – 310.

[17] Ko, S., Jun, S., Kim, K., and Ryu, Y. (2008) Study on garbage collection schemes for flash
based Linux swap system. In: International Conference on Advanced Software
Engineering & Its Applications (ASEA 2008), Dec. 13-15, Hainan Island, China:
IEEE. pp. 13 – 16.

[18] Han, L.Z., Rhu, Y., Chung, T.S., Lee, M. and Hong, S. (2006) An intelligent garbage
collection algorithm for flash memory storages. In: Proceedings of International
Conference on Computational Science and Its Applications (ICCSA 2006), May 8-
11, Glasgow, UK: Springer. pp. 1019 – 1027.

[19] Rosenblum, M. and Ousterhout, J.K. (1992) The design and implementation of a log-
structured file system. ACM Transactions on Computer Systems, 10(1), p. 26 – 52.

[20] Kawaguchi, A., Nishioka, S. and Motada, H. (1995) Flash memory based file system. In:
Proceedings of USENIX 95 Technical Conference, Jan. 16-20, New Orleans,
Louisiana: USENIX. pp. 155 – 164.

[21] Chiang, M.L., Lee, P.C.H, and Chang, R.C. (1999) Cleaning policies in mobile
computers using flash memory. Journal of Systems and Software, 48(3), p. 213 –
231.

[22] Kwon, O., Ryu, Y. and Koh, K. (2007) An efficient garbage collection policy for flash
memory based swap systems. In: Proceedings of International Conference on
Computer Science and Applications (ICCSA 2007), Oct. 24-26, San Francisco, USA:
IAENG. pp. 213 – 223.

[23] Yaffs (2006) How does YAFFS work? [Online], [Accessed 30th July, 2010], Available from
World Wide Web: http://www.yaffs.net/yaffs-internals.

www.intechopen.com

Flash Memories

94

[24] Kang, J.U., Kim, J.S., Park, C., Park, H. and Lee, J. (2007) A multi-channel architecture
for high-performance NAND flash-based storage system. Journal of Systems
Architecture, 53(9), p. 644 – 658.

www.intechopen.com

Flash Memories

Edited by Prof. Igor Stievano

ISBN 978-953-307-272-2

Hard cover, 262 pages

Publisher InTech

Published online 06, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Flash memories and memory systems are key resources for the development of electronic products

implementing converging technologies or exploiting solid-state memory disks. This book illustrates state-of-

the-art technologies and research studies on Flash memories. Topics in modeling, design, programming, and

materials for memories are covered along with real application examples.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Amir Rizaan Rahiman and Putra Sumari (2011). Block Cleaning Process in Flash Memory, Flash Memories,

Prof. Igor Stievano (Ed.), ISBN: 978-953-307-272-2, InTech, Available from:

http://www.intechopen.com/books/flash-memories/block-cleaning-process-in-flash-memory

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

